应用化学 ›› 2022, Vol. 39 ›› Issue (3): 489-497.DOI: 10.19894/j.issn.1000-0518.210232
收稿日期:
2021-05-13
接受日期:
2021-07-26
出版日期:
2022-03-01
发布日期:
2022-03-15
通讯作者:
张成路
基金资助:
Cheng-Lu ZHANG(), Yi-Ming WANG, Zhi-Xuan REN, Lu LI, Yu-Qing LI, Fu-Lu SONG
Received:
2021-05-13
Accepted:
2021-07-26
Published:
2022-03-01
Online:
2022-03-15
Contact:
Cheng-Lu ZHANG
About author:
zhangchenglu@lnnu.edu.cnSupported by:
摘要:
以1,8-萘二甲酸酐为起始原料合成一种萘酰亚胺衍生物3-叠氮基-7H-苯并[de]苯并[4,5]咪唑[2,1-a]异喹啉(DBNG),利用傅里叶变换红外光谱(FT-IR)和核磁共振波谱(NMR)等测试手段确定其结构,并将其作为小分子荧光探针用于检测H2S,系统研究了其荧光特性,结合理论计算,探究其可能的检测机制。结果表明,DBNG能高选择、快速荧光检测H2S,产生“turn-on”现象,在较宽的pH范围内仍然表现良好的荧光性能,检测限低至0.82 μmol/L,可用于检测实际水样中的H2S,并成功应用于细胞成像实验。
中图分类号:
张成路, 王一鸣, 任芷漩, 李露, 李雨晴, 宋府璐. 以苯并咪唑萘酰亚胺为荧光团高选择快速检测H2S的荧光探针[J]. 应用化学, 2022, 39(3): 489-497.
Cheng-Lu ZHANG, Yi-Ming WANG, Zhi-Xuan REN, Lu LI, Yu-Qing LI, Fu-Lu SONG. Fluorescent Probe for Rapid Detection of H2S with Benzimidazole Naphthalimide as the Core[J]. Chinese Journal of Applied Chemistry, 2022, 39(3): 489-497.
图3 (A)探针DBNG荧光识别H2S的滴定实验和(B)探针在515 nm处的荧光强度与H2S浓度的关系
Fig.3 (A) The titration experiment of probe DBNG fluorescence recognition of H2S and (B) the relationship of fluorescence intensity of probe with the concentration of H2S at 515 nm
图5 探针DBNG荧光识别H2S的干扰性实验(1. Gly; 2. Cl; 3. Br; 4.SO3 2; 5. NO2; 6. H2PO4; 7. H2O2;8. Cys; 9. Hcy; 10. GSH; 11.Pro; 12.Try; 13. Met; 14. Val; 15. Asp; 16.Ser; 17. Leu; 18. Ala; 19. Phe; 20.blank; H2S 20 μmol/L,干扰物质50 μmol/L)
Fig.5 Interference experiment of probe DBNG fluorescence recognition of H2S(1.Gly; 2. Cl; 3. Br; 4.SO32; 5.NO2; 6.H2PO4; 7.H2O2;8.Cys; 9.Hcy; 10.GSH; 11.Pro; 12.Try; 13.Met; 14.Val; 15.Asp; 16.Ser; 17.Leu; 18.Ala; 19.Phe; 20.blank where H2S is 20 μmol/L and for interfering substances is 50 μmol/L)
图12 荧光探针DBNG在不同实际水样中加入H2S(30 μmol/L)的荧光光谱图
Fig.12 Fluorescence spectra of fluorescent probe DBNG in the presence of H2S (30 μmol/L) in different actual water samples
样品 Sample | 添加浓度 c(H2S spiked)/(μmol·L-1) | 检测浓度 c(total H2S found)/(μmol·L-1) | H2S回收率 Recovery of H2S/% |
---|---|---|---|
自来水 Tap water | 10 | 9.89 | 98.9 |
20 | 19.79 | 98.9 | |
30 | 29.39 | 97.9 | |
河水 River water | 10 | 9.93 | 99.3 |
20 | 20.21 | 101.05 | |
30 | 30.09 | 100.3 | |
海水 Sea water | 10 | 10.04 | 100.4 |
20 | 19.86 | 99.3 | |
30 | 30.65 | 102.1 |
表1 荧光探针DBNG测定不同水样中的H2S
Table 1 Determination of H2S in different water samples with fluorescent probe DBNG
样品 Sample | 添加浓度 c(H2S spiked)/(μmol·L-1) | 检测浓度 c(total H2S found)/(μmol·L-1) | H2S回收率 Recovery of H2S/% |
---|---|---|---|
自来水 Tap water | 10 | 9.89 | 98.9 |
20 | 19.79 | 98.9 | |
30 | 29.39 | 97.9 | |
河水 River water | 10 | 9.93 | 99.3 |
20 | 20.21 | 101.05 | |
30 | 30.09 | 100.3 | |
