
应用化学 ›› 2022, Vol. 39 ›› Issue (8): 1285-1293.DOI: 10.19894/j.issn.1000-0518.210353
收稿日期:
2021-07-21
接受日期:
2021-12-07
出版日期:
2022-08-01
发布日期:
2022-08-04
通讯作者:
李在均
基金资助:
Received:
2021-07-21
Accepted:
2021-12-07
Published:
2022-08-01
Online:
2022-08-04
Contact:
Zai-Jun LI
About author:
zaijunli@jiangnan.edu.cnSupported by:
摘要:
组氨酸功能化石墨烯量子点(His-GQDs)与三氯化钌反应生成稳定的钌配合物。此配合物在氮气氛围中于600 ℃恒温处理1 h得到钌-石墨烯量子点复合物(Ru-His-GQD)。扫描电子显微镜(SEM)和透射电子显微镜(TEM)分析的结果表明,Ru-His-GQD具有三维结构。钌纳米粒子粒径位于40~60 nm之间。Ru-His-GQD含有丰富的功能基团,具有高的类氧化酶活性。基于Ru-His-GQD催化3,3′,5,5′-四甲基联苯胺(TMB)氧化生成蓝色化合物,建立了一种测定胡萝卜中辛硫磷的光度分析方法。辛硫磷可抑制Ru-His-GQD氧化酶的活性,导致蓝色化合物吸光度下降。当辛硫磷浓度在30~240 μg/L之间,TMB氧化产物在652 nm处的吸光度随辛硫磷浓度增加而线性下降。方法的检出限达到7.33 μg/L(S/N=3),灵敏度高于现有文献报道结果,成功用于胡萝卜中辛硫磷的检测。
中图分类号:
王文栋, 李在均. 钌-石墨烯量子点人工酶合成及用于胡萝卜中辛硫磷的光度检测[J]. 应用化学, 2022, 39(8): 1285-1293.
Wen-Dong WANG, Zai-Jun LI. Synthesis of Ruthenium‑Graphene Quantum Dots Artificial Oxidase and Its Application in Colorimetric Detection of Phoxim in Carrots[J]. Chinese Journal of Applied Chemistry, 2022, 39(8): 1285-1293.
图2 (A) Ru-His-GQD的XPS总能谱图; (B、C和D)Ru-His-GQD的高分辨C1s、N1s和Ru3p XPS能谱图
Fig.2 (A) Total XPS energy spectrum of Ru-His-GQD; (B, C and D) high-resolution C1s, N1s and Ru3p XPS energy spectra of Ru-His-GQD
图3 (A) Ru-His-GQD(a)、Ru 纳米粒子(b)和His-GQD(c)存在下反应体系的紫外-可见吸收光谱; (B) Ru-His-GQD+TMB (a)和Ru-His-GQD+TMB+辛硫磷反应体系的紫外-可见吸收光谱(b)
Fig.3 (A) Ultraviolet-visible absorption spectra of the reaction system in the presence of Ru-His-GQD(a), Ru nanoparticle (b) or His-GQD(c); (B) Ultraviolet-visible absorption spectra of Ru-His-GQD+TMB (a) and Ru-His-GQD+TMB+ phoxim reaction systems
图4 (A)不同pH值下反应体系在 652 nm处的吸光度; (B) 不同反应时间下体系在652 nm处的吸光度
Fig.4 (A) The absorbance at 652 nm for different pH media; (B) The absorbance at 652 nm for different reaction times
图5 (A)在 0、30、60、90、120、150、180、210和240 μg/L辛硫磷存在下显色反应体系的紫外-可见吸收光谱; (B)反应体系在652 nm处的吸光度与辛硫磷浓度的关系曲线
Fig.5 (A) Ultraviolet-visible absorption spectra of the color reaction system in the presence of 0, 30, 60, 90, 120, 150, 180, 210 and 240 μg/L; (B) Relationship curve of the absorbance of the color reaction system with the phoxim concentration
催化剂 Catalyst | 线性范围 Linear range/(μg·L-1) | 检出限 The detection limit/(μg·L-1) | 检测样品 Test sample | 文献 Ref. |
---|---|---|---|---|
CDs?AgNPs | 30~30000 | 12 | 辛硫磷 Phoxim | |
Ag3PO4 NPs | 9970 | 毒死蜱 Chlorpyrifos | ||
PAA?CeO2 | 8.62 | 敌敌畏 Dichlorvos | ||
Ag3PO4/UiO?66 | 8.3~5333 | 7.5 | 马拉硫磷 Malathion | |
Ru?His?GQD | 30~240 | 7.33 | 辛硫磷 Phoxim | 本工作 This work |
表1 不同比色法检测有机磷农药的比较
Table 1 Comparison of the different colorimetric methods for detection of organophosphorus pesticides
催化剂 Catalyst | 线性范围 Linear range/(μg·L-1) | 检出限 The detection limit/(μg·L-1) | 检测样品 Test sample | 文献 Ref. |
---|---|---|---|---|
CDs?AgNPs | 30~30000 | 12 | 辛硫磷 Phoxim | |
Ag3PO4 NPs | 9970 | 毒死蜱 Chlorpyrifos | ||
PAA?CeO2 | 8.62 | 敌敌畏 Dichlorvos | ||
