应用化学 ›› 2020, Vol. 37 ›› Issue (10): 1099-1111.DOI: 10.11944/j.issn.1000-0518.2020.10.200128
刘军辉a, 宋亚坤a, 宋春山b,c, 郭新闻c*
收稿日期:
2020-05-05
出版日期:
2020-10-01
发布日期:
2020-09-30
通讯作者:
郭新闻,教授; Tel/Fax:0411-84986133; E-mail:guoxw@dlut.edu.cn; 研究方向:多相催化,纳米多孔材料,新催化反应工艺
基金资助:
LIU Junhuia, SONG Yakuna, SONG Chunshanb,c, GUO Xinwenc*
Received:
2020-05-05
Published:
2020-10-01
Online:
2020-09-30
Contact:
GUO Xinwen, professor; Tel/Fax:0411-84986133; E-mail:guoxw@dlut.edu.cn; Research interests: heterogeneous catalysis, porous nanomaterials, new catalytic reaction processes
Supported by:
摘要: CO2加氢和费托合成反应是C1化学中重要的研究领域,CO2加氢制备高附加值化学品和燃料有助于降低大气中CO2浓度,减轻化石燃料消耗的压力;费托合成反应是以非石油资源为原料生产液体燃料和化学品的重要路径。 开发新型、高效、稳定的催化剂是CO2加氢和费托合成反应的关键点之一。 利用金属-有机骨架(Metal-Organic Frameworks,MOFs)材料的特点制备的MOFs衍生催化剂在CO2加氢和费托合成反应中具有较好的应用前景。 本文综述了CO2加氢和费托合成反应中MOFs衍生催化剂的制备方法,以及催化剂在各反应中的催化性能,并对目前所存在的问题以及今后的发展进行了总结和展望。
刘军辉, 宋亚坤, 宋春山, 郭新闻. 金属-有机骨架衍生催化剂在二氧化碳加氢和费托合成反应中的应用[J]. 应用化学, 2020, 37(10): 1099-1111.
LIU Junhui, SONG Yakun, SONG Chunshan, GUO Xinwen. Recent Advances in Application of Metal-Orgainic Framework-Derived Catalysts for Hydrogenation of Carbon Dioxide and Fischer-Tropsch Synthesis[J]. Chinese Journal of Applied Chemistry, 2020, 37(10): 1099-1111.
[1] Zhou W,Cheng K,Kang J,et al. New Horizon in C1 Chemistry:Breaking the Selectivity Limitation in Transformation of Syngas and Hydrogenation of CO2 into Hydrocarbon Chemicals and Fuels[J]. Chem Soc Rev,2019,48:3193-3228. [2] Bao J,Yang G,Yoneyama Y,et al. Significant Advances in C1 Catalysis: Highly Efficient Catalysts and Catalytic Reactions[J]. ACS Catal,2019,9(4):3026-3053. [3] Cui W G,Zhang G Y,Hu T L,et al. Metal-organic Framework-Based Heterogeneous Catalysts for the Conversion of C1 Chemistry:CO, CO2 and CH4[J]. Coord Chem Rev,2019,387:79-120. [4] Panzone C,Philippe R,Chappaz A,et al. Power-to-Liquid Catalytic CO2 Valorization into Fuels and Chemicals: Focus on the Fischer-Tropsch Route[J]. J CO2 Util,2020,38:314-347. [5] Wang W,Wang S,Ma X,et al. Recent Advances in Catalytic Hydrogenation of Carbon Dioxide[J]. Chem Soc Rev,2011,40(7):3703-3727. [6] An Y,Lin T,Yu F,et al. Advances in Direct Production of Value-Added Chemicals via Syngas Conversion[J]. Sci China Chem,2017,60(7):887-903. [7] Dowell N M,Fennell P S,Shah N,et al. The Role of CO2 Capture and Utilization in Mitigating Climate Change[J]. Nat Clim Change,2017,7(4):243-249. [8] Li H,Eddaoudi M,O'keeffe M,et al. Design and Synthesis of an Exceptionally Stable and Highly Porous Metal-Organic Framework[J]. Nature,1999,402(6759):276-279. [9] Perry J J,Perman J A,Zaworotko M J. Design and Synthesis