1 |
XU H, KOSMA V, GIANNELIS E P, et al. In pursuit of Moore's Law: polymer chemistry in action[J]. Polym J, 2018, 50(1): 45-55.
|
2 |
LI J, HU Y, YU L, et al. Recent advances of nanospheres lithography in organic electronics[J]. Small, 2021, 17(28): 2100724.
|
3 |
https://www.forbes.com/sites/patrickmoorhead/2021/07/26/intel-updates-idm-20-strategy-with-new-node-naming-and-technologies/?sh=5385922629d5[EB].
|
4 |
https://newsroomibmcom/2021-05-06-IBM-Unveils-Worlds-First-2-Nanometer-Chip-Technology,-Opening-a-New-Frontier-for-Semiconductors#assets_all[EB].
|
5 |
LI L, LIU X, PAL S, et al. Extreme ultraviolet resist materials for sub-7 nm patterning[J]. Chem Soc Rev, 2017, 46(16): 4855-4866.
|
6 |
MANOURAS T, ARGITIS P. High sensitivity resists for EUV lithography: a review of material design strategies and performance results[J]. Nanomaterials, 2020, 10(8): 1593.
|
7 |
KWAK J, MISHRA A K, LEE J, et al. Fabrication of sub-3 nm feature size based on block copolymer self-assembly for next-generation nanolithography[J]. Macromolecules, 2017, 50(17): 6813-6818.
|
8 |
朋小康, 黄兴文, 刘荣涛, 等. 光刻胶成膜剂: 发展与未来[J]. 应用化学, 2021, 38(9): 1079-1090.
|
|
PENG X K, HUANG X W, LIU R T, et al. Photoresist film-forming agent: development and future[J]. Chinese J Appl Chem, 2021, 38(9): 1079-1090.
|
9 |
韦亚一. 超大规模集成电路先进光刻理论与应用[M]. 北京: 科学出版社, 2016.
|
|
WEI Y Y. Advanced lithography theory and application of VLSI[M]. Beijing: Science Press, 2016.
|
10 |
PI S, LI C, JIANG H, et al. Memristor crossbar arrays with 6-nm half-pitch and 2-nm critical dimension[J]. Nat Nanotechnol, 2019, 14(1): 35-39.
|
11 |
LIAO P N, BARTON B, HSU P. Development of fluoro-free surfactant rinse solutions for EUV photoresists[J]. Proc SPIE, 2021, 11854: 1185409.
|
12 |
MURASE S, KINOSHITA K, HORIE K, et al. Photo-optical control with large refractive index changes by photodimerization of poly (vinyl cinnamate) film[J]. Macromolecules, 1997, 30(25): 8088-8090.
|
13 |
CHEN Y, WANG Z, HE Y, et al. Light-enabled reversible self-assembly and tunable optical properties of stable hairy nanoparticles[J]. Proc Natl Acad Sci, 2018, 115(7): E1391-E400.
|
14 |
YU J, XU N, WEI Q, et al. Novel ester acetal polymers and their application for positive-tone chemically amplified i-line photoresists[J]. J Mater Chem C, 2013, 1(6): 1160-1167.
|
15 |
ZWEBER A E, WAGNER M, DEYOUNG J, et al. Mechanism of extreme ultraviolet photoresist development with a supercritical CO2 compatible salt[J]. Langmuir, 2009, 25(11): 6176-6190.
|
16 |
ITO H, SHERWOOD M. NMR analysis of chemically amplified resist films[J]. Proc SPIE, 1999, 3678: 104-115.
|
17 |
李小欧, 顾雪松, 刘亚栋, 等. 193 nm 化学放大光刻胶研究进展[J]. 应用化学, 2021, 38(9): 1105-1118.
|
|
LI X O, GU X S, LIU Y D, et al. Research progress on chemically amplified 193 nm photoresists[J]. Chinese J Appl Chem, 2021, 38(9): 1105-1118.
|
18 |
WANG Z, WYILE K, MARIC M. Synthesis of narrow molecular weight distribution copolymers for ArF photoresist materials by nitroxide mediated polymerization[J]. Macromol React Eng, 2017, 11(3): 1600029.
