应用化学 ›› 2022, Vol. 39 ›› Issue (8): 1274-1284.DOI: 10.19894/j.issn.1000-0518.210493
收稿日期:
2021-10-03
接受日期:
2021-11-15
出版日期:
2022-08-01
发布日期:
2022-08-04
通讯作者:
王大鹏
基金资助:
Yue-Hua ZHAO1,2, Da-Peng WANG1,2()
Received:
2021-10-03
Accepted:
2021-11-15
Published:
2022-08-01
Online:
2022-08-04
Contact:
Da-Peng WANG
About author:
wdp@ciac.ac.cnSupported by:
摘要:
合成了氨基化氧化石墨烯(NH2-PEG-GO),利用界面张力仪研究了脂肪酸质量浓度、NH2-PEG-GO质量浓度以及脂肪酸链长度对于NH2-PEG-GO与脂肪酸在水-油界面共吸附行为的影响。结果表明,当NH2-PEG-GO与脂肪酸共同存在于液相且质量浓度较低时,此时的水-油界面张力值要明显低于体系中只添加NH2-PEG-GO或脂肪酸时的张力值。脂肪酸的链长越长,NH2-PEG-GO与脂肪酸共吸附降低界面张力能力越强。由于相对于NH2-PEG-GO,脂肪酸尺寸较小,所以初期的界面张力降低由脂肪酸吸附引起,而且,脂肪酸在水-油界面的吸附能够吸引NH2-PEG-GO向界面扩散,表现出吸附的协同效应。而在吸附后期,界面张力降低现象由NH2-PEG-GO主导,NH2-PEG-GO与脂肪酸之间存在竞争吸附。
中图分类号:
赵跃华, 王大鹏. 氨基化氧化石墨烯和脂肪酸在水-油界面的共吸附动力学[J]. 应用化学, 2022, 39(8): 1274-1284.
Yue-Hua ZHAO, Da-Peng WANG. Coadsorption Kinetics of Amino‑Functionalized Graphene Oxide and Fatty Acids at the Water/Oil Interface[J]. Chinese Journal of Applied Chemistry, 2022, 39(8): 1274-1284.
图3 单一的PA和NH2-PEG-GO体系: (a1) 0.05 mg/mL PA; (a2) 5 mg/mL PA; (b1) 0.1 mg/mL NH2-PEG-GO; (b2) 5 mg/mL NH2-PEG-GO和 (c1) 0.05 mg/mL PA、0.1 mg/mL NH2-PEG-GO 二元体系下,水-正辛烷动态界面张力与测试时间关系
Fig.3 Dynamic interfacial tension of the octane/water interface with time for single systems of sole PA and NH2-PEG-GO: (a1) 0.05 mg/mL PA, (a2) 5 mg/mL PA, (b1) 0.1 mg/mL NH2-PEG-GO, (b2) 5 mg/mL NH2-PEG-GO and binary systems of (c1) 0.05 mg/mL PA and 0.1 mg/mL NH2-PEG-GO
序号 No. | 组成 Compound | 流体力学半径 Rh/nm | 界面吸附面积 A/nm2 | 本体扩散系数 D/(m2·s-1) |
---|---|---|---|---|
1 2 | PA | 5.73 | 0.36 | 7.5×10-10 |
NH2?PEG?GO | 80 | 4329 | 3.06×10-12 |
表1 PA和NH2?PEG?GO分子的基本参数
Table 1 Basic parameters of PA and NH2?PEG?GO
序号 No. | 组成 Compound | 流体力学半径 Rh/nm | 界面吸附面积 A/nm2 | 本体扩散系数 D/(m2·s-1) |
---|---|---|---|---|
1 2 | PA | 5.73 | 0.36 | 7.5×10-10 |
NH2?PEG?GO | 80 | 4329 | 3.06×10-12 |
图4 不同质量浓度NH2-PEG-GO(A)动态界面张力IFT与t-1/2 关系曲线和(B)有效扩散常数Deff以及吸附势垒ΔG
Fig.4 (A) Dynamic interfacial tension data plotted against t-1/2, (B) Effective diffusion coefficient and adsorption barrier of different mass concentration NH2-PEG-GO
图6 油相中PA质量浓度为(A)0 mg/mL 和(B)0.5 mg/mL时,正辛烷/水之间的界面张力随NH2-PEG-GO质量浓度的变化曲线
Fig.6 Interfacial tension between octane/water decays as a function of the mass concentration of PA: (A) 0 mg/mL, (B) 0.5 mg/mL
图7 水相中NH2-PEG-GO质量浓度为(A)0 mg/mL 和(B)0.1 mg/mL时,正辛烷/水之间的界面张力随PA质量浓度的变化曲线
Fig.7 Interfacial tension between octane/water decays as a function of the mass concentration of PA: (A) 0 mg/mL, (B) 0.1 mg/mL
