[1] LI L, LIU X, PAL S, et al. Extreme ultraviolet resist materials for sub-7 nm patterning[J]. Chem Soc Rev, 2017, 46(16): 4855-4866. [2] MOORE G E. Cramming more components onto integrated circuits[J]. Electronics, 1975, 38(8): 114-117 [3] ITO T, OKAZAKI S. Pushing the limits of lithography[J]. Nature, 2000, 406(6799): 1027-1031. [4] BAKSHI V, YEN A. EUV sources for lithography[J]. J Micro Nanolithogr MEMS MOEMS, 2012, 11(2): 1. [5] WEI W, JINGCHENG L, HU L, et al. Development and application of microelectronic photoresist[J]. Prog Chem, 2014, 26(11): 1867-1888. [6] PROVOOST J, MILLER A, MAENHOUDT M. 降低双重图形光刻的成本[J]. 集成电路应用, 2008(Z2): 37-38. PROVOOST J, MILLER A, MAENHOUDT M. Reduce the cost of double pattern lithography[J]. Integr Circuit Appl, 2008(Z2): 37-38. [7] 韦亚一. 超大规模集成电路先进光刻理论与应用[M]. 北京: 科学出版社, 2016. WEI Y Y. Advanced lithography theory and application of VLSI[M]. Beijing: Science Press, 2016. [8] LUO C, XU C, LV L, et al. Review of recent advances in inorganic photoresists[J]. RSC Adv, 2020, 10(14): 8385-8395. [9] ALLEN R D, ECHIGO M, HAYASHI H, et al. Development of molecular resists based on Phenyl[4]calixarene derivatives: Proc.SPIE[C]. San Jose, 2010: 76392B. [10] SILVA A D, FELIX N M, OBER C K. Molecular glass resists as high-resolution patterning materials[J]. Adv Mater, 2008, 20(17): 3355-3361. [11] LIN Q, KOJIMA K, HATTORI T, et al. Negative-tone polyphenol resist based on chemically amplified polarity change reaction with sub-50 nm resolution capability: Proc.SPIE[C]. San Jose, 2006: 61530G. [12] FELIX N M, DE SILVA A, LUK C M Y, et al. Dissolution phenomena of phenolic molecular glass photoresist films in supercritical CO2[J]. J Mater Chem, 2007, 17(43): 4598-4604. [13] ILVA A D, SUNDBERG L K, ITO H, et al. A fundamental study on dissolution behavior of high-resolution molecular glass photoresists[J]. Chem Mater, 2008, 20: 7292-7300. [14] DE SILVA A, OBER C K. Hydroxyphenylbenzene derivatives as glass forming molecules for high resolution photoresists[J]. J Mater Chem, 2008, 18(16): 1903-1910. [15] TSUCHIYA K, CHANG S W, FELIX N M, et al. Lithography based on molecular glasses[J]. J Photopolym Sci Technol, 2005, 18(3): 431-434. [16] NARCROSS H, LAWSON R A, SHARP B, et al. Effect of molecular resist structure on glass transition temperature and lithographic performance in epoxide functionalized negative tone resists: Proc.SPIE[C]. San Jose, 2015: 94250C. [17] LAWSON R A, CHUN J S, NEISSER M, et al. Methods of controlling cross-linking in negative-tone resists: Proc.SPIE[C]. San Jose, 2014: 90510Q. [18] SHARP B, LAWSON R A, FRALICK A, et al. Base developable negative-tone molecular resist based on epoxide cross-linking: Proc.SPIE[C]. San Jose, 2014: 94251S. [19] PENG X, WANG Y, XU J, et al. Molecular glass photoresists with high resolution, low ler, and high sensitivity for EUV lithography[J]. Macromol Mater Eng, 2018, 303(6): 1700654. [20] CHEN J, HAO Q, WANG S, et al. Molecular glass resists based on 9,9′-spirobifluorene derivatives: pendant effect and comprehensive evaluation in extreme ultraviolet lithography[J]. ACS Appl Polym Mater, 2019, 1(3): 526-534. [21] WANG Y, CHEN L, YU J, et al. Negative-tone molecular glass photoresist for high-resolution electron beam lithography[J]. Roy Soc Open Sci, 2021, 8(3): 202132. [22] 陈金平, 郝青山, 王双青, 等. 