应用化学 ›› 2021, Vol. 38 ›› Issue (5): 559-571.DOI: 10.19894/j.issn.1000-0518.210065
刘慧1,2, 刘骁1,2, 曹远桥1,2, 刘明1, 刘亚栋1, 韩苗苗1*, 季生象1,2*
收稿日期:
2021-02-08
接受日期:
2021-03-09
出版日期:
2021-05-01
发布日期:
2021-07-01
通讯作者:
*E-mail:hanmiaomiao@ciac.ac.cn; sji@ciac.ac.cn
基金资助:
LIU Hui1,2, LIU Xiao1,2, CAO Yuan-Qiao1,2, LIU Ming1, LIU Ya-Dong1, HAN Miao-Miao1*, JI Sheng-Xiang1,2*
Received:
2021-02-08
Accepted:
2021-03-09
Published:
2021-05-01
Online:
2021-07-01
Supported by:
摘要: 天然抗菌肽是一类短肽分子,广泛存在于生物界,可以通过非特异性机制抑制或杀死细菌或真菌。 但是由于化学稳定性和药代动力学稳定性差而且生产成本高昂,限制了抗菌肽在临床上广泛的应用。 采用氨基酸基聚合物作为抗菌肽的模拟物是一种有效且被广泛研究的替代策略。 本文总结了一系列氨基酸基聚合物作为抗菌剂的研究工作,从特定的阳离子氨基酸残基(赖氨酸、精氨酸)的引入,到更具体的特征结构(如疏水性、二级结构、拓扑结构、自组装行为等)的影响,阐述了结构与抗菌性能的关系。 优化后的聚合物能够保留肽的抗菌谱,同时具有低毒性以及优异的选择性。
中图分类号:
刘慧, 刘骁, 曹远桥, 刘明, 刘亚栋, 韩苗苗, 季生象. 氨基酸基聚合物在抗菌领域的研究进展[J]. 应用化学, 2021, 38(5): 559-571.
LIU Hui, LIU Xiao, CAO Yuan-Qiao, LIU Ming, LIU Ya-Dong, HAN Miao-Miao, JI Sheng-Xiang. Research Progress on Amino Acid-Based Antimicrobial Polymers[J]. Chinese Journal of Applied Chemistry, 2021, 38(5): 559-571.
[1] BLASKOVICH M A T. The fight against antimicrobial resistance is confounded by a global increase in antibiotic usage[J]. ACS Infect Dis, 2018, 4(6): 868-870. [2] JASOVSKY D, LITTMANN J, ZORZET A, et al. Antimicrobial resistance-a threat to the world′s sustainable development[J]. Ups J Med Sci, 2016, 121(3): 159-164. [3] OCHSNER U A, SUN X, JARVIS T, et al. Aminoacyl-tRNA synthetases: essential and still promising targets for new anti-infective agents[J]. Expert Opin Invest Drugs, 2007, 16(5): 573-593. [4] SANTAJIT S, INDRAWATTANA N. Mechanisms of antimicrobial resistance in ESKAPE pathogens[J]. BioMed Res Int, 2016: 2475067. [5] HUTNICK M A, POKORSKI J K. Polymeric interventions for microbial infections: a review[J]. Mol Pharm, 2018, 15(8): 2910-2921. [6] GANEWATTA M S, TANG C. Controlling macromolecular structures towards effective antimicrobial polymers[J]. Polymer, 2015, 63: A1-A29. [7] 孙振龙, 闫顺杰, 周容涛, 等. 基于抗菌肽的智能型抗菌涂层研究进展[J]. 应用化学, 2020, 37(8): 865-876. SUN Z L, YAN S J, ZHOU R T, et al. Recent Progress in the development of smart coatings based on antimicrobial peptides[J]. Chinese J Appl Chem, 2020, 37(8): 865-876. [8] SHEN W, HE P, XIAO C, et al. From antimicrobial peptides to antimicrobial poly(alpha-amino acid)s[J]. Adv Healthcare Mater, 2018, 7(20): e1800354. [9] KUMAR P, KIZHAKKEDATHU J N, STRAUS S K. Antimicrobial peptides: diversity, mechanism of action and strategies to improve the activity and biocompatibility in vivo[J]. Biomolecules, 2018, 8(1): 4. [10] AGEITOS J M, SANCHEZ-PEREZ A, CALO-MATA P, et al. Antimicrobial peptides (AMPs): ancient compounds that represent novel weapons in the fight against bacteria[J]. Biochem Pharmacol, 2017, 133: 117-138. [11] GOLDMAN