|
19 |
LI Z, TANG M, LIANG S, et al. Bottlebrush polymers: from controlled synthesis, self-assembly, properties to applications[J]. Prog Polym Sci, 2021, 116: 101387.
|
20 |
OGLETREE D F. Molecular excitation and relaxation of extreme ultraviolet lithography photoresists[J]. Front Nanosci, 2016, 3678: 91-113.
|
21 |
FELIX N M, LIO A. Extreme ultraviolet (EUV) lithography XI[J]. Nanomaterials. 2020, 10: 1593.
|
22 |
TORTI E, PROTTI S, BOLLANTI S, et al. Aryl sulfonates as initiators for extreme ultraviolet lithography: applications in epoxy-based hybrid materials[J]. ChemPhotoChem, 2018, 2(5): 425-432.
|
23 |
SHIRAI M, MAKI K, OKAMURA H, et al. Non-chemically amplified EUV resist based on PHS[J]. J Photopolym Sci Technol, 2009, 22(1): 111-116.
|
24 |
SEKIGUCHI A, MATSUMTO Y. Study of acid diffusion behaves form PAG by using top coat method[J]. Proc SPIE, 2014, 9051: 90511S.
|
25 |
DING S, WANG C, SHI X, et al. Directly written photo-crosslinked fluorinated polycarbonate photoresist materials for second-order nonlinear optical (NLO) applications[J]. J Mater Chem C, 2019, 7(16): 4667-4672.
|
26 |
LU X Y, LUO H, WANG K, et al. CO2-based dual-tone resists for electron beam lithography[J]. Adv Funct Mater, 2021, 31(13): 2007417.
|
27 |
LEBEL O, SOLDREA A. 9. Molecular glasses: emerging materials for the next generation[M]. Germany: De Gruyter, 2020: 239-260.
|
28 |
LUO C, XU C, LV L, et al. Review of recent advances in inorganic photoresists[J]. RSC Adv, 2020, 10(14): 8385-8395.
|
29 |
WU L, HILBERS M F, LUGIER O, et al. Fluorescent Labeling to Investigate nanopatterning processes in extreme ultraviolet lithography[J]. ACS Appl Mater Interfaces, 2021, 13(43): 51790-51798.
|
30 |
WU L, TIEKINK M, GIULIANI A, et al. Tuning photoionization mechanisms of molecular hybrid materials for EUV lithography applications[J]. J Mater Chem C, 2019, 7(1): 33-47.
|
31 |
XU H, SAKAI K, KASAHRAR K, et al. Metal-organic framework-inspired metal-containing clusters for high-resolution patterning[J]. Chem Mater, 2018, 30(12): 4124-4133.
|
32 |
BESPAOY I, ZHANG Y, HAITJEMA J, et al. Key role of very low energy electrons in tin-based molecular resists for extreme ultraviolet nanolithography[J]. ACS Appl Mater Interfaces, 2020, 12(8): 9881-9889.
|
33 |
WU C, LU C, YU X, et al. An Efficient diazirine-based four-armed cross-linker for photo-patterning of polymeric semiconductors[J]. Angew Chem Int Ed, 2021, 60(39): 21521-21528.
|
34 |
CHEN R, WANG X, LI X, et al. A comprehensive nano-interpenetrating semiconducting photoresist toward all-photolithography organic electronics[J]. Sci Adv, 2021, 7(25): eabg0659.
|
35 |
ZHENG Y, YU Z, ZHANG S, et al. A molecular design approach towards elastic and multifunctional polymer electronics[J]. Nat Commun, 2021, 12(1): 5701.
|
36 |
ZHENG Y Q, LIU Y, ZHONG D, et al. Monolithic optical microlithography of high-density elastic circuits[J]. Science, 2021, 373(6550): 88-94.
|
37 |
胡晓华, 熊诗圣. 先进光刻技术: 导向自组装[J]. 应用化学, 2021, 38(9): 1029-1078.
|
|
HU X H, XIONG S S. Advanced lithography: directed self-assembly[J]. Chinese J Appl Chem, 2021, 38(9): 1029-1078.
|
38 |
CHEN Y, XIONG S. Directed self-assembly of block copolymers for sub-10 nm fabrication[J]. Int J Extreme Manuf, 2020, 2(3): 032006.