Ag3PO4/UiO?66 | 8.3~5333 | 7.5 | 马拉硫磷 Malathion | |
Ru?His?GQD | 30~240 | 7.33 | 辛硫磷 Phoxim | 本工作 This work |
图6 (A)采用不同储存期的Ru-His-GQD作为人工酶的显色反应体系吸光度; (B) 150 μg/L不同干扰组分存在下反应体系的吸光度
Fig.6 (A) The absorbance of the color reaction system using the Ru-His-GQD samples with different storage periods; (B) The absorbance of color reaction system in the presence of different interfering substances of 150 μg/L
样品 Sample | 样品添加标准浓度 Sample addition standard concentration/ (ng·mL-1) | 用建立的检测方法检测浓度 Use the established detection method to detect the concentration/(ng·mL-1) | 回收率 Recovery/% |
---|---|---|---|
胡萝卜1 Carrot 1 | 0.0 | No found | |
20.0 | 19.26±0.06 | 96.3 | |
胡萝卜2 Carrot 2 | 0.0 | No found | |
20.0 | 19.52±0.02 | 97.6 | |
胡萝卜3 Carrot 3 | 0.0 | No found | |
20.0 | 20.36±0.04 | 101.8 | |
胡萝卜4 Carrot 4 | 0.0 | 2.2±0.05 | |
20.0 | 21.83±0.04 | 98.2 | |
胡萝卜5 Carrot 5 | 0.0 | 3.6±0.03 | |
20.0 | 24.12±0.07 | 102.3 |
表2 胡萝卜中辛硫磷测定结果 (n=5)
Table 2 The results for detection of phoxim in carrot samples (n=5)
样品 Sample | 样品添加标准浓度 Sample addition standard concentration/ (ng·mL-1) | 用建立的检测方法检测浓度 Use the established detection method to detect the concentration/(ng·mL-1) | 回收率 Recovery/% |
---|---|---|---|
胡萝卜1 Carrot 1 | 0.0 | No found | |
20.0 | 19.26±0.06 | 96.3 | |
胡萝卜2 Carrot 2 | 0.0 | No found | |
20.0 | 19.52±0.02 | 97.6 | |
胡萝卜3 Carrot 3 | 0.0 | No found | |
20.0 | 20.36±0.04 | 101.8 | |
胡萝卜4 Carrot 4 | 0.0 | 2.2±0.05 | |
20.0 | 21.83±0.04 | 98.2 | |
胡萝卜5 Carrot 5 | 0.0 | 3.6±0.03 | |
20.0 | 24.12±0.07 | 102.3 |
1 | LIANG P, GUO L, LIU Y, et al. Application of liquid-phase microextraction for the determination of phoxim in water samples by high performance liquid chromatography with diode array detector[J]. Microchem J, 2005, 80(1): 19-23. |
2 | ZHOU T, XIAO X, LI G. Microwave accelerated selective soxhlet extraction for the determination of organophosphorus and carbamate pesticides in ginseng with gas chromatography/mass spectrometry[J]. Anal Chem, 2012, 84(13): 5816-5822. |
3 | WATANABE E, MIYAKE S, YOGO Y. Review of enzyme-linked immunosorbent assays (ELISAs) for analyses of neonicotinoid insecticides in agro-environments[J]. J Agric Food Chem, 2013, 61(51): 12459-12472. |
4 | ZHANG L, ZHANG A, DU D, et al. Biosensor based on Prussian blue nanocubes/reduced graphene oxide nanocomposite for detection of organophosphorus pesticides[J]. Nanoscale, 2012, 4(15): 4674-4679. |
5 | PINXTEREN M V, BAUER C, POPP P. High performance liquid chromatography-tandem mass spectrometry for the analysis of 10 pesticides in water: a comparison between membrane-assisted solvent extraction and solid phase extraction[J]. J Chromatogr A, 2009, 1216(31): 5800-5806. |
6 | LESUEUR C, GARTNER M, MENTLER A, et al. Comparison of four extraction methods for the analysis of 24 pesticides in soil samples with gas chromatography-mass spectrometry and liquid chromatography-ion trap-mass spectrometry[J]. Talanta, 2008, 75(1): 284-293. |