M J, ANDERSON G M, STOLZENBERG E D, et al. Human beta-defensin-1 is a salt-sensitive antibiotic in lung that is inactivated in cystic fibrosis[J]. Cell, 1997, 88(4): 553-560. [12] CIORNEI C D, SIGURDARDOTTIR T, SCHMIDTCHEN A, et al. Antimicrobial and chemoattractant activity, lipopolysaccharide neutralization, cytotoxicity, and inhibition by serum of analogs of human cathelicidin LL-37[J]. Antimicrob Agents Chemother, 2005, 49(7): 2845-2850. [13] CHENNUPATI S K, CHIU A G, TAMASHIRO E, et al. Effects of an LL-37-derived antimicrobial peptide in an animal model of biofilm Pseudomonas sinusitis[J]. Am J Rhinol Allergy, 2009, 23(1): 46-51. [14] RIVAS-SANTIAGO B, RIVAS SANTIAGO C E, CASTANEDA-DELGADO J E, et al. Activity of LL-37, CRAMP and antimicrobial peptide-derived compounds E2, E6 and CP26 against Mycobacterium tuberculosis[J]. Int J Antimicrob Agents, 2013, 41(2): 143-148. [15] VLIEGHE P, LISOWSKI V, MARTINEZ J, et al. Synthetic therapeutic peptides: science and market[J]. Drug Discov Today, 2010, 15(1/2): 40-56. [16] BRAY B L. Large-scale manufacture of peptide therapeutics by chemical synthesis[J]. Nat Rev Drug Discov, 2003, 2(7): 587-593. [17] HANCOCK R E W, SAHL H G. Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies[J]. Nat Biotechnol, 2006, 24(12): 1551-1557. [18] BISCHOFF R, SCHL TER H. Amino acids: chemistry, functionality and selected non-enzymatic post-translational modifications[J]. J Proteomics, 2012, 75(8): 2275-2296. [19] LI P, ZHOU C, RAYATPISHEH S, et al. Cationic peptidopolysaccharides show excellent broad-spectrum antimicrobial activities and high selectivity [J]. Adv Mater, 2012, 24(30): 4130-4137. [20] LIU R, CHEN X, HAYOUKA Z, et al. Nylon-3 polymers with selective antifungal activity[J]. J Am Chem Soc, 2013, 135(14): 5270-5273. [21] CHEN Y, YU L F, ZHANG B, et al. Design and synthesis of biocompatible, hemocompatible, and highly selective antimicrobial cationic peptidopolysaccharides via click chemistry[J]. Biomacromolecules, 2019, 20(6): 2230-2240. [22] IDREES M, MOHAMMAD A R, KARODIA N, et al. Multimodal role of amino acids in microbial control and drug development[J]. Antibiotics-Basel, 2020, 9(6): 330. [23] GINSBURG I, VAN HEERDEN P V, KOREN E. From amino acids polymers, antimicrobial peptides, and histones, to their possible role in the pathogenesis of septic shock: a historical perspective[J]. J Inflamm Res, 2017, 10: 7-15. [24] ZAGORODKO O, ARROYO-CRESPO J J, NEBOT V J, et al. Polypeptide-based conjugates as therapeutics: opportunities and challenges[J]. Macromol Biosci, 2017, 17(1): 1600316. [25] KATCHALSKI E. Poly-alpha-amino acids[J]. Adv Protein Chem, 1951, 6: 123-185. [26] KATCHALSKI E, BICHOVSKISLOMNITZKI L, VOLCANI B E. Action of some water-soluble