海水 Sea water | 10 | 10.04 | 100.4 |
20 | 19.86 | 99.3 | |
30 | 30.65 | 102.1 |
图14 HeLa细胞中H2S的荧光图像。细胞用探针DBNG处理(45 min),洗涤,并进行不同的处理(A)对照(不添加H2S供体);(B)20 μmol/L H2S供体(60 min);(C)50 μmol/L H2S供体(60 min);(D)90 μmol/L H2S供体(60 min)
Fig.14 Fluorescence images of H2S in HeLa cells. Cells were treated with probe DBNG (45 min), washed, and subjected to different treatments(A) control (no H2S donor); (B) 20 μmol/L H2S donor (60 min); (C) 50 μmol/L H2Sdonor (60 min); (D) 90 μmol/L H2S donor (60 min)
1 | CHEN W, XIE P, SHAN X, et al. A near-infrared naphthofluorescein-based fluorescent probe for hydrogen sulfide detection[J]. J Mol Struct, 2020, 1207: 127822. |
2 | WANG M, TANG J J, WANG L X, et al. Hydrogen sulfide enhances adult neurogenesis in a mouse model of Parkinson's disease[J]. Neural Regener Res, 2021, 16(7): 1353. |
3 | YUAN Z N, ZHENG Y Q, WANG B H. Prodrugs of hydrogen sulfide and related sulfur species: recent development[J]. Chin J Nat Med, 2020, 18(4): 296-307. |
4 | WANG B, LI P, YU F, et al. A reversible fluorescence probe based on Se-BODIPY for the redox cycle between HClO oxidative stress and H2S repair in living cells[J]. Chem Commun, 2013, 49(10): 1014-1016. |
5 | LOU Z, PENG L, PAN Q, et al. A reversible fluorescent probe for detecting hypochloric acid in living cells and animals: utilizing a novel strategy for effectively modulating the fluorescence of selenide and selenoxide[J]. Chem Commun, 2013, 49(24): 2445-2447. |
6 | KARMAKAR P, MANNA S, ALI S S, et al. Reaction-based ratiometric fluorescent probe for selective recognition of sulfide anions with a large Stokes shift through switching on ESIPT[J]. New J Chem, 2017, 42(1):76-84. |
7 | SAMANTA S K, ALI S S, GANGOPADHYAY A, et al. A highly selective ratiometric fluorescent probe for H2S based on new heterocyclic ring formation and detection in live cells [J]. Supramol Chem, 2019, 31: 349-360. |
8 | YAN Y H, CHEN L J, LI R Y, et al. A turn-on fluorescent probe with a dansyl fluorophore for hydrogen sulfide sensing[J]. RSC Adv, 2019, 9(47): 27652-27658. |
9 | KAUSHIK R, SINGH A, GHOSH A, et al. Selective colorimetric sensor for the detection of Hg2+ and H2S in aqueous medium and waste water samples [J]. Chemistryselect, 2016, 1(8): 1533-1540. |
10 | VASIMALAI N, FERNANDEZ-ARGUELLES M T, ESPINA B, et al. Detection of sulfide using mercapto tetrazine-protected fluorescent gold nanodots: preparation of paper-based testing kit for on-site monitoring[J]. ACS Appl Mater Interfaces, 2018, 10(2): 1634-1645. |
11 | YUN J Y, CHAE J B, KIM M, et al. A multiple target chemosensor for the sequential fluorescence detection of Zn2+ and S2- and the colorimetric detection of Fe3+/2+ in aqueous media and living cells[J]. Photochem Photobiol Sci, 2019, 18: 166-176. |
