
应用化学 ›› 2022, Vol. 39 ›› Issue (6): 859-870.DOI: 10.19894/j.issn.1000-0518.220031
• 综合评述 • 下一篇
李自力1(), 徐兴冉1,2, 湛江浩1, 胡晓华1, 张子英2, 熊诗圣1(
)
收稿日期:
2022-02-11
接受日期:
2022-04-14
出版日期:
2022-06-01
发布日期:
2022-06-27
通讯作者:
李自力,熊诗圣
基金资助:
Zi-Li LI1(), Xing-Ran XU1,2, Jiang-Hao ZHAN1, Xiao-Hua HU1, Zi-Ying ZHANG2, Shi-Sheng XIONG1(
)
Received:
2022-02-11
Accepted:
2022-04-14
Published:
2022-06-01
Online:
2022-06-27
Contact:
Zi-Li LI,Shi-Sheng XIONG
About author:
sxiong@fudan.edu.cnSupported by:
摘要:
随着半导体产业的技术发展与进步,芯片制造在摩尔定律的推动下也在不断向先进工艺节点推进。与此同时,我们迫切需要开发与之相匹配的光刻材料来满足光刻图形化的快速发展需求。本文从光刻材料的成分和性能出发,介绍了光刻图形化技术所用的从紫外光刻胶、深紫外光刻胶、极紫外光胶、共轭聚合物光刻材料到导向自组装光刻材料,分析了光刻材料的发展现状,最后总结全文并对国内光刻材料的未来发展趋势进行展望。
中图分类号:
李自力, 徐兴冉, 湛江浩, 胡晓华, 张子英, 熊诗圣. 先进光刻材料[J]. 应用化学, 2022, 39(6): 859-870.
Zi-Li LI, Xing-Ran XU, Jiang-Hao ZHAN, Xiao-Hua HU, Zi-Ying ZHANG, Shi-Sheng XIONG. Advanced Materials for Lithography[J]. Chinese Journal of Applied Chemistry, 2022, 39(6): 859-870.
1 | XU H, KOSMA V, GIANNELIS E P, et al. In pursuit of Moore's Law: polymer chemistry in action[J]. Polym J, 2018, 50(1): 45-55. |
2 | LI J, HU Y, YU L, et al. Recent advances of nanospheres lithography in organic electronics[J]. Small, 2021, 17(28): 2100724. |
3 | https://www.forbes.com/sites/patrickmoorhead/2021/07/26/intel-updates-idm-20-strategy-with-new-node-naming-and-technologies/?sh=5385922629d5[EB]. |
4 | https://newsroomibmcom/2021-05-06-IBM-Unveils-Worlds-First-2-Nanometer-Chip-Technology,-Opening-a-New-Frontier-for-Semiconductors#assets_all[EB]. |
5 | LI L, LIU X, PAL S, et al. Extreme ultraviolet resist materials for sub-7 nm patterning[J]. Chem Soc Rev, 2017, 46(16): 4855-4866. |
6 | MANOURAS T, ARGITIS P. High sensitivity resists for EUV lithography: a review of material design strategies and performance results[J]. Nanomaterials, 2020, 10(8): 1593. |
7 | KWAK J, MISHRA A K, LEE J, et al. Fabrication of sub-3 nm feature size based on block copolymer self-assembly for next-generation nanolithography[J]. Macromolecules, 2017, 50(17): 6813-6818. |
8 | 朋小康, 黄兴文, 刘荣涛, 等. 光刻胶成膜剂: 发展与未来[J]. 应用化学, 2021, 38(9): 1079-1090. |
PENG X K, HUANG X W, LIU R T, et al. Photoresist film-forming agent: development and future[J]. Chinese J Appl Chem, 2021, 38(9): 1079-1090. | |
9 | 韦亚一. 超大规模集成电路先进光刻理论与应用[M]. 北京: 科学出版社, 2016. |
WEI Y Y. Advanced lithography theory and application of VLSI[M]. Beijing: Science Press, 2016. | |
10 | PI S, LI C, JIANG H, et al. Memristor crossbar arrays with 6-nm half-pitch and 2-nm critical dimension[J]. Nat Nanotechnol, 2019, 14(1): 35-39. |
11 | LIAO P N, BARTON B, HSU P. Development of fluoro-free surfactant rinse solutions for EUV photoresists[J]. Proc SPIE, 2021, 11854: 1185409. |
12 | MURASE S, KINOSHITA K, HORIE K, et al. Photo-optical control with large refractive index changes by photodimerization of poly (vinyl cinnamate) film[J]. Macromolecules, 1997, 30(25): 8088-8090. |
