应用化学 ›› 2022, Vol. 39 ›› Issue (4): 528-539.DOI: 10.19894/j.issn.1000-0518.220001

• 综合评述 • 上一篇    下一篇

电解水催化材料动态构效关系的原位拉曼研究进展

陶荟冰1, 田震2, 谢勇2, 孙瑜2, 汪莉1(), 康卓2(), 张跃2   

  1. 1.北京科技大学能源与环境工程学院,北京 100083
    2.北京科技大学材料科学与工程学院,前沿交叉科学与技术研究院,新金属材料国家重点实验室,北京 100083
  • 收稿日期:2022-01-04 接受日期:2022-02-21 出版日期:2022-04-01 发布日期:2022-04-19
  • 通讯作者: 汪莉,康卓
  • 作者简介:E-mail: zhuokang@ustb.edu.cn
    E-mail: wangli@ces.ustb.edu.cn
    第一联系人:褚小立,中石化石油化工科学研究院教授级高工,20余年从事近红外光谱的研究和应用工作,现任中国仪器仪表学会近红外光谱分会秘书长,主编《近红外光谱分析技术手册》《近红外光谱在线仪器设备手册》以及“现代过程分析技术”系列丛书,撰写传记《新青胜蓝惟所盼——陆婉珍传》,组编《“我与近红外的故事”文集》等著作。
    赵一霖,吉林大学化学学士,加拿大麦克马斯特大学理论化学博士生。从事电子结构理论研究,主要方向为密度矩阵重整化群方法开发。主导开发量子化学计算软件MoHa,并参与开发量子化学计算软件Horton。精通量子力学和光谱学,文理兼通,多次在诗歌比赛中获奖。
    (下转第558页)
  • 基金资助:
    国家重点研发计划资助项目(2018YFA0703503);高等学校学科创新引智计划(B14003);国家自然科学基金资助项目(51991340)

Progress of In situ Raman Study on the Dynamic Structure Performance Correlation of Water Splitting Catalysts

Hui-Bing TAO1, Zhen TIAN2, Yong XIE2, Yu SUN2, Li WANG1(), Zhuo KANG2(), Yue ZHANG2   

  1. 1.Academy for Advanced Interdisciplinary Science and Technology,University of Science and Technology Beijing,Beijing 100083,China
    2.School of Materials Science and Engineering,Academy for Advanced Interdisciplinary Science and Technology,State Key Laboratory for Advanced Metals and Materials,University of Science and Technology Beijing,Beijing 100083,China
  • Received:2022-01-04 Accepted:2022-02-21 Published:2022-04-01 Online:2022-04-19
  • Contact: Li WANG,Zhuo KANG
  • Supported by:
    the National Key Research and Development Program of China(2018YFA0703503);the Overseas Expertise Introduction Projects for Discipline Innovation(B14003);the National Natural Science Foundation of China(51991340)

摘要:

可再生能源电解水产氢对于实现碳中和目标和未来可持续社会的发展具有重要意义。然而,在电解水服役过程中,催化材料往往会发生复杂的结构演变,这对深入理解电解水催化材料反应机制和精准设计高效催化材料造成了挑战。原位电化学拉曼表征技术对催化材料结构动态演变过程的实时监测,是揭示电解水材料动态构效关系,解析催化反应机理的关键。本文介绍了原位电化学拉曼表征技术的基本原理,重点综述了其在催化材料相结构演变、表面活性位点和界面水分子行为中的最新进展,阐述了电解水催化材料在服役过程中结构演变与性能演变之间的变化规律,为实现催化材料全生命周期动态构效关系的精准构建提供了技术基础。最后,分析总结了原位电化学拉曼表征技术在电解水应用过程中存在的问题与挑战,并对先进原位电化学拉曼技术未来的发展进行了展望。

关键词: 电解水催化材料, 原位电化学拉曼光谱, 相结构演变, 表面活性位点, 界面水分子行为

Abstract:

Electrolyzing water to hydrogen supported by renewable energy is pivotal for achieving the goal of carbon neutrality and the development of a sustainable society in the future. However, catalytic materials often undergo complex structural evolution during the service process of electrolyzing water, which poses a great challenge to in-depth understand the reaction mechanism of the process of electrolyzing water and precise design of high-efficiency catalytic materials. The real-time monitoring of the dynamic evolution process of the catalytic material structure through in situ electrochemical Raman characterization technology is the key to reveal the dynamic structure-activity correlation of the electrolyzed water material as well as the mechanism of the catalytic reaction. This review introduces the basic principles of in situ electrochemical Raman characterization technology, focusing on the latest developments in the phase structure evolution of catalytic materials, surface active sites and the behavior of interfacial water molecules, and considers the change law between the structure and performance evolution for electrolytic water catalytic materials in service, which provides a technical basis for the accurate construction of dynamic structure-activity correlation in the full life cycle of catalytic materials. Lastly, the problems and challenges of in situ electrochemical Raman characterization technology in the application toward electrolytic water are analyzed and summarized, prospecting the future development of advanced in situ electrochemical Raman technology.

Key words: Water electrolysis materials, In situ electrochemical Raman spectroscopy, Phase structure evolution, Surface active sites, Interface water molecular behavior

中图分类号: