[1] 郑金红. I-Line光刻胶材料的研究进展[J]. 影像科学与光化学, 2012, 30: 81-90. ZHENG J H. Evolution and progress of I-line photoresist materials[J]. Imag Sci Photochem, 2012, 30: 81-90. [2] 郑金红. 光刻胶的发展及应用[J]. 精细与专用化学品, 2006, 14: 24-30. ZHENG J H. Development trends and market of photoresist[J]. Fine Spec Chem, 2006, 14: 24-30. [3] 朱宇波, 黄嘉晔. 国内外光刻胶产业分析及发展建议[J]. 功能材料与器件学报, 2020, 26: 382-386. ZHU Y B, HUANG J Y. Analysis and development suggestions on photoresist industryat home and abroad[J]. J Funct Mater Dev, 2020, 26: 382-386. [4] 王龙兴. 2019年中国半导体材料业的状况分析[J]. 电子技术, 2019, 48(1): 16-18. WANG L X. Analysis on the situation of China′s semiconductor material industry in 2019[J]. Electronics, 2019, 48(1): 16-18. [5] 魏玮, 刘敬成, 李虎, 等. 微电子光致抗蚀剂的发展及应用[J]. 化学进展, 2014, 26(11):1867-1888. WEI W, LIU J C, LI H, et al. Development and application of microelectronic photoresist[J]. Prog Chem, 2014, 26(11): 1867-1888. [6] HANABATA M. Novolac-based resists[J]. Adv Mater Opt Electron, 1994, 4: 75-82. [7] HANABATA M, UETANI Y, FURUTA A. Novolak design for high resolution positive photoresists(II) stone wall model for positive photoresist development[J]. Proc SPIE, 1988, 920: 349-354. [8] 曹昕. 高分辨率i-line正性光刻胶的制备及应用性能研究[J]. 广州化学, 2015, 40(2): 1-6. CAO X. Preparation and application of the high resolution I-line positive photoresist[J]. Guangzhou Chem, 2015, 40(2): 1-6. [9] 张福生. I-线正性光刻胶用成膜线性酚醛树脂的合成及性能影响[J]. 化工中间体, 2014, 5: 24-19. ZHANG F S. I-line positive photoresist film linear phenolic resin synthesis and the performance influence[J]. Chem Intermed, 2014, 5: 24-19. [10] FURIHATA T, KATO H, OKAZAKI S. Polymers, resist compositions and patterning method. US6242151[P]. 2001-6-5. [11] HANABATA M, UETANI Y, FURUTA A. Design concept for a high-performance positive photoresist[J]. J Vac Sci Technol, 1989, B7(4): 640-650. [12] ROY D, BASU P K, RAGHUNATHAN P, et al. Novolak resins: structure elucidation by multidimensional NMR techniques and correlation with lithographic performance[J]. Polym Int, 2003, 52: 757-767. [13] GIPSTEIN E, OUANO A C, TOMPKINS T. Evaluation of pure novolak cresol-formaldehyde resins for deep U.V. lithography[J]. J Electrochem Soc, 1982, 129: 201-205. [14] JEFFRIES A T, BRZOZOWY D J, GREENE N N, et al. Novel novolac resins produced from 2,6-bishydroxymethyl-p-cresol, p-cresol, and m-cresol: a method to more evenly distribute p-cresol units throughout a novolac resin[J]. Proc SPIE, 1993, 1925: 235-245. [15] HANABATA M, OI F, FURUTA A. Novolak design for high resolution positive photoresists(IV): tandem type novolak resin for high performance positive photoresists[J]. Proc SPIE, 1991, 1466: 132-140. [16] DRADI E, CASIRAGHI G, SARTORI G, et al. The design of a versatile synthesis of ortho-ortho′ methylene-bridged polyphenols. 13C NMR investigation of : all-ortho′ oligomers[J]. Macromolecules, 1978, 11: 1295-1297. [17] BAEHR G, WESTERWELLE U, GRUETZNER G. Tailoring of novolac resins for photoresist applications using a two-step synthesis procedure[J]. Proc SPIE, 1997, 3049: 628-638. [18] ROY D, BASU P K, RAGHUNATHAN P, et al. Novolak resins: structure elucidation by multidimensional NMR techniques and correlation with lithographic performance[J]. Polym Int, 2003, 52: 757-767. [19] KHANNA D N, DURHAM D L, SEYEDI F, et al. Novolak resins with high thermal stability, high resolution, improved photospeed and etch characteristics for advanced photoresist applications[J]. Polym Eng Sci, 1992, 32: 1500-1508. [20] XU C B, ZAMPINI A, SANDFORD H, et al. Sub-0.25 μm i-line photoresist: the role of advanced resin technology[J]. Proc SPIE, 1999, 3678: 39-50. [21] ZAMPINI A, MONAGHAN M, XU C B, et al. Effect of end group on novolak resin properties[J]. Proc SPIE, 1998, 3333: 1241-1250. [22] UENISHI K, KAWABE Y, KOKUBO T. Structural effects of DNQ-PAC backbone on resist lithographic