of Metal-Organic Frameworks Using Metal-Organic Polyhedra as Supermolecular Building Blocks[J]. Chem Soc Rev,2009,38(5):1400-1417. [10] Dan Z,Timmons D J,Daqiang Y,et al. Tuning the Topology and Functionality of Metal-Organic Frameworks by Ligand Design[J]. Acc Chem Res,2011,44(2):123-33. [11] Cui Y,Li B,He H,et al. Metal-Organic Frameworks as Platforms for Functional Materials[J]. Acc Chem Res,2016,49(3):483-493. [12] Zhang H,Nai J,Yu L,et al. Metal-Organic-Framework-Based Materials as Platforms for Renewable Energy and Environmental Applications[J]. Joule,2017,1:77-107. [13] Trickett C A,Helal A,Al-Maythalony B A,et al. The Chemistry of Metal-Organic Frameworks for CO2 Capture, Regeneration and Conversion[J]. Nat Rev Mater,2017,2:1-16. [14] Qiu S,Xue M,Zhu G. Metal-Organic Framework Membranes:From Synthesis to Separation Application[J]. Chem Soc Rev,2014,43(16):6116-6140. [15] Della Rocca J,Liu D,Lin W. Nanoscale Metal-Organic Frameworks for Biomedical Imaging and Drug Delivery[J]. Acc Chem Res,2011,44(10):957-968. [16] Wu M X,Yang Y W. Metal-Organic Framework (MOF)-Based Drug/Cargo Delivery and Cancer Therapy[J]. Adv Mater,2017,29(23):1606134-1606153. [17] Yoon M,Srirambalaji R,Kim K. Homochiral Metal-Organic Frameworks for Asymmetric Heterogeneous Catalysis[J]. Chem Rev,2012,112(2):1196-1231. [18] Gustafsson M,Bartoszewicz A,Martin-Matute B,et al. A Family of Highly Stable Lanthanide Metal-Organic Frameworks:Structural Evolution and Catalytic Activity[J]. Chem Mater,2010,22(11):3316-3322. [19] Fu Y,Sun D,Chen Y,et al. An Amine-Functionalized Titanium Metal-Organic Framework Photocatalyst with Visible-Light-Induced Activity for CO2 Reduction[J]. Angew Chem Int Ed,2011,51:3364-3367. [20] Dang S,Zhu Q L,Xu Q. Nanomaterials Derived from Metal-Organic Frameworks[J]. Nat Rev Mater,2018,3(1):17075-17088. [21] Bo L,Hiroshi S,Tomoki A,et al. Metal-Organic Framework as a Template for Porous Carbon Synthesis[J]. J Am Chem Soc,2008,130(16):5390-5391. [22] Oar-Arteta L,Wezendonk T,Sun X,et al. Metal Organic Frameworks as Precursors for the Manufacture of Advanced Catalytic Materials[J]. Mater Chem Front,2017,1(9):1709-1745. [23] Zhao H,Jiang Y,Chen P,et al. CoZn-ZIF-Derived ZnCo2O4-Framework for the Synthesis of Alcohols from Glycerol[J]. Green Chem,2018,20(18):4299-4307. [24] Li R,Zhang W,Zhou K. Metal-Organic-Framework-Based Catalysts for Photoreduction of CO2[J]. Adv Mater,2018,30(35):1705512-1705542. [25] Wang Y,Chen X,Lin Q,et al. Nanoporous Carbon Derived from a Functionalized Metal-Organic Framework as a Highly Efficient Oxygen Reduction