图9 不同质量浓度、不同烷基链长度脂肪酸(A)C10、(B)C16和(C)C20在NH2-PEG-GO水-正辛烷溶液之间界面张力随时间演变曲线及(D)不同烷基链长度脂肪酸的平衡界面张力随脂肪酸质量浓度变化曲线,NH2-PEG-GO质量浓度固定为0.1 mg/mL
Fig.9 Time evolution of interfacial tension between 0.1 mg/mL NH2-PEG-GO solutions and octane solutions at different fatty acids mass concentrations of (A) C10, (B) C16, (C) C20, (D) The curves of the equilibrium IFT vs. the mass concentration of fatty acids with different linear alkyl groups, NH2-PEG-GO at fixed 0.1 mg/mL
序号 No. | 组成 Composition | 数均相对分子质量 Mn | 流体力学半径 Rh/nm | 本体扩散系数 D/(m2·s-1) |
---|---|---|---|---|
1 2 | C10 | 172.26 | 4.33 | 9.9×10-10 |
C16 | 256.42 | 5.73 | 7.5×10-10 | |
3 | C20 | 312.53 | 6.59 | 6.5×10-10 |
表2 脂肪酸分子的基本参数
Table 2 Basic parameters of fatty acids
序号 No. | 组成 Composition | 数均相对分子质量 Mn | 流体力学半径 Rh/nm | 本体扩散系数 D/(m2·s-1) |
---|---|---|---|---|
1 2 | C10 | 172.26 | 4.33 | 9.9×10-10 |
C16 | 256.42 | 5.73 | 7.5×10-10 | |
3 | C20 | 312.53 | 6.59 | 6.5×10-10 |
1 | 范竞存, 余昊, 陈杰, 等. 非常规油气开采中的微纳米力学问题研究进展[J]. 中国科学技术大学学报, 2017, 47(2): 142-154. |
FAN J C, YU H, CHEN J, et al. Research progress of micro/nano mechanical problems in unconventional oil and gas exploitation[J]. J Univ Sci Technol China, 2017, 47(2): 142-154. | |
2 | GBADAMOSI A O, JUNIN R, MANAN M A, et al. Recent advances and prospects in polymeric nanofluids application for enhanced oil recovery[J]. J Ind Eng Chem, 2018, 66: 1-19. |
3 | LI K W, WANG D, JIANG S S. Review on enhanced oil recovery by nanofluids[J]. Oil Gas Sci Technol-Rev IFP Energies Nouvelles, 2018, 73(37): 1-26. |
4 | MELROSE J C, BRANDNER C F. Role of capillary forces in determining microscopic displacement efficiency for oil recovery by waterflooding[J]. J Can Pet Technol, 1974, 13(4): 54-62. |
5 | 岳湘安, 侯吉瑞, 吕鑫, 等. 驱油剂界面特性和流变性对石油采收率的综合影响[J]. 应用化学, 2008, 25(8): 904-908. |
YUE X A, HOU J R, LV X, et al. Synergistic effect of Interfacial and rheological properties of displacing fluid in chemical flooding[J]. Chinese J Appl Chem, 2008, 25(8): 904-908. | |
6 | 郜思衡, 康诗钊, 李向清, 等. 氧化石墨烯/超细银粒子复合物的制备及其光电性能[J]. 应用化学, 2020, 37(8): 923-929. |
GAO S H, KANG S Z, LI X Q, et al. Preparation and photoelectric performance of graphene oxide/ultrafine silver composite[J]. Chinese J Appl Chem, 2020, 37(8): 923-929. | |
7 | LEI Y, FANG C, XU J, et al. Enhanced photoelectric properties of CdSe/graphene composites with various contents of graphene[J]. Ceram Int, 2016, 42(4): 5326-5330. |