13 | CHEN Y, WANG Z, HE Y, et al. Light-enabled reversible self-assembly and tunable optical properties of stable hairy nanoparticles[J]. Proc Natl Acad Sci, 2018, 115(7): E1391-E400. |
14 | YU J, XU N, WEI Q, et al. Novel ester acetal polymers and their application for positive-tone chemically amplified i-line photoresists[J]. J Mater Chem C, 2013, 1(6): 1160-1167. |
15 | ZWEBER A E, WAGNER M, DEYOUNG J, et al. Mechanism of extreme ultraviolet photoresist development with a supercritical CO2 compatible salt[J]. Langmuir, 2009, 25(11): 6176-6190. |
16 | ITO H, SHERWOOD M. NMR analysis of chemically amplified resist films[J]. Proc SPIE, 1999, 3678: 104-115. |
17 | 李小欧, 顾雪松, 刘亚栋, 等. 193 nm 化学放大光刻胶研究进展[J]. 应用化学, 2021, 38(9): 1105-1118. |
LI X O, GU X S, LIU Y D, et al. Research progress on chemically amplified 193 nm photoresists[J]. Chinese J Appl Chem, 2021, 38(9): 1105-1118. | |
18 | WANG Z, WYILE K, MARIC M. Synthesis of narrow molecular weight distribution copolymers for ArF photoresist materials by nitroxide mediated polymerization[J]. Macromol React Eng, 2017, 11(3): 1600029. |
19 | LI Z, TANG M, LIANG S, et al. Bottlebrush polymers: from controlled synthesis, self-assembly, properties to applications[J]. Prog Polym Sci, 2021, 116: 101387. |
20 | OGLETREE D F. Molecular excitation and relaxation of extreme ultraviolet lithography photoresists[J]. Front Nanosci, 2016, 3678: 91-113. |
21 | FELIX N M, LIO A. Extreme ultraviolet (EUV) lithography XI[J]. Nanomaterials. 2020, 10: 1593. |
22 | TORTI E, PROTTI S, BOLLANTI S, et al. Aryl sulfonates as initiators for extreme ultraviolet lithography: applications in epoxy-based hybrid materials[J]. ChemPhotoChem, 2018, 2(5): 425-432. |
23 | SHIRAI M, MAKI K, OKAMURA H, et al. Non-chemically amplified EUV resist based on PHS[J]. J Photopolym Sci Technol, 2009, 22(1): 111-116. |
24 | SEKIGUCHI A, MATSUMTO Y. Study of acid diffusion behaves form PAG by using top coat method[J]. Proc SPIE, 2014, 9051: 90511S. |
25 | DING S, WANG C, SHI X, et al. Directly written photo-crosslinked fluorinated polycarbonate photoresist materials for second-order nonlinear optical (NLO) applications[J]. J Mater Chem C, 2019, 7(16): 4667-4672. |
26 | LU X Y, LUO H, WANG K, et al. CO2-based dual-tone resists for electron beam lithography[J]. Adv Funct Mater, 2021, 31(13): 2007417. |
27 | LEBEL O, SOLDREA A. 9. Molecular glasses: emerging materials for the next generation[M]. Germany: De Gruyter, 2020: 239-260. |
28 | LUO C, XU C, LV L, et al. Review of recent advances in inorganic photoresists[J]. RSC Adv, 2020, 10(14): 8385-8395. |
29 | WU L, HILBERS M F, LUGIER O, et al. Fluorescent Labeling to Investigate nanopatterning processes in extreme ultraviolet lithography[J]. ACS Appl Mater Interfaces, 2021, 13(43): 51790-51798. |
30 | WU L, TIEKINK M, GIULIANI A, et al. Tuning photoionization mechanisms of molecular hybrid materials for EUV lithography applications[J]. J Mater Chem C, 2019, 7(1): 33-47. |