极紫外光刻胶产气的定性和定量检测[J]. 分析化学, 2020, 48(12): 1658-1665. CHEN J P, HAO Q S, WANG S Q, et al. Qualitative and quantitative measurement of outgassing of molecular glass photoresists under extreme ultraviolet lithography[J]. Chinese J Anal Chem, 2020, 48(12): 1658-1665. [23] FELIX N M, DE SILVA A, OBER C K. Calix[4]resorcinarene derivatives as high-resolution resist materials for supercritical CO2 processing[J]. Adv Mater, 2008, 20(7): 1303-1309. [24] CHANG S W, AYOTHI R, BRATTON D, et al. Sub-50 nm feature sizes using positive tone molecular glass resists for EUV lithography[J]. J Mater Chem, 2006, 16(15): 1470-1474. [25] LIU J, WEI Q, WANG L. An i-line molecular glass photoresist for high resolution patterning[J]. RSC Adv, 2013, 3(48): 25666-25669. [26] KUDO H, HAYASHI R, MITANI K, et al. Molecular waterwheel (noria) from a simple condensation of resorcinol and an alkanedial[J]. Angew Chem Int Ed, 2006, 45(47): 7948-7952. [27] MARUYAMA K, SHIMIZU M, HIRA Y, et al. Development of EUV resist for 22nm half pitch and beyond: Proc.SPIE[C]. San Jose, 2010: 76360T. [28] LAWSON R A, HENDERSON C L, LEE C T, et al. Water-developable negative-tone single-molecule resists: high-sensitivity nonchemically amplified resists: Proc.SPIE[C]. San Jose, 2008: 69231I. [29] BRATTON D, YANG D, DAI J, et al. Recent progress in high resolution lithography[J]. Polym Adv Technol, 2006, 17(2): 94-103. [30] FALLICA R, HAITJEMA J, WU L, et al. Absorption coefficient of metal-containing photoresists in the extreme ultraviolet[J]. J Micro-Nanolith Mem, 2018, 17(2): 023505. [31] ALLEN R D, TRIKERIOTIS M, BAE W J, et al. Development of an inorganic photoresist for DUV, EUV, and electron beam imaging: advances in resist materials and processing technology XXVII[C]. 2010: 76390E. [32] TRIKERIOTIS M, KRYSAK M, CHUNG Y S, et al. Nanoparticle photoresists from HfO2 and ZrO2 for EUV patterning[J]. J Photopolym Sci Technol, 2012, 25(5): 583-586. [33] NAULLEAU P P, TRIKERIOTIS M, WOOD II O R, et al. A new inorganic EUV resist with high-etch resistance: extreme ultraviolet (EUV) lithography III[C]. 2012: 83220U. [34] JIANG J, CHAKRABARTY S, YU M, et al. Metal oxide nanoparticle photoresists for EUV patterning[J]. J Photopolym Sci Technol, 2014, 27(5): 663-666. [35] NAULLEAU P P, CHAKRABARTY S, OUYANG C, et al. Oxide nanoparticle EUV resists: toward understanding the mechanism of positive and negative tone patterning: extreme ultraviolet (EUV) lithography IV[C]. 2013: 867906. [36] JIANG J, ZHANG B, YU M, et al. Oxide nanoparticle EUV (one) photoresists current understanding of the unusual patterning mechanism[J]. J Photopolym Sci Technol, 2015, 28(4): 515-518. [37] LI S C, SPYROU K, OBER C K, et al. Studying the mechanism of hybrid nanoparticle photoresists: effect of particle size on photo-patterning[J]. Chem Mater, 2015,27(14): 5027-5031. [38] WU L, BALJOZOVIC M, PORTALE G, et al. Mechanistic insights in Zr- and Hf-based molecular hybrid EUV photoresists[J]. J Micro-Nanolith Mem, 2019, 18(01): 013504. [39] WU L, LIU J, VOCKENHUBER M, et al. Hybrid EUV resists with mixed organic shells: a simple preparation method[J]. Eur J Inorg Chem, 2019, 2019(38): 4136-4141. [40] STOWERS J, KESZLER D A. High resolution, high sensitivity inorganic resists[J]. Microelectron Eng, 2009, 86(4/6): 730-733. [41] TELECKY A, XIE P, STOWERS J, et al. Photopatternable inorganic hardmask[J]. J Vac Sci Technol B, 2010, 28(6): C6S19-C16S22. [42] LA FONTAINE B M, STOWERS J K, NAULLEAU P P, et al. Directly patterned inorganic hardmask for EUV lithography: extreme ultraviolet (EUV) lithography II[C]. 