8 | 张雅静, 王晓辉, 徐亚娟, 等. 石墨烯纳米载药体系的制备及对肿瘤细胞的杀伤作用[J]. 应用化学, 2021, 38(6): 693-703. |
ZHANG Y J, WANG X H, XU Y J, et al. Preparation of graphene nano-drug carrier system and its killing effecton tumor cells[J]. Chinese J Appl Chem, 2021, 38(6): 693-703. | |
9 | GEORGAKILAS V, TIWARI J N, KEMP K C, et al. Noncovalent functionalization of graphene and graphene oxide for energy materials, biosensing, catalytic, and biomedical applications[J]. Chem Rev, 2016, 116(9): 5464-5519. |
10 | KUDIN K N, CAR R. Why are water‑hydrophobic interfaces charged?[J]. J Am Chem Soc, 2008, 130(12): 3915-3919. |
11 | LUO D, WANG F, ZHU J, et al. Nanofluid of graphene-based amphiphilic Janus nanosheets for tertiary or enhanced oil recovery: high performance at low concentration[J]. Proc Natl Acad Sci USA, 2016, 113(28): 7711-7716. |
12 | TOOR A, HELMS B A, RUSSELL T P. Effect of nanoparticle surfactants on the breakup of free-falling water jets during continuous processing of reconfigurable structured liquid droplets[J]. Nano Lett, 2017, 17(5): 3119-3125. |
13 | SUN Z, FENG T, RUSSELL T P. Assembly of graphene oxide at water/oil interfaces: tessellated nanotiles[J]. Langmuir, 2013, 29(44): 13407-13413. |
14 | FENG T, HOAGLAND D A, RUSSELL T P. Assembly of acid-functionalized single-walled carbon nanotubes at oil/water interfaces[J]. Langmuir, 2014, 30(4): 1072-1079. |
15 | LIU X, SHI S, LI Y, et al. Liquid tubule formation and stabilization using cellulose nanocrystal surfactants[J]. Angew Chem Int Ed, 2017, 56(41): 12594-12598. |
16 | HUANG C, CHAI Y, JIANG Y, et al. The interfacial assembly of polyoxometalate nanoparticle surfactants[J]. Nano Lett, 2018, 18(4): 2525-2529. |
17 | 宋先雨, 方申文, 陶俊, 等. 环烷酸对原油乳状液稳定性影响的研究进展[J]. 精细石油化工, 2015, 32(1): 47-52. |
SONG X Y, FANG S W, TAO J, et al. Effect of naphthenic acid on stability of crude oil emulsion[J]. Spec Petrochem, 2015, 32(1): 47-52. | |
18 | LIN Y, JIN J, SONG M. Preparation and characterisation of covalent polymer functionalized graphene oxide[J]. J Mater Chem, 2011, 21(10): 3455-3461. |
19 | LI T, LIU H, XI G, et al. One-step reduction and PEIylation of PEGylated nanographene oxide for highly efficient chemo-photothermal therapy[J]. J Mater Chem B, 2016, 4(17): 2972-2983. |
20 | AMARO-GAHETE J, BENÍTEZ A, OTERO R, et al. A comparative study of particle size distribution of graphene nanosheets synthesized by an ultrasound-assisted method[J]. Nanomaterials, 2019, 9(2): 152. |