properties[J]. Proc SPIE, 1991, 1466: 102-116. [23] HANAWA R, UETANI Y, HANABATA M. Design of PACs for high-performance photoresists(I): role of di-esterified PACs having hindered —OH groups[J]. Proc SPIE, 1992, 1672: 231-241. [24] HANAWA R, UETANI Y, HANABATA M. Design of PACs for high-performance photoresists(II): effect of number and orientation of DNQs and —OH of PACs on lithographic performances[J]. Proc SPIE, 1993, 1925: 227-234. [25] TAN S, SAKAGUCHI S, UENISHI K, et al. Novel diazonaphthoquinone photoactive compound for g-line/i-line compatible positive photoresist[J]. Proc SPIE, 1990, 1262: 513-526. [26] BRUNSVOLD W, EIB N, LYONS C, et al. Novel DNQ PACs for high-resolution i-line lithography[J]. Proc SPIE, 1992, 1672: 273-285. [27] COOK M M, RAHMAN M D, LU P H, et al. Effects of structural differences in speed enhancers (dissolution promoters) on positive photoresist composition[J]. Proc SPIE, 1998, 3333: 1180-1188. [28] WANAT S F, RAHMAN M D, DIXIT S S, et al. Novel novolak block copolymers for advanced i-line resists[J]. Proc SPIE, 1998, 3333: 1092-1102. [29] MIYAMOTO H, NAKAMURA T, INOMATA K, et al. Study for the design of high-resolution novolak-DNQ photoresist: the effects of low-molecular-weight phenolic compounds on resist systems[J]. Proc SPIE, 1995, 2438: 223-234. [30] UETANI Y, TOMIOKA J, MORIUMA H, et al. Contrast enhancement by alkali-decomposable additives in quinonediazid-type positive resists[J]. Proc SPIE, 1998, 3333: 1280-1287. [31] KOHARA H, NAKAYAMA T, SATO Y, et al. Developer solution for positive-working photoresist compositions comprising a base and a non-ionic surfactant[P]. US 4820621, 1989. [32] MIURA T, SHIMOKAWA T, YUMOTO Y. I-line radiation-sensitive alkali-soluble resin composition utilizing 1,2-quinone diazide compound and hydroxy-chalcone additive[P]. US 5110706, 1992. [33] ITO H, WILLSON C G. Chemical amplification in the design of dry developing resist materials[J]. Polym Eng Sci, 1983, 23 (18): 1012-1018. [34] ITO H, WILLSON C G, FRÉCHET J. New UV resists with negative or positive tone[C]. Digest of Technical Papers of Symposium on VLSI Technology. Japan, 1982(5): 86-87. [35] TOUKHY M, MULLEN S, PAUNESCU M, et al. Chemically amplified, thick film, i-line positive resist for electroplating and redistribution applications[J] Proc SPIE, 2006, 6153: 61534H. [36] BERRY A K, FEELY W E, THOMPSON S D, et al. Chemically amplified resists for i-line and g-line applications[J] Proc SPIE, 1990, 1262: 575-584. [37] CONLEY W, GELORME J. Negative i-line photoresist for 0.5 μm and beyond [J] J Vac Sci Technol B, 1992, 10: 2570-2575. [38] BRUNSVOLD W, MONTGOMERY W, HWANG B. Non-metallic acid generators for i-line and g-line chemically amplified resists[J]. Proc SPIE, 1991, 1466: 368-376. [39] ASAKURA T, YAMATO H, MATSUMOTO A, et al. Novel photoacid generators for chemically amplified resists with g-line, i-line and DUV exposure[J]. Proc SPIE, 2001, 4345: 484-493. [40] UETANI Y, MORIUMA H, HIRAI Y, et al. Contrast enhancement by alkali decomposable additives in chemically amplified negative i-line resists[J]. Proc SPIE, 1999, 3678: 503(509. [41] WANG L Y, HUO Y E, KONG F R. The synthesis of novel ester acetal polymers and their application for chemically amplified positive i-line photoresist[J]. Proc SPIE, 2008, 6923: 69233R. [42] YU J X, XU N, WEI Q, et al. Novel ester acetal polymers and their application for positive-tone chemically amplified i-line photoresists[J]. J Mater Chem C, 2013, 1: 1160-1167. [43] XU N, MENG L. Synthesis of a novel chemically amplified resist for i-line lithography[J]. J Jilin Univ, 2014, 52: 1073-1076. [44] 黄巍, 季昌彬. 