|
39 |
SINTUREL C, BATES F S, HILLMYER M A. High χ-low N block polymers: how far can we go?[J]. ACS Macro Lett, 2015, 4(9): 1044-1050.
|
40 |
MURAMATSU M, NISHI T, IDO Y, et al. Defect mitigation of chemo-epitaxy DSA patterns[J]. Proc SPIE, 2020, 11326: 113260Y.
|
41 |
MURAMATSU M, NISHI T, IDO Y, et al. DSA process optimization for high volume manufacturing[J]. Proc SPIE, 2021, 11610: 116100N.
|
42 |
RUSSEL T, HJELM R P, SEEGER P. Temperature dependence of the interaction parameter of polystyrene and poly(methyl methacrylate)[J]. Macromolecules, 1990, 23(3): 890-893.
|
43 |
YANG G W, WU G P, CHEN X, et al. Directed self-assembly of polystyrene-b-poly(propylene carbonate) on chemical patterns via thermal annealing for next generation lithography[J]. Nano Lett, 2017, 17(2): 1233-1239.
|
44 |
ZHOU J, THAPAR V, CHEN Y, et al. Self-aligned assembly of a poly(2-vinylpyridine)-b-polystyrene-b-poly(2-vinylpyridine) triblock copolymer on graphene nanoribbons[J]. ACS Appl Mater Interfaces, 2021, 13(34): 41190-41199.
|
45 |
KIM J H, JIN H M, YANG G G, et al. Smart nanostructured materials based on self-assembly of block copolymers[J]. Adv Funct Mater, 2020, 30(2): 1902049.
|
46 |
ZAPSAS G, PATIL Y, GNANOU Y, et al. Poly(vinylidene fluoride)-based complex macromolecular architectures: from synthesis to properties and applications[J]. Prog Polym Sci, 2020, 104: 101231.
|
47 |
LO T Y, KRISHNAN M, LU K Y, et al. Silicon-containing block copolymers for lithographic applications[J]. Prog Polym Sci, 2018, 77: 19-68.
|
48 |
POUND-LANA G, BEZARDP, PETIT-ETIENNE C, et al. Dry-etching processes for high-aspect-ratio features with sub-10 nm resolution high-χ block copolymers[J]. ACS Appl Mater Interfaces, 2021, 13: 49184-49193.
|
49 |
LEGRAIN A, FLEURY G, MUMTAZ M, et al. Straightforward integration flow of a silicon-containing block copolymer for line-space patterning[J]. ACS Appl Mater Interfaces, 2017, 9(41): 43043-43050.
|
50 |
JO S, JEON S, KIM H, et al. Balanced interfacial interactions for fluoroacrylic block copolymer films and fast electric field directed assembly[J]. Chem Mater, 2020, 32(49): 9633-9641.
|
51 |
SUH H S, MANNAERT G, VANDENBROECK N, et al. Development of high-chi directed self-assembly process based on key learning from PS-b-PMMA system[J]. Proc SPIE, 2021, 11612: 116120P.
|
52 |
PANDAV G, DURAND W J, ELLOSPON C J, et al. Directed self-assembly of block copolymers using chemical patterns with sidewall guiding lines, backfilled with random copolymer brushes[J]. Soft Matter, 2015, 11(47): 9107-9114.
|
53 |
HAB E, KNG H, LIU C C, et al. Graphoepitaxial assembly of symmetric block copolymers on weakly preferential substrates[J]. Adv Mater, 2010, 22(38): 4325-4329.
|
54 |
CHENG J, SANDERS D, TRUONG H, et al. Simple and versatile methods to integrate directed self-assembly with optical lithography using a polarity-switched photoresist[J]. ACS Nano, 2010, 4(8): 4815-4823.
|
55 |
LIU C C, HAN E, ONSES M, et al. Fabrication of lithographically defined chemically patterned polymer brushes and mats[J]. Macromolecules, 2011, 44(7): 1876-1885.
|
56 |
HAN E, STUEN K, LEOLUKMAN M, et al. Perpendicular orientation of domains in cylinder-forming block copolymer thick films by controlled interfacial interactions[J]. Macromolecules, 2009, 42(13): 4896-4901.
|
57 |
https://www.researchandmarkets.com/reports/5401833/global-and-china-photoresist-industry-report[EB].
|