2011: 796915. [43] OLEKSAK R P, RUTHER R E, LUO F, et al. Chemical and structural investigation of high-resolution patterning with HafSO(x)[J]. ACS Appl Mater Interfaces, 2014, 6(4): 2917-2921. [44] FAIRLEY K C, MERRILL D R, WOODS K N, et al. Non-uniform composition profiles in inorganic thin films from aqueous solutions[J]. ACS Appl Mater Interfaces, 2016, 8(1): 667-672. [45] FREDERICK R T, AMADOR J M, GOBERNA-FERR N S, et al. Mechanistic study of HafSOx extreme ultraviolet inorganic resists[J]. J PHYS CHEM C, 2018, 122(28): 16100-16112. [46] OLEKSAK R P, RUTHER R E, LUO F, et al. Evaluation of thermal and radiation induced chemistries of metal oxo hydroxo clusters for next-generation nanoscale inorganic resists[J]. ACS Appl Mater Interfaces, 2018, 1(9): 4548-4556. [47] CARDINEAU B, DEL RE R, MARNELL M, et al. Photolithographic properties of tin-oxo clusters using extreme ultraviolet light (13.5 nm)[J]. Microelectron Eng, 2014, 127:44-50 [48] WALLOW T I, HOHLE C K, CARDINEAU B, et al. EUV resists based on tin-oxo clusters: Proc.SPIE[C]. San Jose, 2014: 90511B. [49] SAHA S, PARK D H, HUTCHISON D C, et al. Alkyltin keggin clusters templated by sodium[J]. Angew Chem Int Ed Engl, 2017, 56(34): 10140-10144. [50] DIULUS J T, FREDERICK R T, LI M, et al. Ambient-pressure X-ray photoelectron spectroscopy characterization of radiation-induced chemistries of organotin clusters[J]. ACS Appl Mater Interfaces, 2019, 11(2): 2526-2534. [51] FREDERICK R T, DIULUS J T, HUTCHISON D C, et al. Effect of oxygen on thermal and radiation-induced chemistries in a model organotin photoresist[J]. ACS Appl Mater Interfaces, 2019, 11(4): 4514-4522. [52] DIULUS J T, FREDERICK R T, HUTCHISON D C, et al. Effect of ambient conditions on radiation-induced chemistries of a nanocluster organotin photoresist for next-generation EUV nanolithography[J]. ACS Appl Nano Mater, 2020, 3(3): 2266-2277. [53] SAIFULLAH M S M, ASBAHI M, BINTI-KAMRAN KIYANI M, et al. Direct patterning of zinc sulfide on a sub-10 nanometer scale via electron beam lithography[J]. ACS Nano, 2017, 11(10): 9920-9929. [54] WANG W, PFEIFFER P, SCHMIDT-MENDE L. Direct patterning of metal chalcogenide semiconductor materials[J]. Adv Funct Mater, 2020, 30(27): 2002685. [55] XU H, SAKAI K, KASAHARA K, et al. Metal-organic framework-inspired metal-containing clusters for high-resolution patterning[J]. Chem Mater, 2018, 30(12): 4124-4133. [56] 杨国强, 陈龙, 王亚飞, 等. 基于金属卟啉的分子玻璃化学放大光刻胶及其制备方法和应用: 中国, 201911329042.9[P]. 2019-12-20. YANG G Q, CHEN L, WANG Y F, et al. Molecular glass chemically amplified photoresist based on metal porphyrin, and preparation method and application: CN, 201911329042.9[P]. 2019-12-20. [57] 杨国强, 玉佳婷, 陈龙, 等. 基于二茂金属化合物的光刻胶及其制备方法和应用: 中国, 201911167289.5 [P]. 2019-11-25. YANG G Q, YU J T, CHEN L, et al. Molecular glass chemically amplified photoresist based on metallocene compounds, and preparation method and application: CN, 201911167289.5[P]. 2019-11-25. |