12 | AULSEBROOK M L, BISWAS S, LEAVER F M, et al. A luminogenic lanthanide-based probe for the highly selective detection of nanomolar sulfide levels in aqueous samples[J]. Chem Commun, 2017, 53: 4911-4914. |
13 | ZHANG Y, ZHANG L. A novel “turn-on” fluorescent probe based on hydroxy functionalized naphthalimide as a logic platform for visual recognition of H2S in environment and living cells[J]. SAA, 2020, 235(118331): 1386-1425. |
14 | ZHANG Y, ZHANG L. A novel “turn-on” fluorescent probe based on naphthalimide for monitoring H2S levels in living cells and red wine[J]. Microchem J, 2020, 159(29): 105394. |
15 | SHARMA H, SIDHU JAGPREET S, HASSEN WALID M, et al. Synthesis of a 3,4-disubstituted 1,8-naphthalimide-based DNA intercalator for direct imaging of Legionella pneumophila[J]. ACS Omega, 2019, 4(3): 5829-5838. |
16 | RAJALAKSHMI K, NAM Y S, YOUG S, et al. Biocompatible silica nanoparticles conjugated with azidocoumarin for trace level detection and visualization of endogenous H2S in PC3 cells[J]. Sens Actuator B: Chem, 2018, 259: 307-315. |
17 | CHENG F M, WU X S, LIU M L, et al. A porphyrin-based near-infrared fluorescent sensor for sulfur ion detection and its application in living cells[J]. Sens Actuator B: Chem, 2016, 228: 673-678. |
18 | DS A, JIAN L B, LI S C, et al. Design, synthesis and evaluation of a novel fluorescent probe to accurately detect H2S in hepatocytes and natural waters[J]. Spectrochim Acta A: Mol Biomol Spectrosc, 2020, 228: 117690. |
19 | ZHANG J, LI J, CHEN B, et al. An off-on fluorescent probe for real-time sensing the fluctuations of intracellular pH values in biological processes[J]. Dyes Pigm, 2019, 170: 107620. |
20 | YE F, LIANG X M, XU K X, et al. A novel dithiourea-appended naphthalimide “on-off” fluorescent probe for detecting Hg2+ and Ag+ and its application in cell imaging[J]. Talanta, 2019, 200: 494-502. |
21 | QIAN J, GONG D, RU J, et al. A naphthalimide-based lysosome-targeting fluorescent probe for the selective detection and imaging of endogenous peroxynitrite in living cells[J]. Anal Bioanal Chem, 2019, 411(17): 3929-3939. |
22 | 董智云, 刘洋, 王迎进, 等. 基于萘酰亚胺-苯并咪唑鎓的荧光传感器对H2PO4 -的高选择性识别[J]. 应用化学, 2020, 37(7): 839-846. |
DONG Z Y, LIU Y, WANG Y J, et al. Naphthalimide-benzimidazolium based fluorescent chemosensor for highly selective recogniton of H2PO4 -[J]. Chinese J Appl Chem, 2020, 37(7): 839-846. | |
23 | GHAITH A G, PETER G H, NEIL B, et al. Auto-fluorescent PAMAM-based dendritic molecules and their potential application in pharmaceutical sciences [J]. Int J Pharm, 2020, 579: 119-187. |