琥珀酰亚胺改性的环氧丙烯酸树脂及其制备方法、负性光刻胶组合物: CN 107759715 A[P], 2018-03-06. HUANG W, JI C B. Epoxy acrylic resin modified by succinimide and preparation method thereof, negative photoresist composition: CN 107759715 A[P], 2018-03-06. [45] SILVA A D, FELIX N M, OBER C K. Molecular glass resists as high-resolution patterning materials[J]. Adv Mater, 2008, 20: 3355-3361. [46] SILVA A D, FELIX N, SHA J, et al. Molecular glass resists for next-generation lithography[J]. Proc SPIE, 2008, 6923: 69231L. [47] CHANG S W, YANG D, DAI J, et al. Materials for future lithography[C]. Microlithography. International Society for Optics and Photonics, 2005. [48] GREEN D P, JAIN V, BAILEY B, et al. Development of molecular resist derivatives for EUV lithography[J]. SPIE Adv Lithogr, 2013, 8679: 867912-1. [49] KAGEYAMA H, SHIROTA Y. Charge carrier transporting molecular materials and their applications in devices[J]. Chem Rev, 2007, 107: 953-1010. [50] SHIROTA Y. Photo- and electroactive amorphous molecular materials-molecular design, syntheses, reactions, properties, and applications[J]. J Mater Chem, 2005, 15: 75-93 [51] SILVA A D, FELIX N M, OBER C K. Molecular glass resists as high-resolution patterning materials[J]. Adv Mater, 2008, 20: 3355-3361. [52] UEDA M, TAKAHASHI D, NAKAYAMA T, et al. Three-component negative-type photoresist based on calix[4]resorcinarene, a cross-linker, and a photoacid generator[J]. Chem Mater, 1998, 10: 2230-2234. [53] NAKAYAMA T, NOMURA M, HAGA K, et al. A new three-component photoresist based on calix[4]resorcinarene derivative, a cross-linker, and a photo-acid generator[J]. Bull Chem Soc Jpn, 1998, 71: 2979-2984. [54] HABA O, HAGA K, UEDA M, et al. A new photoresist based on calix[4]resorcinarene dendrimer[J]. Chem Mater, 1999, 11: 427-432. [55] YOUNG-GIL K, KIM J B, FUJIGAYA T, et al. A positive-working alkaline developable photoresist based on partially tert-boc-protected calix[4]resorcinarene and a photoacid generator[J]. J Mater Chem, 2002, 12: 53-57. [56] PACANSKY J, WALTMAN R J. Solid-state electron beam chemistry of mixtures of diazoketones in phenolic resins: AZ resists[J]. J Phys Chem, 1988, 92: 4558-4565. [57] BRATTON D, AYOTHI R, DENG H, et al. Diazonaphthoquinone molecular glass photoresists: patterning without chemical amplification[J]. Chem Mater, 2007, 19: 3780-3786. [58] LDAMMEL R. Diazonaphthoquinone-based resists[M]. SPIE Optical Engineering Press: Bellingham, WA, 1993, 11: 12-26. [59] LIU J, LIU Z P, WANG L Y, et al. Single-component chemically amplified i-line molecular glass photoresist based on calix[4]resorcinarenes[J]. Chin Sci Bull, 2014, 59(11): 1097-1103. [60] LIU J, Wei Q, WANG L Y. An i-line molecular glass photoresist for high resolution patterning[J]. RSC Adv, 2013, 3: 25666-25669. [61] WANG L Y, Yu J X, XU N. Molecular glass positive i-line photoresist materials containing 2,1,4-DNQ and acid labile group[J]. Proc SPIE, 2010, 7639: 76392D. [62] YU J X, XU N, LIU, Z P, et al. Novel one-component positive-tone chemically amplified i-line molecular glass photoresists[J]. ACS Appl Mater Interfaces, 2012, 4: 2591-2596. [63] LI H, ZHOU Z, LIU L C, et al. One-pot synthesis of molecular glass photoresists based on β-cyclodextrin containing a t-butyloxy carbonyl group for i-line lithography[J]. Polym Bull, 2017, 74: 1091-1101 [64] LI H, ZHOU Z, LIU J C, et al. Novel one-component molecular glass photoresist based on cyclotriphosphazene containing t-butyloxy carbonyl group for i-line lithography[J]. J Polym Res, 2017, 24: 62. [65] WANG L Y, WEI Q. Novel one-component positive-tone chemically amplified i-line molecular glass photoresist based on tannic acid[J]. Chem Res Chinese Univ, 2015, 31(4): 585-589. [66] LIU L, ZOU Y Q. The imaging study of a novel photopolymer used in i-line negative-tone resist[J]. Proc SPIE, 2010, 7639: 76391B [67] CHATTERJEEA S, RAMAKRISHNAN S. A novel photodegradable hyperbranched polymeric photoresist[J]. Chem Commun, 2013, 49: 11041-11043. |