7 | FILHO A M, SANTOS F, PEREIRA P. Development, validation and application of a methodology based on solid-phase micro extraction followed by gas chromatography coupled to mass spectrometry (SPME/GC-MS) for the determination of pesticide residues in mangoes[J]. Talanta, 2010, 81(1): 346-354. |
8 | CHUA A L, CHAN Y Y, RAVICHANDRAN M, et al. A rapid DNA biosensor for the molecular diagnosis of infectious disease[J]. Biosens Bioelectron, 2011, 26(9): 3825-3831. |
9 | TELES F, FONSECA L P. Trends in DNA biosensors[J]. Talanta, 2009, 77(2): 606-623. |
10 | LEE S, YUEN K, JOLLIFFE K A, et al. Fluorescent and colorimetric chemosensors for pyrophosphate[J]. Chem Soc Rev, 2015, 44(7): 1749-1762. |
11 | TOLESSA T, TAN Z Q, YIN Y G, et al. Single-drop gold nanoparticles for headspace microextraction and colorimetric assay of mercury (II) in environmental waters[J]. Talanta, 2018, 176: 77-84. |
12 | HAN L, ZENG L, WEI M, et al. A V2O3-ordered mesoporous carbon composite with novel peroxidase-like activity towards the glucose colorimetric assay[J]. Nanoscale, 2015, 7(27): 11678-11685. |
13 | WEI H, WANG E. Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes[J]. Chem Soc Rev, 2013, 42(14): 6060-6093. |
14 | LIN Y, REN J, QU X. Catalytically active nanomaterials: a promising candidate for artificial enzymes[J]. Acc Chem Res, 2014, 47(4): 1097-1105. |
15 | YAN L, ZHAO J, JIANG P, et al. Amphiphilic polyoxometalate-paired polymer coated Fe3O4: magnetically recyclable catalyst for epoxidation of bio-derived olefins with H2O2[J]. ACS Appl Mater Interfaces, 2014, 6(8): 5947-5954. |
16 | JIANG T, SONG Y, WEI T, et al. Sensitive detection of Escherichia coli O157:H7 using Pt-Au bimetal nanoparticles with peroxidase-like amplification[J]. Biosens Bioelectron, 2016, 77: 687-694. |
17 | CAO G J, JIANG X, ZHANG H, et al. Mimicking horseradish peroxidase and oxidase using ruthenium nanomaterials[J]. RSC Adv, 2017, 7(82): 52210-52217. |
18 | CAO W, LIN J, MUHAMMAD F, et al. Porous ruthenium selenide nanoparticle as a peroxidase mimic for glucose bioassay[J]. J Anal Test, 2019, 3(3): 253-259. |
19 | LI R Y, LI Z J, LIU J K. Histidine-functionalized carbon-based dot-zinc(II) nanoparticles as a novel stabilizer for Pickering emulsion synthesis of polystyrene microspheres[J]. J Colloid Interface Sci, 2017, 493: 24-31. |
20 | YADAV P K, SINGH V K, CHANDRA S, et al. Green synthesis of fluorescent carbon quantum dots from azadirachta indica leaves and their peroxidase-mimetic activity for the detection of H2O2 and ascorbic acid in common fresh fruits[J]. ACS Biomater Sci Engine, 2018, 5(2): 623-632. |
21 | HU Y, GAO X J, ZHU Y, et al. Nitrogen-doped carbon nanomaterials as highly active and specific peroxidase mimics[J]. Chem Mater, 2018, 30(18): 6431-6439. |