poly-alpha-amino-acids on bacteria[J]. Nature, 1952, 169(4313): 1095-1096. [27] KATCHALSKI E, BERGER A, BICHOWSKYSLOMNICKI L, et al. Antibiotically active amino-acid copolymers related to gramicidin-S[J]. Nature, 1955, 176(4472): 118-119. [28] ATCHALSKI E, BICHOWSKISLOMNITZKI L, VOLCANI B E. The action of some water-soluble poly-alpha-amino-acids on bacteria[J]. Biochem J, 1953, 55(4): 671-680. [29] BICHOWSKYSLOMNICKI L, BERGER A, KURTZ J, et al. The antibacterial action of some basic amino acid copolymers[J]. Arch Biochem Biophys, 1956, 65(1): 400-413. [30] LAM S J, O'BRIEN-SIMPSON N M, PANTARAT N, et al. Combating multidrug-resistant Gram-negative bacteria with structurally nanoengineered antimicrobial peptide polymers[J]. Nat Microbiol, 2016, 1(11): 16162. [31] GABRIEL G J, MADKOUR A E, DABKOWSKI J M, et al. Synthetic mimic of antimicrobial peptide with nonmembrane-disrupting antibacterial properties[J]. Biomacromolecules, 2008, 9(11): 2980-2983. [32] ZHOU M, QIAN Y X, XIE J Y, et al. Poly(2-oxazoline)-based functional peptide mimics: eradicating MRSA infections and persisters while alleviating antimicrobial resistance[J]. Angew Chem Int Edit, 2020, 59(16): 6412-6419. [33] TAKAHASHI H, CAPUTO G A, VEMPARALA S, et al. Synthetic random copolymers as a molecular platform to mimic host-defense antimicrobial peptides[J]. Bioconjugate Chem, 2017, 28(5): 1340-1350. [34] ERGENE C, YASUHARA K, PALERMO E F. Biomimetic antimicrobial polymers: recent advances in molecular design[J]. Polym Chem, 2018, 9(18): 2407-2427. [35] PERLMAN D. Microbial production of vitamin B12 antimetabolites. I. N5-hydroxy-L-arginine from Bacillus cereus 439[J]. J Antibiot, 1974, 27: 826-832. [36] SHIMA S, MATSUOKA H, IWAMOTO T, et al. Antibacterial action of epsilon-poly-L-lysine[J]. J Antibiot, 1984, 37(11): 1449-1455. [37] SHIMA S, SAKAI H. Polylysine produced by streptomyces[J]. Agric Biol Chem, 1977, 41(9): 1807-1809. [38] WYRSTA M D, COGEN A L, DEMING T J. A parallel synthetic approach for the analysis of membrane interactive copolypeptides[J]. J Am Chem Soc, 2001, 123(51): 12919-12920. [39] BEVILACQUA M P, HUANG D J, WALL B D, et al. Amino acid block copolymers with broad antimicrobial activity and barrier properties[J]. Macromol Biosci, 2017, 17(10): 1600492. [40] ZHOU C C, QI X B, LI P, et al. High potency and broad-spectrum antimicrobial peptides synthesized via ring-opening polymerization of alpha-aminoacid-N-carboxyanhydrides[J]. Biomacromolecules, 2010, 11(1): 60-67. [41] ECKHART K E, STARVAGGI F A, SYDLIK S A. One-shot synthesis of peptide amphiphiles with applications in directed graphenic assembly[J]. Biomacromolecules, 2020, 21(9): 3878-3886. [42] MOLCHANOVA N, HANSEN P R, DAMBORG P, et al. Lysine-based