Electrocatalyst[J]. Nanoscale,2017,9(2):862-868. [26] Cheng N,Ren L,Xu X,et al. Recent Development of Zeolitic Imidazolate Frameworks (ZIFs) Derived Porous Carbon Based Materials as Electrocatalysts[J]. Adv Energy Mater,2018,8(25):1801257. [27] Indra A,Song T,Paik U. Metal Organic Framework Derived Materials: Progress and Prospects for the Energy Conversion and Storage[J]. Adv Mater,2018,30(39):1705146-1705170. [28] Wickramaratne N,Jaroniec M. Importance of Small Micropores in CO2 Capture by Phenolic Resin-Based Activated Carbon Spheres[J]. J Mater Chem A,2013,1(1):112-116. [29] Chen Y,Ji S,Wang Y,et al. Isolated Single Iron Atoms Anchored on N-Doped Porous Carbon as an Efficient Electrocatalyst for the Oxygen Reduction Reaction[J]. Angew Chem Int Ed,2017,129(24):6937-6941. [30] Liu J,Zhang A,Jiang X,et al. Overcoating the Surface of Fe-Based Catalyst with ZnO and Nitrogen-Doped Carbon Toward High Selectivity of Light Olefins in CO2 Hydrogenation[J]. Ind Eng Chem Res,2019,58(10):4017-4023. [31] Liu J, hang A,Min L,et al. Fe-MOF-Derived Highly Active Catalysts for Carbon Dioxide Hydrogenation to Valuable Hydrocarbons[J]. J CO2 Util,2017,21:100-107. [32] Liu J,Sun Y,Xiao J,et al. Pyrolyzing ZIF-8 to N-Doped Porous Carbon Facilitated by Iron and Potassium for CO2 Hydrogenation to Value-added Hydrocarbons[J]. J CO2 Util,2018,25:120-127. [33] Adrian R,Gevers L E,Anastasiya B,et al. Metal Organic Framework Derived Iron Catalysts for the Direct Hydrogenation of CO2 to Short Chain Olefins[J]. ACS Catal,2018,8:9174-9182. [34] Alain G,Miklos C,John-Paul J,et al. Recycling of Carbon Dioxide to Methanol and Derived Products-Closing the Loop[J]. Chem Soc Rev,2014,43:7995-8048. [35] Olah G A,Goeppert A,Prakash G K S. Chemical Recycling of Carbon Dioxide to Methanol and Dimethyl Ether:From Greenhouse Gas to Renewable, Environmentally Carbon Neutral Fuels and Synthetic Hydrocarbons[J]. J Org Chem,2009,74(2):487-498. [36] Olah G A,Prakash G K S,Goeppert A. Anthropogenic Chemical Carbon Cycle for a Sustainable Future[J]. J Am Chem Soc,2011,133(33):12881-12898. [37] Jesús G,Kumudu M,Fang X,et al. Catalysis. Highly Active Copper-Ceria and Copper-Ceria-Titania Catalysts for Methanol Synthesis from CO2[J]. Science,2014,345(6196):546-550. [38] Francesco,Mezzatesta,Giovanni,et al. Effects of Oxide Carriers on Surface Functionality and Process Performance of the Cu-ZnO System in the Synthesis of Methanol via CO2 Hydrogenation[J]. J Catal,2013,300(4):141-151. [39] Bahruji H,Bowker M,Hutchings G,et al. Pd/ZnO Catalysts for Direct CO2 Hydrogenation to Methanol[J]. J Catal,2016,343:133-146. [40] Fan L,Fujimoto K. Reaction