[1] Dujols V,Ford F,Czarnik A W. A Long-Wavelength Fluorescent Chemodosimeter Selective for Cu(Ⅱ) Ion in Water[J]. J Am Chem Soc,1997,119(31):7386-7387.[2] Yang Y,Zhao Q,Feng W,et al. Luminescent Chemodosimeters for Bioimaging[J]. Chem Rev,2013,113(1):192-270.[3] Yuan L,Lin W,Zheng K,et al. FRET-Based Small-Molecule Fluorescent Probes: Rational Design and Bioimaging Applications[J]. Acc Chem Res,2013,46(7):1462-1473.[4] Chen X,Pradhan T,Wang F,et al. Fluorescent Chemosensors Based on Spiroring-Opening of Xanthenes and Related Derivatives[J]. Chem Rev,2012,112(3):1910-1956.[5] Quang D T,Kim J S. Fluoro- and Chromogenic Chemodosimeters for Heavy Metal Ion Detection in Solution and Biospecimens[J]. Chem Rev,2010,110(10):6280-6301.[6] Kim H N,Lee M H,Kim H J,et al. A New Trend in Rhodamine-Based Chemosensors:Application of Spirolactam Ring-Opening to Sensing Ions[J]. Chem Soc Rev,2008,37(8):1465-1472.[7] Beija M,Afonso C A M,MartinhoJ M G. Synthesis and Applications of Rhodamine Derivatives as Fluorescent Probes[J]. Chem Soc Rev,2009,38(9):2410-2433.[8] YUAN Yuehua,TIAN Maozhong,FENG Feng,et al. Rhodamine-Based Fluorescent Probes for Cations[J]. Prog Chem,2010,22(10):1929-1939(in Chinese).袁跃华,田茂忠,冯锋,等. 罗丹明类阳离子荧光探针研究进展[J]. 化学进展,2010,22(10):1929-1939.[9] Kim H N,Ren W X,Kim J S,et al. Fluorescent and Colorimetric Sensors for Detection of Lead, Cadmium, and Mercury Ions[J]. Chem Soc Rev,2012,41(8):3210-3244.[10] LIN Qi,CHEN Pei,LIU Juan,et al. Colorimetric and Fluorescent Chemosensors for Hg2+ Ions[J]. Prog Chem,2013,25(7):1177-1186(in Chinese).林奇,陈佩,刘娟,等. 汞离子荧光、比色传感器[J]. 化学进展,2013,25(7):1177-1186.[11] Culzoni M J,Pena A M,Machuca A,et al. Rhodamine and BODIPY Chemodosimeters and Chemosensors for the Detection of Hg2+, Based on Fluorescence Enhancement Effect[J]. Anal Methods,2013,5:30-49.[12] Zheng H,Zhan X Q,Bian Q N,et al. Advances in Modifying Fluorescein and Rhodamine Fluorophores as Fluorescent Chemosensors[J]. Chem Commun,2013,49(5):429-447.[13] Soh J H,Swamy K M K,Kim S K,et al. Rhodamine Urea Derivatives as Fluorescent Chemosensors for Hg2+[J]. Tetrahedron Lett,2007,48(34):5966-5969.[14] Bag B,Pal A. Water Induced Chromogenic and Fluorogenic Signal Modulation in a Bi-fluorophore Appended Acyclic Amino-Receptor System[J]. Org Biomol Chem,2011,9(3):915-925.[15] Han R,Yang X,Zhang D,et al. A Bis(rhodamine)-Based Highly Sensitive and Selective Fluorescent Chemosensor for Hg(Ⅱ) in Aqueous Media[J]. New J Chem,2012,36(10):1961-1965.[16] Huang W,Zhu X,Wu D,et al. Structural Modification of Rhodamine Based Sensors Toward Highly Selective Mercury Detection in Mixed Organic/Aqueous Mmedia[J]. Dalton Trans,2009,(47):10457-10465.[17] Wu D,Huang W,Lin Z,et al. Highly Sensitive Multiresponsive Chemosensor for Selective Detection of Hg2+ in Natural Eater and Different Monitoring Environments[J]. Inorg Chem,2008,47(16):7190-7201.[18] Xi P,Huang L,Liu H,et al. Dual-rhodamine Urea Derivative, a Novel Chemidosimeter for Hg(Ⅱ) and Its Application in Imaging Hg(Ⅱ) in Living Cells[J]. J Biol Inorg Chem,2009,14(6):815-819.[19] Bhalla V,Tejpal R,Kumar M. Rhodamine Appended Terphenyl:A Reversible “Off On” Fluorescent Chemosensor for Mercury Ions[J]. Sens Actuators B,2010,151(1):180-185.[20] Maity S B,Bharadwaj P K. A Rhodamine-Piperazine Conjugate as a Fluorogenic Sensor for Mercury(Ⅱ) Ion in Aqueous Ethanol Medium[J]. Indian J Chem A,2011,50A(9/10):1298-1302.[21] Liu W,Xu L,Zhang H,et al. Dithiolane Linked Thiorhodamine Dimer for Hg2+ Recognition in Living Cells[J]. Org Biomol Chem,2009,7(4):660-664.[22] Wanichacheva N,Setthakarn K,Prapawattanapol N,et al. Rhodamine B-based Turn-on Fluorescent and Colorimetric Chemosensors for Hhighly Sensitive and Selective Detection of Mercury(Ⅱ) Ions[J]. J Luminesc,2012,132(1):35-40.