21 | GOEBEL A, LUNKENHEIMER K. Interfacial tension of the water/n-alkane interface[J]. Langmuir, 1997, 13(2): 369-372. |
22 | ZEPPIERI S, RODRÍGUEZ J, LÓPEZ DE RAMOS A L. Interfacial tension of alkane + water systems[J]. J Chem Eng Data, 2001, 46(5): 1086-1088. |
23 | CUI M, MIESCH C, KOSIF I, et al. Transition in dynamics as nanoparticles jam at the liquid/liquid interface[J]. Nano Lett, 2017, 17(11): 6855-6862. |
24 | KUTUZOV S, HE J, TANGIRALA R, et al. On the kinetics of nanoparticle self-assembly at liquid/liquid interfaces[J]. Phys Chem Chem Phys, 2007, 9(48): 6351-6358. |
25 | WANG D, YORDANOV S, PAROOR H M, et al. Probing diffusion of single nanoparticles at water-oil interfaces[J]. Small, 2011, 7(24): 3502-3507. |
26 | WANG D, PEVZNER L, LI C, et al. Layer with reduced viscosity at water-oil interfaces probed by fluorescence correlation spectroscopy[J]. Phys Rev E, 2013, 87(1): 012403. |
27 | WANG D, ZHU Y L, ZHAO Y, et al. Brownian diffusion of individual janus nanoparticles at water/oil interfaces[J]. ACS Nano, 2020, 14(8): 10095-10103. |
28 | EASTOE J, DALTON J S. Dynamic surface tension and adsorption mechanisms of surfactants at the air-water interface[J]. Adv Colloid Interface Sci, 2000, 85(2): 103-144. |
29 | GU S, XU Z, YANG X. Molecular insight into the adsorption thermodynamics and interfacial behavior of GOs at the liquid-liquid lnterface[J]. J Phys Chem B, 2021, 125(7): 1924-1935. |
30 | CREIGHTON M A, OHATA Y, MIYAWAKI J, et al. Two-dimensional materials as emulsion stabilizers: interfacial thermodynamics and molecular barrier properties[J]. Langmuir, 2014, 30(13): 3687-3696. |
31 | WARD A, TORDAI L. Time-dependence of boundary tensions of solutions I. the role of diffusion in time-effects[J]. J Chem Phys, 1946, 14: 453-461. |
32 | FAINERMAN V B, MAKIEVSKI A V, MILLER R. The analysis of dynamic surface tension of sodium alkyl sulphate solutions, based on asymptotic equations of adsorption kinetic theory[J]. Colloids Surf A: Physicochem Eng Asp, 1994, 87(1): 61-75. |
33 | MOORKANIKKARA S N, BLANKSCHTEIN D. Possible existence of convective currents in surfactant bulk solution in experimental pendant-bubble dynamic surface tension measurements[J]. Langmuir, 2009, 25(3): 1434-1444. |
34 | MUHAMAD R, MISRAN M. Adsorption kinetics of partially ionized fatty acids at oil/water interface of their monomeric and liposomal solution[J]. Colloids Surf A: Physicochem Eng Asp, 2017, 528: 23-29. |