Mechanism of Methanol Synthesis from Carbon Dioxide and Hydrogen on Ceria-Supported Palladium Catalysts with SMSI Effect[J]. J Catal,1997,172(1):238-242. [41] Yin Y,Hu B,Li X,et al. Pd@Zeolitic Zmidazolate Framework-8 Derived PdZn Alloy Catalysts for Efficient Hydrogenation of CO2 to Methanol[J]. Appl Catal B,2018,234:143-152. [42] Hu B,Yin Y,Zhong Z,et al. Cu@ZIF-8 Derived Inverse ZnO/Cu Catalyst with Sub-5 nm ZnO for Efficient CO2 Hydrogenation to Methanol[J]. Catal Sci Technol,2019,9(10):2673-2681. [43] Galletti C,Specchia S,Saracco G,et al. Co-Selective Methanation over Ru-γAl2O3 Catalysts in H2-Rich Gas for PEM FC Applications[J]. Chem Eng Sci,2010,65:590-596. [44] Lunde P J,Kester F L. Carbon Dioxide Methanation on a Ruthenium Catalyst[J]. Ind Eng Chem Process Des Dev,1974,13(1):27-33. [45] Du G,Lim S,Yang Y,et al. Methanation of Carbon Dioxide on Ni-Incorporated MCM-41 Catalysts:The Influence of Catalyst Pretreatment and Study of Steady-State Reaction[J]. J Catal,2007,249(2):370-379. [46] Stangeland K,Kalai D Y,Li H,et al. Active and Stable Ni Based Catalysts and Processes for Biogas Upgrading:The Effect of Temperature and Initial Methane Concentration on CO2 Methanation[J]. Appl Energy,2017,227:206-212. [47] Wang Y,Yao L,Wang Y,et al. Low-Temperature Catalytic CO2 Dry Reforming of Methane on Ni-Si/ZrO2 Catalyst[J]. ACS Catal,2018,8(7):6495-6506. [48] Yan Y,Dai Y,He H,et al. A Novel W-Doped Ni-Mg Mixed Oxide Catalyst for CO2 Methanation[J]. Appl Catal B,2016,196:108-116. [49] Liu H,Xu S,Zhou G,et al. CO2 Hydrogenation to Methane over Co/KIT-6 Catalysts:Effect of Co Content[J]. Fuel,2018,217:570-576. [50] Liu H,Xu S,Zhou G,et al. CO2 Hydrogenation to Methane over Co/KIT-6 Catalyst: Effect of Reduction Temperature[J]. Chem Eng J,2018,351:65-73. [51] Li W,Zhang G,Jiang X,et al. CO2 Hydrogenation on Unpromoted and M-Promoted Co/TiO2 Catalysts(M=Zr,K,Cs):Effects of Crystal Phase of Supports and Metal-Support Interaction on Tuning Product Distribution[J]. ACS Catal,2019,9(4):2739-2751. [52] Kim A,Debecker D P,Devred F,et al. CO2 Methanation on Ru/TiO2 Catalysts: On the Effect of Mixing Anatase and Rutile TiO2 Supports[J]. Appl Catal B,2018,220:615-625. [53] Petala A,Panagiotopoulou P. Methanation of CO2 over Alkali-Promoted Ru/TiO2 Catalysts:I.Effect of Alkali Additives on Catalytic Activity and Selectivity[J]. Appl Catal B,2018,224:919-927. [54] Li W,Zhang A,Xiao J,et al. Low Temperature CO2 Methanation:ZIF-67-Derived Co-based Porous Carbon Catalysts with Controlled Crystal Morphology and Size[J]. ACS Sustainable Chem Eng,2017,5(9):7824-7831. [55] Lin X,Wang