24 | SERAJ S, ROUHANI S, FARIDBOD F. Fructose recognition using new “off-on” fluorescent chemical probes based on boronate-tagged 1,8-naphthalimide[J]. New J Chem, 2018, 42(24): 19872-19880. |
25 | CHEN Y, ZHAO L, FU H, et al. Positional isomeric chemosensors: fluorescent and colorimetric cyanide detection based on Si-O cleavage[J]. New J Chem, 2017, 41(17): 8734-8738. |
26 | LING J, NAREN G, KELLY J, et al. Building pH sensors into paper-based small-molecular logic systems for very simple detection of edges of objects [J]. J Am Chem Soc, 2015, 137(11): 3763-3766. |
27 | MIN Z, CHEN J, LIU C, et al. Anion binding modes in cis-trans-isomers of a binding site-fluorophore-π-extended system[J]. Chem Commun, 2014, 50(94): 14748-14751. |
28 | LEE J F, HSU S L C. Green polymer-light-emitting-diodes based on polyfluorenes containing N-aryl-1,8-naphthalimide and 1,8-naphthoilene-arylimidazole derivatives as color tuner[J]. Polymer, 2009, 50(24): 5668-5674. |
29 | GOSWAMI S, DAS A K, MANNA A, et al. Nanomolar detection of hypochlorite by a rhodamine-based chiral hydrazide in absolute aqueous media: application in tap water analysis with live-cell imaging[J]. Anal Chem, 2014, 86(13): 6315-6322. |
[1] | 于红丽, 周思仪, 洪琛, 罗稳. 基于黄酮骨架的“关-开”型荧光探针用于检测活细胞内丁酰胆碱酯酶[J]. 应用化学, 2023, 40(4): 500-508. |
[2] | 耿佳美, 马素芳, 刘文, 刁海鹏, 武志芳, 李思进. 肝靶向荧光探针用于HepG2细胞中ONOO-的特异性检测[J]. 应用化学, 2023, 40(3): 441-448. |
[3] | 薛松松, 解正峰, 何佳伟, 张天怡, 夏保平, 李雨芹. 高选择性快速识别汞(Ⅱ)离子的磺酰腙型探针的合成及在吸附中的应用[J]. 应用化学, 2022, 39(5): 760-768. |
[4] | 黄蕊, 叶长青, 李亚军, 邱盟峯, 李达谅, 鲍红丽. 线粒体靶向的近红外HClO/ClO-荧光探针的研究进展[J]. 应用化学, 2022, 39(3): 407-424. |
[5] | 于思为, 王良鹏, 金日哲, 康传清. 氧杂蒽类荧光探针对ClO-的识别和细胞成像应用[J]. 应用化学, 2022, 39(12): 1903-1911. |
[6] | 张成路, 暴金迪, 于丰铭, 董文静, 张洋, 宫荣庆, 张彦朋, 张璐. 以喹唑啉酮为核心高选择高灵敏识别次氯酸根离子的荧光探针的合成及应用[J]. 应用化学, 2021, 38(8): 986-994. |
[7] | 黄译文, 王丽艳, 赵冰, 宋波. 一种水溶性甲氧基萘乙烯半菁合成及对铬(Ⅲ)离子的荧光检测[J]. 应用化学, 2021, 38(11): 1503-1511. |
[8] | 徐丽萍, 刘清士, 董芷辰, 郭兴家, 董微. 基于氮掺杂碳点的荧光增强简便、快速而准确地检测环丙沙星[J]. 应用化学, 2020, 37(7): 830-838. |
[9] | 董智云, 刘洋, 王迎进, 赵三虎, 席福贵. 基于萘酰亚胺-苯并咪唑鎓的荧光传感器对H2PO-4的高选择性识别[J]. 应用化学, 2020, 37(7): 839-846. |
[10] | 蔡丰泽, 徐永玲, 周乐, 许丙嵩, 陈浩, 孙建强, 李迪, 王慧. 一种红光发射的粘度荧光探针[J]. 应用化学, 2020, 37(4): 440-446. |
[11] | 董子越, 周晓霞, 赵晓慧, 叶达莹, 安悦. 一种可用于检测2,4,6-三硝基苯酚的杂环芳族卤化物小分子荧光探针[J]. 应用化学, 2020, 37(3): 332-339. |
[12] | 董智云, 张晓宇, 曾政权, 席福贵. 基于蒽-苯并咪唑鎓的荧光传感器对H2PO4-的高选择性识别[J]. 应用化学, 2020, 37(1): 80-87. |
[13] | 张莹莹, 王丽艳, 赵冰, 宋波. 基于苯并吲哚的荧光探针对Al3+的识别及应用[J]. 应用化学, 2020, 37(1): 88-95. |
[14] | 高漫, 何鑫, 崔京南, 刘涛, 田镇豪, 何深贵. 以香豆素为母体快速检测内源性甲醛的荧光探针[J]. 应用化学, 2019, 36(9): 1053-1060. |
[15] | 潘文慧,李文,屈璟涵,叶懿霈,屈军乐,杨志刚. 单分子定位超分辨显微成像有机荧光探针的研究进展[J]. 应用化学, 2019, 36(3): 269-281. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||