35 | SAUERER B, STUKAN M, BUITING J, et al. Dynamic asphaltene-stearic acid competition at the oil-water interface[J]. Langmuir, 2018, 34(19): 5558-5573. |
36 | TOUWSLAGER F J, SONDAG A H M. Order and disorder in n-alkylcarboxylic acid monolayers. chain-length dependence and lateral interaction effects[J]. Langmuir, 1994, 10(4): 1028-1033. |
37 | KANICKY J R, PONIATOWSKI A F, MEHTA N R, et al. Cooperativity among molecules at interfaces in relation to various technological processes: effect of chain length on the pKa of fatty acid salt solutions[J]. Langmuir, 2000, 16(1): 172-177. |
38 | HUBBE M, MCLEAN D, STACK K, et al. Self-assembly of alkyl chains of fatty acids in papermaking systems: a review of related pitch issues, hydrophobic sizing, and pH effects[J]. Bioresources, 2020, 15(2): 4591-4635. |
39 | SHIAO S Y, PATIST A, FREE M L, et al. The importance of sub-angstrom distances in mixed surfactant systems for technological processes[J]. Colloids Surf A: Physicochem Eng Asp, 1997, 128(1): 197-208. |
[1] | 张思佳, 徐彩娜, 陈杰, 田华雨, 陈学思. 通过调控肿瘤代谢增强T细胞抗肿瘤活性[J]. 应用化学, 2020, 37(9): 977-984. |
[2] | 胡学一, 罗敏敏, 方云, 李俊国, 孙洋, 李华山. 乙醇胺类原料形成亚硝胺的比较[J]. 应用化学, 2019, 36(9): 1061-1068. |
[3] | 胡学一, 罗敏敏, 方云, 李俊国, 孙洋, 李华山. 乙醇胺类原料形成亚硝胺的比较[J]. 应用化学, 2019, 36(9): 0-. |
[4] | 王仁亮, 朱延美, 冀海伟. 以短链季铵盐/脂肪酸盐为模板合成超微孔二氧化硅[J]. 应用化学, 2019, 36(1): 51-57. |
[5] | 樊晔, 韩贻陈, 夏咏梅, 薄纯玲, 王淑钰, 方云. 共轭亚油酸与海藻酸钠囊泡化自组装纳米容器及其药物缓释性能[J]. 应用化学, 2018, 35(12): 1478-1484. |
[6] | 蔡帮鑫, 张琪琪, 刚洪泽, 刘金峰, 杨世忠, 牟伯中. 餐厨废油制备的生物基两性表面活性剂的油水界面性能[J]. 应用化学, 2016, 33(7): 798-803. |
[7] | 林春花, 芮培欣, 雷志伟, 严楠, 许招会, 廖维林. 超高效合相色谱-质谱法快速分离测定4种单脂肪酸甘油酯[J]. 应用化学, 2016, 33(2): 238-244. |
[8] | 丁伟, 宋成龙, 李博洋. 壬基酚甜菜碱两性表面活性剂的合成和抗温耐盐性能[J]. 应用化学, 2015, 32(8): 922-930. |
[9] | 伊卓, 杨付林, 刘希, 赵方园, 方昭, 杜超, 胡晓娜. 中低渗透高温高盐油藏驱油共聚物P(AM/AMPSNa/AANa)的合成及性能[J]. 应用化学, 2015, 32(5): 519-526. |
[10] | 陈曦, 郑楠, 刘凌志, 门永锋. 长链烷酸接枝羟丙基纤维素相变材料的制备及其性能[J]. 应用化学, 2015, 32(5): 535-541. |
[11] | 林美娟, 安琪, 胡珍, 曾惠卷, 凌启淡. 脂肪酸铕配合物掺杂聚乙烯、聚丙烯和聚苯乙烯光致发光复合材料[J]. 应用化学, 2014, 31(10): 1164-1170. |
[12] | 康万利, 李媛, 单秀华, 范海明, 崔文洪, 张鑫. 三元复合驱碱/表面活性剂/聚合物模拟原油乳状液稳定动力学特性[J]. 应用化学, 2012, 29(04): 428-433. |
[13] | 饶蔚兰, 潘志权, 向守信. 稀土固体超强酸的制备及其对硬脂肪酸酯化反应的催化[J]. 应用化学, 2011, 28(08): 907-912. |
[14] | 于涛, 杨洋, 张春辉, 李安军, 高晓宇, 丁伟, 曲广淼. 十六烷基甲苯磺酸钠的界面性能研究[J]. 应用化学, 2009, 26(09): 1011-1014. |
[15] | 岳湘安, 侯吉瑞, 吕鑫, 张立娟. 驱油剂界面特性和流变性对石油采收率的综合影响[J]. 应用化学, 2008, 25(8): 904-908. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||