S,Tu W,et al. MOF-Derived Hierarchical Hollow Spheres Composed of Carbon-Confined Ni Nanoparticles for Efficient CO2 Methanation[J]. Catal Sci Technol,2019,9:731-738. [56] Lippi R,Howard S C,Barron H,et al. Highly Active Catalyst for CO2 Methanation Derived from a Metal Organic Framework Template[J]. J Mater Chem A,2017,5(25):12990-12997. [57] Centi G,Quadrelli E A,Perathoner S. Catalysis for CO2 Conversion:A Key Technology for Rapid Introduction of Renewable Energy in the Value Chain of Chemical Industries[J]. Energy Environ Sci,2013,6(6):1711-1731. [58] Omae I. Recent Developments in Carbon Dioxide Utilization for the Production of Organic Chemicals[J]. Coord Chem Rev,2012,256(13/14):1384-1405. [59] Chen C,Cheng W,Lin S. Enhanced Activity and Stability of a Cu/SiO2 Catalyst for the Reverse Water Gas Shift Reaction by an Iron Promoter[J]. Chem Commun,2001,1770(18):1770-1771. [60] Sun F M,Yan C F,Wang Z D,et al. Ni/Ce-Zr-O Catalyst for High CO2 Conversion during Reverse Water Gas Shift Reaction (RWGS)[J]. Int J Hydrogen Energy,2015,40(46):15985-15993. [61] Goguet A,Shekhtman S O,Burch R,et al. Pulse-Response TAP Studies of the Reverse Water-Gas Shift Reaction over a Pt/CeO2 Catalyst[J]. J Catal,2006,237(1):102-110. [62] Pettigrew D J,Trimm D L,Cant N W. The Effects of Rare Earth Oxides on the Reverse Water-Gas Shift Reaction on Palladium/Alumina[J]. Catal Lett,1994,28(2-4):313-319. [63] Wang L C,Khazaneh M T,Widmann D,et al. TAP Reactor Studies of the Oxidizing Capability of CO2 on a Au/CeO2 Catalyst-A First Step Toward Identifying a Redox Mechanism in the Reverse Water-Gas Shift Reaction[J]. J Catal,2013,302:20-30. [64] Zhang J,Bing A,Hong Y,et al. Pyrolysis of Metal-Organic Frameworks to Hierarchical Porous Cu/Zn-Nanoparticle@Carbon Materials for Efficient CO2 Hydrogenation[J]. Mater Chem Front,2017,1:2405-2409. [65] Zhang X,Zhu X,Lin L,et al. Highly Dispersed Copper over β-Mo2C as an Efficient and Stable Catalyst for the Reverse Water Gas Shift(RWGS) Reaction[J]. ACS Catal,2017,7(1):912-918. [66] Chen C S,Cheng W H,Lin S S. Study of Reverse Water Gas Shift Reaction by TPD, TPR and CO2 Hydrogenation over Potassium-Promoted Cu/SiO2 Catalyst[J]. Appl Catal A,2003,238(1):55-67. [67] Dry M E. Fischer-Tropsch Synthesis over Iron Catalysts[J]. Catal Lett,1990,7(1):241-251. [68] De Smit E,Cinquini F,Beale A M,et al. Stability and Reactivity of ε-χ-θ Iron Carbide Catalyst Phases in Fischer-Tropsch Synthesis:Controlling μc[J]. J Am Chem Soc,2010,132(42):14928-14941. [69] Chang Q,Zhang C,Liu C,et al. Relationship Between Iron Carbide Phases (ε-Fe2C, Fe7C3, and