[23] So H S,Rao B A,Hwang J,et al. Synthesis of Novel Squaraine-bis(rhodamine-6G):A Fluorescent Chemosensor for the Selective Detection of Hg2+[J]. Sens Actuators B,2014,202(1):779-787.[24] Dong Z,Tian X,Chen Y,et al. A Highly Selective Fluorescent Chemosensor for Hg2+ Based on Rhodamine B and Its Application as a Molecular Logic Gate[J]. Dyes Pigm,2013,97(2):324-329.[25] Bhalla V,Kumar M,Sharma P R,et al. New Fluorogenic Sensors for Hg2+ Ions:Through-Bond Energy Transfer from Pentaquinone Oentaquinone to Rhodamine[J]. Inorg Chem,2012,51(4):2150-2156.[26] Lee H Y,Swamy K M K,Junga J Y,et al. Rhodamine Hydrazone Derivatives Based Selective Fluorescent and Colorimetric Chemodosimeters for Hg2+ and Selective Colorimetric Chemosensor for Cu2+[J]. Sens Actuators B,2013,182(6):530-537.[27] Yang Y,Li B,Zhang L,et al. Multi-Branched Triphenylamine-Rhodamine Derivatives:Synthesis and Fluorescent Sensing for Cu2+ and Hg2+ Ions[J]. Talanta,2013,115(10):938-942.[28] Mei L,Xiang Y,Li N,et al. A New Fluorescent Probe of Rhodamine B Derivative for the Detection of Copper Ion[J]. Talanta,2007,72(5):1717-172.[29] Chen X,Jou M J,Lee H,et al. New Fluorescent and Colorimetric Chemosensors Bearing Rhodamine and Binaphthyl Groups for the Detection of Cu2+[J]. Sens Actuators B,2009,137(2):597-602.[30] Chereddy N R,Thennarasu S. Synthesis of a Highly Selective Bis-Rhodamine Chemosensor for Naked-eye Detection of Cu2+ Ions and Its Application in Bio-imaging[J]. Dyes Pigm,2011,91(3):378-382.[31] Bhalla V,Sharma N,Kumar N,et al. Rhodamine Based Fluorescence Turn-on Chemosensor for Nanomolar Detection of Fe3+ Ions[J]. Sens Actuators B,2013,178(3):228-232.[32] Ghosh K,Sarkar T,Samadder A,et al. Rhodamine-Based Bis-Sulfonamide as a Sensing Probe for Cu2+ and Hg2+ Ions[J]. New J Chem,2012,36(10):2121-2127.[33] Zhang J,Yu C,Qian S,et al. A Selective Fluorescent Chemosensor with 1,2,4-Triazole as Subunit for Cu(Ⅱ) and Its Application in Imaging Cu(Ⅱ) in Living Cells[J]. Dyes Pigm,2012,92(3):1370-1375.[34] She H,Song F,Xu J,et al. A New Tridentate Sulfur Receptor as a Highly Sensitive and Selective Fluorescent Sensor for Cu2+ Ions[J]. Chem Asian J,2013,8(11):2762-2767.[35] Shirasaki Y,Kamino S,Tanioka M,et al. New Aminobenzopyranoxanthene-Based Colorimetric Sensor for Copper(Ⅱ) Ions with Dual-Color Signal Detection System[J]. Chem Asian J,2013,8(11):2609-2613.[36] Xiang Y,Tong A. A New Rhodamine-Based Chemosensor Exhibiting Selective FeⅢ Amplified Fluorescence[J]. Org Lett,2006,8(8):1549-1552.[37] Du Y,Chen M,Zhang Y,et al. Determination of Iron(Ⅲ) Based on the Fluorescence Quenching of Rhodamine B Derivative[J]. Talanta,2013,106(4):261-265.[38] Weerasinghe A J,Schmiesing C,Varaganti S,et al. Single and Multiphoton Turn-on Fluorescent Fe3+ Sensors Based on Bis(rhodamine)[J]. J Phys Chem B,2010,114(29):9413-9419.[39] Chereddy N R,Suman K,Korrapati P S,et al. Design and Synthesis of Rhodamine Based Chemosensors for the Detection of Fe3+ Ions[J]. Dyes Pigm,2012,95(3):606-613.[40] Sahana A,Banerjee A,Lohar S,et al. Rhodamine-Based Fluorescent Probe for Al3+ Through Time-Dependent PET-CHEF-FRET Processes and Its Cell Staining Application[J]. Inorg Chem,2013,52(7):3627-3633[41] Nunez C,Diniz M,Dos Santos A A,et al. New Rhodamine Dimer Probes for Mercury Detection via Color Changes and Enhancement of the Fluorescence Emission:Fast Recognition in Cellulose Supported Devices[J]. Dyes Pigm,2014,101(2):156-163.[42] Maity S B,Bharadwaj P K. A Chemosensor Built with Rhodamine Derivatives Appended to an Aromatic Platform via 1,2,3-Triazoles:Dual Detection of Aluminum(Ⅲ) and Fluoride/Acetate Ions[J]. Inorg Chem,2013,52(3):1161-1163. |