alpha-peptide/beta-peptoid peptidomimetics: influence of hydrophobicity, fluorination, and distribution of cationic charge on antimicrobial activity and cytotoxicity[J]. ChemMedChem, 2017, 12(4): 312-318. [43] ZHANG D F, QIAN Y X, ZHANG S, et al. Alpha-beta chimeric polypeptide molecular brushes display potent activity against superbugs-methicillin resistant Staphylococcus aureus[J]. Sci China-Mater, 2019, 62(4): 604-610. [44] MATTHEIS C, WANG H, MEISTER C, et al. Effect of guanidinylation on the properties of poly(2-aminoethylmethacrylate)-based antibacterial materials[J]. Macromol Biosci, 2013, 13(2): 242-255. [45] GILBERT P, MOORE L E. Cationic antiseptics: diversity of action under a common epithet[J]. J Appl Microbiol, 2005, 99(4): 703-715. [46] IKEDA T, TAZUKE S, WATANABE M. Interaction of biologically active molecules with phospholipid-membranes .1.fluorescence depolarization studies on the effect of polymeric biocide bearing biguanide groups in the main chain[J]. Biochim Biophys Acta, 1983, 735(3): 380-386. [47] PILCHER K S, TROSPER F, SOIKE K F. Studies of chemical inhibitors of influenza virus multiplication.1.biguanides and related compounds[J]. Antibiot Chemother, 1961, 11(6): 381-389. [48] PREGOZEN D. Nonwoven wipe impregnating composition, US: 5141803-A[P], 1992. [49] KURZER F, PITCHFORK E D. The chemistry of biguanides[C]. Biguanides. Springer, Berlin, Heidelberg, 1968: 375-472. [50] ZHANG Y, JIANG J, CHEN Y. Synthesis and antimicrobial activity of polymeric guanidine and biguanidine salts[J]. Polymer, 1999, 40(22): 6189-6198. [51] EXLEY S E, PASLAY L C, SAHUKHAL G S, et al. Antimicrobial peptide mimicking primary amine and guanidine containing methacrylamide copolymers prepared by raft polymerization[J]. Biomacromolecules, 2015, 16(12): 3845-3852. [52] LOCOCK K E, MICHL T D, VALENTIN J D, et al. Guanylated polymethacrylates: a class of potent antimicrobial polymers with low hemolytic activity[J]. Biomacromolecules, 2013, 14(11): 4021-4231. [53] LOCOCK K E S, MICHL T D, STEVENS N, et al. Antimicrobial polymethacrylates synthesized as mimics of tryptophan-rich cationic peptides[J]. ACS Macro Lett, 2014, 3(4): 319-323. [54] LIN S M, CHEN Y Z, LI H X, et al. Design, synthesis, and evaluation of amphiphilic sofalcone derivatives as potent Gram-positive antibacterial agents[J]. Eur J Med Chem, 2020, 202: 112596. [55] BROGDEN K A. Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria?[J]. Nat Rev Microbiol, 2005, 3(3): 238-250. [56] STROEMSTEDT A A, PASUPULETI M, SCHMIDTCHEN A, et al. Evaluation of strategies for improving proteolytic resistance of antimicrobial peptides by using variants of EFK17, an internal segment of LL-37[J]. Antimicrob Agents Chemother, 2009, 53(2): 593-602. [57] MENG H, KUMAR K. Antimicrobial activity and protease stability of peptides containing fluorinated amino acids[J]. J Am Chem Soc, 2007, 129(50): 15615-15622. [58] XIONG M, LEE M W, MANSBACH R A, et al. Helical antimicrobial polypeptides with radial amphiphilicity[J]. Proc Natl Acad Sci USA, 2015, 112(43): 13155-13160. [59] XIONG M H, HAN Z Y, SONG Z Y, et al. Bacteria-assisted activation of antimicrobial polypeptides by a random-coil to helix transition[J]. Angew Chem Int Ed, 2017, 56(36): 10826-10829. [60] XIONG M H, BAO Y, XU X, et al. Selective killing of Helicobacter pylori with pH-responsive helix-coil conformation transitionable antimicrobial polypeptides[J]. Proc Natl Acad Sci USA, 2017, 114(48): 12675-12680. [61] MINTZER M A, DANE E L, O'TOOLE G A, et al. Exploiting dendrimer multivalency to combat emerging and re-emerging infectious diseases[J]. Mol Pharm, 2012, 9(3): 342-354. [62] PAN Y, XUE Y, SNOW J, et al. Tailor-made antimicrobial/antiviral star polymer via ATRP of cyclodextrin and guanidine-based macromonomer[J]. Macromol Chem Phys, 2015, 216(5): 511-518. [63] CHEN C Z S, COOPER S L. Interactions between dendrimer biocides and bacterial membranes[J]. Biomaterials, 2002, 23(16): 3359-3368. [64] CHEN Y F, LAI Y D, CHANG C H, et al. Star-shaped polypeptides exhibit potent antibacterial activities[J]. Nanoscale, 2019, 11(24): 11696-11708. [65] LU C, QUAN G L, SU M, et al. Molecular architecture and charging effects enhance the in vitro and in vivo performance of multi-arm antimicrobial agents based on star-shaped poly(L-lysine)[J]. Adv Ther, 2019, 2(12): 1900147. [66] YANG Z, XI Y, BAI J, et al. Covalent grafting of hyperbranched poly-L-lysine on Ti-based implants achieves dual functions of antibacteria and promoted osteointegration in vivo[J]. Biomaterials, 2020, 269: 120534. [67] ZHANG Y, SONG W, LI S, et al. Facile and scalable synthesis of topologically nanoengineered polypeptides with excellent antimicrobial activities[J]. Chem Commun, 2020, 56(3): 356-359. [68] WANG J, LU C, SHI Y, et al. Structural superiority of guanidinium-rich, four-armed copolypeptides: role of multiple peptide-membrane interactions in enhancing bacterial membrane perturbation and permeability[J]. ACS Appl Mater Interfaces, 2020, 12(16): 18363-18374. [69] BECKER M L, LIU J Q, WOOLEY K L. Functionalized micellar assemblies prepared via block copolymers synthesized by living free radical polymerization upon peptide-loaded resins[J]. Biomacromolecules, 2005, 6(1): 220-228. [70] GAO J, WANG M, WANG F, et al. Synthesis and mechanism insight of a peptide-grafted hyperbranched polymer nanosheet with weak positive charges but excellent intrinsically antibacterial efficacy[J]. Biomacromolecules, 