χ-Fe5C2) and Catalytic Performances of Fe/SiO2 Fischer-Tropsch Catalysts[J]. ACS Catal,2018,8:3304-3316. [70] Wang J,Huang S,Howard S,et al. Elucidating Surface and Bulk Phase Transformation in Fischer-Tropsch Synthesis Catalysts and Their Influences on Catalytic Performance[J]. ACS Catal,2019,9(9):7976-7983. [71] Santos V P,Wezendonk T A,Ja n J J D,et al. Metal Organic Framework-Mediated Synthesis of Highly Active and Stable Fischer-Tropsch Catalysts[J]. Nat Commun,2015,6:64516458. [72] Wezendonk T A,Santos V P,Nasalevich M A,et al. Elucidating the Nature of Fe Species During Pyrolysis of the Fe-BTC MOF into Highly Active and Stable Fischer-Tropsch Catalysts[J]. ACS Catal,2016,6(5):3236-3247. [73] Oar-Arteta L,Valero-Romero M J,Wezendonk T,et al. Formulation and Catalytic Performance of MOF-Derived Fe@C/Al Composites for High Temperature Fischer-Tropsch Synthesis[J]. Catal Sci Technol,2018,8:210-220. [74] Oschatz M,Krause S,Krans N A,et al. Influence of Precursor Porosity on Sodium and Sulfur Promoted Iron/Carbon Fischer-Tropsch Catalysts Derived from Metal-Organic Frameworks[J]. Chem Commun,2017,53:10204-10207. [75] An B,Cheng K,Wang C,et al. Pyrolysis of Metal-Organic Frameworks to Fe3O4@Fe5C2 Core-Shell Nanoparticles for Fischer-Tropsch Synthesis[J]. ACS Catal,2016,6:3610-3618. [76] Lyu S,Li W,Jianghao Z,et al. On the Role of Active Phase for Fischer-Tropsch Synthesis-Experimental Evidence of CO Activation over Single-Phase Cobalt Catalysts[J]. ACS Catal,2018,8:7787-7798. [77] Zhong L,Yu F,An Y,et al. Cobalt Carbide Nanoprisms for Direct Production of Lower Olefins from Syngas[J]. Nature,2016,538(7623):84-87. [78] Li Z,Zhong L,Yu F,et al. Effects of Sodium on the Catalytic Performance of CoMn Catalysts for Fischer-Tropsch to Olefin Reactions[J]. ACS Catal,2017,7:3622-3631. [79] Li Z,Lin T,Yu F,et al. The Mechanism of Mn Promoter via CoMn Spinel for Morphology Control:Formation of Co2C Nanoprisms for Fischer-Tropsch to Olefins Reaction[J]. ACS Catal,2017,7:8023-8032. [80] Yunlei A,Yonghui Z,Fei Y,et al. Morphology Control of Co2C Nanostructures via the Reduction Process for Direct Production of Lower Olefins from Syngas[J]. J Catal,2018,366:289-299. [81] Pei Y,Zhong L,Li Y. Highly Active and Selective Co-Based Fischer-Tropsch Catalysts Derived from Metal-Organic Frameworks[J]. Aiche J,2017,63(7):2935-2944. [82] Qiu B,Yang C,Guo W,et al. Highly Dispersed Co-Based Fischer-Tropsch Synthesis Catalysts from Metal-Organic Frameworks[J]. J Mater Chem A,2017,5:8081-8086. [83] Sun X,Suarez A I O,Meijerink M,et al. Manufacture of Highly Loaded Silica-Supported Cobalt