31 | XU H, SAKAI K, KASAHRAR K, et al. Metal-organic framework-inspired metal-containing clusters for high-resolution patterning[J]. Chem Mater, 2018, 30(12): 4124-4133. |
32 | BESPAOY I, ZHANG Y, HAITJEMA J, et al. Key role of very low energy electrons in tin-based molecular resists for extreme ultraviolet nanolithography[J]. ACS Appl Mater Interfaces, 2020, 12(8): 9881-9889. |
33 | WU C, LU C, YU X, et al. An Efficient diazirine-based four-armed cross-linker for photo-patterning of polymeric semiconductors[J]. Angew Chem Int Ed, 2021, 60(39): 21521-21528. |
34 | CHEN R, WANG X, LI X, et al. A comprehensive nano-interpenetrating semiconducting photoresist toward all-photolithography organic electronics[J]. Sci Adv, 2021, 7(25): eabg0659. |
35 | ZHENG Y, YU Z, ZHANG S, et al. A molecular design approach towards elastic and multifunctional polymer electronics[J]. Nat Commun, 2021, 12(1): 5701. |
36 | ZHENG Y Q, LIU Y, ZHONG D, et al. Monolithic optical microlithography of high-density elastic circuits[J]. Science, 2021, 373(6550): 88-94. |
37 | 胡晓华, 熊诗圣. 先进光刻技术: 导向自组装[J]. 应用化学, 2021, 38(9): 1029-1078. |
HU X H, XIONG S S. Advanced lithography: directed self-assembly[J]. Chinese J Appl Chem, 2021, 38(9): 1029-1078. | |
38 | CHEN Y, XIONG S. Directed self-assembly of block copolymers for sub-10 nm fabrication[J]. Int J Extreme Manuf, 2020, 2(3): 032006. |
39 | SINTUREL C, BATES F S, HILLMYER M A. High χ-low N block polymers: how far can we go?[J]. ACS Macro Lett, 2015, 4(9): 1044-1050. |
40 | MURAMATSU M, NISHI T, IDO Y, et al. Defect mitigation of chemo-epitaxy DSA patterns[J]. Proc SPIE, 2020, 11326: 113260Y. |
41 | MURAMATSU M, NISHI T, IDO Y, et al. DSA process optimization for high volume manufacturing[J]. Proc SPIE, 2021, 11610: 116100N. |
42 | RUSSEL T, HJELM R P, SEEGER P. Temperature dependence of the interaction parameter of polystyrene and poly(methyl methacrylate)[J]. Macromolecules, 1990, 23(3): 890-893. |
43 | YANG G W, WU G P, CHEN X, et al. Directed self-assembly of polystyrene-b-poly(propylene carbonate) on chemical patterns via thermal annealing for next generation lithography[J]. Nano Lett, 2017, 17(2): 1233-1239. |
44 | ZHOU J, THAPAR V, CHEN Y, et al. Self-aligned assembly of a poly(2-vinylpyridine)-b-polystyrene-b-poly(2-vinylpyridine) triblock copolymer on graphene nanoribbons[J]. ACS Appl Mater Interfaces, 2021, 13(34): 41190-41199. |
45 | KIM J H, JIN H M, YANG G G, et al. Smart nanostructured materials based on self-assembly of block copolymers[J]. Adv Funct Mater, 2020, 30(2): 1902049. |
46 | ZAPSAS G, PATIL Y, GNANOU Y, et al. Poly(vinylidene fluoride)-based complex macromolecular architectures: from synthesis to properties and applications[J]. Prog Polym Sci, 2020, 104: 101231. |
47 | LO T Y, KRISHNAN M, LU K Y, et al. Silicon-containing block copolymers for lithographic applications[J]. Prog Polym Sci, 2018, 77: 19-68. |