2016, 17(6): 2080-2086. [71] XI Y J, SONG T, TANG S Y, et al. Preparation and antibacterial mechanism insight of polypeptide-based micelles with excellent antibacterial activities[J]. Biomacromolecules, 2016, 17(12): 3922-3930. [72] SUN H, HONG Y, XI Y, et al. Synthesis, self-assembly, and biomedical applications of antimicrobial peptide polymer conjugates[J]. Biomacromolecules, 2018, 19(6): 1701-1720. [73] ZHU J, HAN H, LI F, et al. Self-assembly of amino acid-based random copolymers for antibacterial application and infection treatment as nanocarriers[J]. J Colloid Interface Sci, 2019, 540: 634-646. [74] DU J Z, O'REILLY R K. Advances and challenges in smart and functional polymer vesicles[J]. Soft Matter, 2009, 5(19): 3544-3561. [75] WANG M, ZHOU C, CHEN J, et al. Multifunctional biocompatible and biodegradable folic acid conjugated poly(epsilon-caprolactone)-polypeptide copolymer vesicles with excellent antibacterial activities[J]. Bioconjugate Chem, 2015, 26(4): 725-734. [76] ZHOU C C, YUAN Y, ZHOU P Y, et al. Highly effective antibacterial vesicles based on peptide-mimetic alternating copolymers for bone[J]. Biomacromolecules, 2017, 18(12): 4154-4162. [77] XI Y J, WANG Y, GAO J Y, et al. Dual corona vesicles with intrinsic antibacterial and enhanced antibiotic delivery capabilities for effective treatment of biofilm-induced periodontitis[J]. ACS Nano, 2019, 13(12): 13645-13657. |
[1] | 颜丽娟, 高添贺, 施冬健, 陈明清. 丁香酚/改性聚乙烯醇抗菌复合膜的制备与性能[J]. 应用化学, 2023, 40(4): 527-535. |
[2] | 马欲杰, 张赢心, 戴桓琰, 徐志民, 韩冰. 3D打印nHA/PEEK-AgNPs复合多孔支架的制备与性能[J]. 应用化学, 2023, 40(4): 536-545. |
[3] | 陈玉竹, 刘思思, 张蒙蒙, 林祥德, 曾冬冬. 基于抗菌性壳聚糖/羧甲基纤维素复合药物涂层的聚氨酯敷料[J]. 应用化学, 2023, 40(2): 252-260. |
[4] | 王佳赫, 刘大勇, 刘伟, 王林, 董彪. 纳米TiO2光催化抗菌应用的研究进展[J]. 应用化学, 2022, 39(4): 629-646. |
[5] | 解晓明, 张嘉琦. 氢键作用驱动原花青素构筑水基抗菌黏合剂[J]. 应用化学, 2022, 39(10): 1533-1542. |
[6] | 杨家强, 吴学姣, 周绪容, 邓玲, 杨红. 蛇床子素酯类衍生物的合成及抗菌活性[J]. 应用化学, 2021, 38(8): 917-922. |
[7] | 谢子旭, 张鹏飞, 王兴. 构筑生物安全材料,发展立体化学抗菌新理念[J]. 应用化学, 2021, 38(5): 510-523. |
[8] | 赵越, 孟祥芹, 阎锡蕴, 范克龙. 纳米酶:一种新型的生物安全材料[J]. 应用化学, 2021, 38(5): 524-545. |
[9] | 林秋棚, 章朱迎, 施冬健, 裴泽军, 陈明清, 倪忠斌. 缓释型壳聚糖/醋酸氯己定复合微球的制备与性能[J]. 应用化学, 2021, 38(12): 1599-1611. |
[10] | 丁雅丽, 胡响响, 冯玄, 张然, 石彤非, 卫来. 小分子促进抗冻蛋白抗冻效果的分子机制[J]. 应用化学, 2021, 38(12): 1612-1620. |
[11] | 张帅, 陶友华. 两种功能化环状赖氨酸单体的合成[J]. 应用化学, 2021, 38(12): 1676-1678. |
[12] | 周超, 生程钜, 闻林林. 咪唑盐类聚离子液体抗菌剂的制备及其在水凝胶敷料中的应用[J]. 应用化学, 2021, 38(1): 51-59. |
[13] | 孙振龙, 闫顺杰, 周容涛, 张桢焱, 欧阳兆飞, 朱雪真, 殷敬华. 基于抗菌肽的智能型抗菌涂层研究进展[J]. 应用化学, 2020, 37(8): 865-876. |
[14] | 刘世伟, 梁亮, 李晨阳, 刘长鹏, 邢巍, 董献堆. 高温质子交换膜燃料电池的复合催化层电极[J]. 应用化学, 2019, 36(9): 1085-1090. |
[15] | 张雅静,季鹏,韩德明,赵丽辉,徐亚娟,刘文书. 石墨烯纳米载药体系的制备及对人口腔鳞癌细胞杀伤效果[J]. 应用化学, 2019, 36(5): 564-570. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||