Fischer-Tropsch Catalysts from a Metal Organic Framework[J]. Nat Commun,2017,8(1):1680-1687. [84] Chen Y,Li X,Nisa M U,et al. ZIF-67 as Precursor to Prepare High Loading and Dispersion Catalysts for Fischer-Tropsch Synthesis: Particle Size Effect[J]. Fuel,2019,241:802-812. [85] Wu T,Lin J,Cheng Y,et al. Porous Graphene-Confined Fe-K as Highly Efficient Catalyst for CO2 Direct Hydrogenation to Light Olefins[J]. ACS Appl Mater Interfaces,2018,10:23439-23443. [86] Satthawong R,Koizumi N,Song C,et al. Light Olefin Synthesis from CO2 Hydrogenation over K-Promoted Fe-Co Bimetallic Catalysts[J]. Catal Today,2015,251(1):34-40. [87] Wang J,You Z,Zhang Q,et al. Synthesis of Lower Olefins by Hydrogenation of Carbon Dioxide over Supported Iron Catalysts[J]. Catal Today,2013,215(41):186-193. [88] Cheng Y,Lin J,Wu T,et al. Mg and K Dual-Decorated Fe-on-Reduced Graphene Oxide for Selective Catalyzing CO Hydrogenation to Light Olefins with Mitigated CO2 Emission and Enhanced Activity[J]. Appl Catal B,2017,204:475-485. [89] Ji C,Sang C,Dong H,et al. Highly Activated K-Doped Iron Carbide Nanocatalysts Designed by Computational Simulation for Fischer-Tropsch Synthesis[J]. J Mater Chem A,2014,2(35):14371-14379. |
[1] | 张毅城, 查飞, 唐小华, 常玥, 田海锋, 郭效军. 非均相催化制备有机过氧化物的研究进展[J]. 应用化学, 2023, 40(6): 769-788. |
[2] | 于宜辰, 张雨宸, 张耀远, 吴芹, 史大昕, 陈康成, 黎汉生. 本体金属氧化物在丙烷无氧脱氢中的研究进展[J]. 应用化学, 2023, 40(6): 789-805. |
[3] | 李冰, 刘军辉, 宋亚坤, 李想, 郭旭明, 熊健. 金属-有机骨架材料在催化氨硼烷水解释氢中的研究进展[J]. 应用化学, 2023, 40(3): 329-340. |
[4] | 王路飞, 甄蒙蒙, 沈伯雄. 贫电解液下电催化剂对调控锂硫电池性能的研究进展[J]. 应用化学, 2023, 40(2): 188-209. |
[5] | 曹蓉, 夏杰桢, 廖漫华, 赵路超, 赵晨, 吴琪. 单原子催化剂在电化学合成氨中的理论研究进展[J]. 应用化学, 2023, 40(1): 9-23. |
[6] | 张丹, 尚润梅, 赵振涛, 李君华, 邢锦娟. V/Ce-Al2O3催化甲醇选择性氧化制备二甲氧基甲烷[J]. 应用化学, 2022, 39(9): 1429-1436. |
[7] | 王显, 杨小龙, 马荣鹏, 刘长鹏, 葛君杰, 邢巍. 单原子分散的Ir-N-C燃料电池阳极抗中毒催化剂[J]. 应用化学, 2022, 39(8): 1202-1208. |
[8] | 刘也, 郭少波, 梁艳莉, 葛红光, 马剑琪, 刘智峰, 刘波. 核壳型纳米复合材料CuFe2O4@NH2@Pt的制备及催化性能[J]. 应用化学, 2022, 39(8): 1237-1245. |
[9] | 张超. 单原子催化剂电催化还原二氧化碳研究进展[J]. 应用化学, 2022, 39(6): 871-887. |
[10] | 李世帅, 刘佳奇, 王佳一, 杨江峰. 多级孔Beta沸石合成研究进展[J]. 应用化学, 2022, 39(6): 912-926. |
[11] | 王岩, 张树聪, 汪兴坤, 刘志承, 王焕磊, 黄明华. 电解海水析氢反应过渡金属基催化剂的研究进展[J]. 应用化学, 2022, 39(6): 927-940. |
[12] | 李锋, 路世玉, 张宇, 郭丽君, 翟雪, 李翠勤. 硅烷基Schiff碱共价修饰纳米二氧化硅负载过渡金属催化乙烯齐聚性能[J]. 应用化学, 2022, 39(6): 949-959. |
[13] | 曹维锦, 白璐, 武兰兰, 李敬德, 宋术岩. 多壳层中空镍钴双金属磷化物纳米球用于高效电催化析氧[J]. 应用化学, 2022, 39(4): 666-672. |
[14] | 王雪, 王意波, 王显, 祝建兵, 葛君杰, 刘长鹏, 邢巍. 酸性电解水过程中氧析出反应的机理及铱基催化剂的研究进展[J]. 应用化学, 2022, 39(4): 616-628. |
[15] | 徐迪, 戴力, 姚文志, 杨光瑞, 王海荣, 宋鹏飞, 朱岩松. 烯烃聚合催化剂的研究进展[J]. 应用化学, 2022, 39(3): 355-373. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||