48 | POUND-LANA G, BEZARDP, PETIT-ETIENNE C, et al. Dry-etching processes for high-aspect-ratio features with sub-10 nm resolution high-χ block copolymers[J]. ACS Appl Mater Interfaces, 2021, 13: 49184-49193. |
49 | LEGRAIN A, FLEURY G, MUMTAZ M, et al. Straightforward integration flow of a silicon-containing block copolymer for line-space patterning[J]. ACS Appl Mater Interfaces, 2017, 9(41): 43043-43050. |
50 | JO S, JEON S, KIM H, et al. Balanced interfacial interactions for fluoroacrylic block copolymer films and fast electric field directed assembly[J]. Chem Mater, 2020, 32(49): 9633-9641. |
51 | SUH H S, MANNAERT G, VANDENBROECK N, et al. Development of high-chi directed self-assembly process based on key learning from PS-b-PMMA system[J]. Proc SPIE, 2021, 11612: 116120P. |
52 | PANDAV G, DURAND W J, ELLOSPON C J, et al. Directed self-assembly of block copolymers using chemical patterns with sidewall guiding lines, backfilled with random copolymer brushes[J]. Soft Matter, 2015, 11(47): 9107-9114. |
53 | HAB E, KNG H, LIU C C, et al. Graphoepitaxial assembly of symmetric block copolymers on weakly preferential substrates[J]. Adv Mater, 2010, 22(38): 4325-4329. |
54 | CHENG J, SANDERS D, TRUONG H, et al. Simple and versatile methods to integrate directed self-assembly with optical lithography using a polarity-switched photoresist[J]. ACS Nano, 2010, 4(8): 4815-4823. |
55 | LIU C C, HAN E, ONSES M, et al. Fabrication of lithographically defined chemically patterned polymer brushes and mats[J]. Macromolecules, 2011, 44(7): 1876-1885. |
56 | HAN E, STUEN K, LEOLUKMAN M, et al. Perpendicular orientation of domains in cylinder-forming block copolymer thick films by controlled interfacial interactions[J]. Macromolecules, 2009, 42(13): 4896-4901. |
57 | https://www.researchandmarkets.com/reports/5401833/global-and-china-photoresist-industry-report[EB]. |
[1] | 陆新宇, 马彬泽, 罗皓, 齐欢, 李强, 伍广朋. 二氧化碳基聚碳酸环己撑酯电子束光刻胶显影工艺优化[J]. 应用化学, 2021, 38(9): 0-0. |
[2] | 胡晓华, 熊诗圣. 先进光刻技术:导向自组装[J]. 应用化学, 2021, 38(9): 1029-1078. |
[3] | 朋小康, 黄兴文, 刘荣涛, 张永文, 张诗洋, 刘屹东, 闵永刚. 光刻胶成膜剂:发展与未来[J]. 应用化学, 2021, 38(9): 1079-1090. |
[4] | 顾雪松, 李小欧, 刘亚栋, 季生象. g-线/i-线光刻胶研究进展[J]. 应用化学, 2021, 38(9): 1091-1104. |
[5] | 李小欧, 顾雪松, 刘亚栋, 季生象. 193 nm化学放大光刻胶研究进展[J]. 应用化学, 2021, 38(9): 1105-1118. |
[6] | 郭海泉, 杨正华, 高连勋. 光敏聚酰亚胺光刻胶研究进展[J]. 应用化学, 2021, 38(9): 1119-1137. |
[7] | 高佳兴, 陈龙, 玉佳婷, 郭旭东, 胡睿, 王双青, 陈金平, 李嫕, 杨国强. 高分辨率极紫外光刻胶的研究进展[J]. 应用化学, 2021, 38(9): 1138-1153. |
[8] | 崔昊, 王倩倩, 王晓琳, 何向明, 徐宏. 面向极紫外:光刻胶的发展回顾与展望[J]. 应用化学, 2021, 38(9): 1154-1167. |
[9] | 赵俊, 杨树敏, 薛超凡, 吴衍青, 陈宜方, 邰仁忠. 上海光源极紫外光刻胶检测平台[J]. 应用化学, 2021, 38(9): 1168-1174. |
[10] | 陆新宇, 马彬泽, 罗皓, 齐欢, 李强, 伍广朋. 二氧化碳基聚碳酸环己撑酯电子束光刻胶显影工艺优化[J]. 应用化学, 2021, 38(9): 1189-1198. |
[11] | 侯豪情, 李悦生, 丁孟贤. 新的离子型光敏聚酰亚胺[J]. 应用化学, 1998, 0(2): 100-102. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 1965
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 1319
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||