22 | WANG G L, XU X F, WU X M, et al. Visible-light-stimulated enzymelike activity of graphene oxide and its application for facile glucose sensing[J]. J Phys Chem C, 2014, 118(48): 28109-28117. |
23 | LI B, DU Y, LI T, et al. Investigation of 3,3′,5,5′-tetramethylbenzidine as colorimetric substrate for a peroxidatic DNAzyme[J]. Anal Chim Acta, 2009, 651(2): 234-240. |
24 | SHENG E, LU Y, TAN Y, et al. Oxidase-mimicking activity of ultrathin MnO2 nanosheets in a colorimetric assay of chlorothalonil in food samples [J]. Food Chem, 2020, 331: 127090. |
25 | ZHENG M, WANG C, WANG Y, et al. Green synthesis of carbon dots functionalized silver nanoparticles for the colorimetric detection of phoxim[J]. Talanta, 2018, 185: 309-315. |
26 | KUAHWAHA A, SINGH G, SHARMA M. Colorimetric sensing of chlorpyrifos through negative feedback inhibition of the catalytic activity of silver phosphate oxygenase nanozymes[J]. RSC Adv, 2020, 10(22): 13050-13065. |
27 | ZHANG S X, XUE S F, DENG J, et al. Polyacrylic acid-coated cerium oxide nanoparticles: an oxidase mimic applied for colorimetric assay to organophosphorus pesticides[J]. Biosens Bioelectron, 2016, 85: 457-463. |
28 | LIU P, LI X, XU X, et al. Analyte-triggered oxidase-mimetic activity loss of Ag3PO4/UiO-66 enables colorimetric detection of malathion completely free from bioenzymes[J]. Sens Actuators B: Chem, 2021, 338: 129866. |
[1] | 张月霞, 范小鹏, 曹宇娟, 杨欣彤, 李忠平, 杨振华, 董川. 热解法制备油溶性碳量子点用于土霉素的检测[J]. 应用化学, 2023, 40(4): 509-517. |
[2] | 姚競, 戴明明. 基于乘用车轮胎胎面胶粉的再生橡胶的制备及性能[J]. 应用化学, 2023, 40(1): 52-58. |
[3] | 闫美玲, 彭红珍, 左婷婷, 田甜, 诸颖, 孙艳红. 四面体框架核酸对脑靶向肽分子的可控组装及性能[J]. 应用化学, 2022, 39(10): 1501-1509. |
[4] | 牛青芳, 艾欣, 王奕璇, 贺方玖, 罗彼, 梁文婷, 董川. 三维还原氧化石墨烯/β-环糊精复合物的合成及其电化学检测水中左氧氟沙星[J]. 应用化学, 2022, 39(7): 1129-1137. |
[5] | 吕金枝, 张鑫浩. 胆碱氧化酶功能化室温磷光量子点的制备及其对氯化胆碱的定量检测[J]. 应用化学, 2022, 39(5): 828-836. |
[6] | 于佳雪, 王昶, 杨媚婷, 杜衍, 刘畅. 商品化血糖仪用于乙型肝炎病毒的便携式体外分子诊断[J]. 应用化学, 2022, 39(3): 498-506. |
[7] | 陈瑶, 唐英. 柱前衍生化高效液相色谱法测定氯氮平中肼含量[J]. 应用化学, 2022, 39(02): 322-331. |
[8] | 朱富强, 丁卫平, 韩岩君, 田洪根. 脂质去除分散固相萃取-超高效液相色谱-串联质谱法测定动物源性食品中5种α2-受体激动剂[J]. 应用化学, 2021, 38(6): 713-721. |
[9] | 蔡志锋, 武亮亮, 戚凯飞, 邓晨华, 张申, 张彩凤. 脯氨酸保护的铜纳米团簇的制备及其在三硝基苯酚检测中的应用[J]. 应用化学, 2021, 38(1): 107-115. |
[10] | 张亚, 杜芳艳, 郑建斌. 多贝斯在石墨烯修饰玻碳电极上的电化学行为及其测定[J]. 应用化学, 2014, 31(07): 860-864. |
[11] | 刘燕伟, 陈奇丹, 马彤梅. 基于QuEChERS-HPLC法检测油炸食品中丙烯酰胺的含量[J]. 应用化学, 2014, 31(04): 489-495. |
[12] | 克帕亚木·买买提, 吐尔洪·买买提, 尤努斯江·吐拉洪, 布热比亚·亚合普. 对硝基苯酚分子印迹聚合物最佳功能单体的筛选及其水样固相萃取中的应用[J]. 应用化学, 2014, 31(04): 482-488. |
[13] | 孙谦, 杨迎春, 叶芝祥, 张林. 汞(Ⅱ)-邻菲啰啉-刚果红缔合体系的共振瑞利散射和共振非线性散射光谱及分析应用[J]. 应用化学, 2013, 30(04): 474-480. |
[14] | 孙瑶, 吴呈珂, 李全民. 硝普钠分光光度法测定头孢他啶[J]. 应用化学, 2012, 29(09): 1082-1086. |
[15] | 张培培, 王爱军, 刘雪艳, 朱红乔, 杜俊芳, 陈炫, 冯九菊. 层层自组装法制备普鲁士蓝修饰电极及对过氧化氢的测定[J]. 应用化学, 2012, 29(05): 585-590. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 429
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 444
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||