应用化学 ›› 2023, Vol. 40 ›› Issue (5): 625-639.DOI: 10.19894/j.issn.1000-0518.220284
收稿日期:
2022-08-25
接受日期:
2023-03-08
出版日期:
2023-05-01
发布日期:
2023-05-26
通讯作者:
卓海涛,陈少军
基金资助:
Bing-Shuai CHEN1, Hai-Tao ZHUO2(), Shu HUANG3, Shao-Jun CHEN1()
Received:
2022-08-25
Accepted:
2023-03-08
Published:
2023-05-01
Online:
2023-05-26
Contact:
Hai-Tao ZHUO,Shao-Jun CHEN
About author:
haitaozhuo@163.comSupported by:
摘要:
硅(Si)由于其具有超高理论比容量而成为最有前途的下一代锂离子电池的负极材料。但是,锂离子的嵌入和脱出会造成硅体积的巨大变化,进而导致Si的粉化,致使电极容量产生不可逆的衰减,严重限制了硅基材料的广泛应用。然而过去的大量报道表明,聚合物粘结剂可以有效克服由于硅微粒的体积膨胀而产生的“孤岛效应”,保持电极在充放电过程的完整性,进而提高电极的电化学性能。对聚合物粘结剂按结构分类,可以将其大致分为4类,即线型、支化型、交联网络型及共轭型。不同分子结构的粘结剂用作硅基负极粘结剂时,电极表现出不同的电化学性能。特别是设计出具有多种分子结构的聚合物粘结剂,极大地促进了硅基负极的实际应用。通过对比具有不同分子结构的聚合物粘结剂用于硅基负极取得的效果,可以清晰地得到最有效的分子结构,对未来硅基负极聚合物粘结剂的开发提供思路。最后,本文提出了下一代聚合物粘结剂的设计方向,以促进其向可大规模应用和工业化生产的方向发展。
陈兵帅, 卓海涛, 黄书, 陈少军. 高性能硅基负极聚合物粘结剂的研究进展[J]. 应用化学, 2023, 40(5): 625-639.
Bing-Shuai CHEN, Hai-Tao ZHUO, Shu HUANG, Shao-Jun CHEN. Advances of High-Performance Polymer Binders for Silicon-Based Anodes[J]. Chinese Journal of Applied Chemistry, 2023, 40(5): 625-639.
图3 (A) SiMP与PAA形成氢键作用; (B) SiMP与PAA进行部分酯化; (C) SiMP与PAA进行完全酯化[25]
Fig.3 (A) SiMP forms hydrogen bonding with PAA; (B) SiMP was partially esterificated with PAA; (C) SiMP was fully esterificated with PAA[25]
Binder | Binder ratio/% | Areal loading/(mg·cm-2) | Initial CE/% | Cycling performance | Current rate/(mA·g-1) | Year | Ref. |
---|---|---|---|---|---|---|---|
CS | 20 | 89 | 1 969 mA·h/g after 100 cycles | 500 | 2015 | [ | |
PVDF-b-PTFE | 5 | 1 | 250 cycles | 4 200 | 2020 | [ | |
PSA | 20 | 1.2 | 72 | 2 371 mA·h/g after 100 cycles | 1 800 | 2020 | [ |
PSEA | 10 | 1.5 | 85.1 | 400 cycles | 2 100 | 2022 | [ |
C-CS | 8 | 89 | 950 mA·h/g after 50 cycles | 500 | 2014 | [ | |
CGG | 20 | 0.8 | 1 138 mA·h/g after 200 cycles | 1 000 | 2019 | [ | |
1-CMT | 20 | 0.75 | 90.96 | 1 176 mA·h/g after 200 cycles | 2 000 | 2022 | [ |
表1 线型硅基负极粘结剂的电化学性能
Table 1 Electrochemical properties of linear silicon-based anode binder
Binder | Binder ratio/% | Areal loading/(mg·cm-2) | Initial CE/% | Cycling performance | Current rate/(mA·g-1) | Year | Ref. |
---|---|---|---|---|---|---|---|
CS | 20 | 89 | 1 969 mA·h/g after 100 cycles | 500 | 2015 | [ | |
PVDF-b-PTFE | 5 | 1 | 250 cycles | 4 200 | 2020 | [ | |
PSA | 20 | 1.2 | 72 | 2 371 mA·h/g after 100 cycles | 1 800 | 2020 | [ |
PSEA | 10 | 1.5 | 85.1 | 400 cycles | 2 100 | 2022 | [ |
C-CS | 8 | 89 | 950 mA·h/g after 50 cycles | 500 | 2014 | [ | |
CGG | 20 | 0.8 | 1 138 mA·h/g after 200 cycles | 1 000 | 2019 | [ | |
1-CMT | 20 | 0.75 | 90.96 | 1 176 mA·h/g after 200 cycles | 2 000 | 2022 | [ |
Binder | Binder ratio/% | Areal loading/(mg·cm-2) | Initial CE/% | Cycling performance | Current rate/(mA·g-1) | Year | Ref. |
---|---|---|---|---|---|---|---|
CS-PAANa | 30 | 0.22 | 85.96 | 1 608 mA·h/g after 100 cycles | 420 | 2019 | [ |
CS-g-GA | 20 | 0.5~0.6 | 73.11 | 1 868 mA·h/g after 350 cycles | 2 100 | 2022 | [ |
GA-g-PAA | 10 | 1~1.2 | 82.7 | 2 196.1 mA·h/g after 150 cycles | 400 | 2021 | [ |
GA-g-PAA/P | 10 | 100 cycles | 400 | 2021 | [ | ||
PVA-g-P (AA-LiAA-HEA) | 10 | 90.9 | 2 265 mA·h/g after 200 cycles | 1 000 | 2020 | [ |
表2 支化型硅基负极粘结剂的电化学性能
Table 2 Electrochemical properties of branched silicon-based anode binder
Binder | Binder ratio/% | Areal loading/(mg·cm-2) | Initial CE/% | Cycling performance | Current rate/(mA·g-1) | Year | Ref. |
---|---|---|---|---|---|---|---|
CS-PAANa | 30 | 0.22 | 85.96 | 1 608 mA·h/g after 100 cycles | 420 | 2019 | [ |
CS-g-GA | 20 | 0.5~0.6 | 73.11 | 1 868 mA·h/g after 350 cycles | 2 100 | 2022 | [ |
GA-g-PAA | 10 | 1~1.2 | 82.7 | 2 196.1 mA·h/g after 150 cycles | 400 | 2021 | [ |
GA-g-PAA/P | 10 | 100 cycles | 400 | 2021 | [ | ||
PVA-g-P (AA-LiAA-HEA) | 10 | 90.9 | 2 265 mA·h/g after 200 cycles | 1 000 | 2020 | [ |
图4 氢键作用: (A)醚-硫脲聚合物形成双重氢键作用[54]; (B)UPy形成四重氢键作用[57]
Fig.4 Hydrogen bonding: (A) PET forms a double hydrogen bond[54]; (B) UPy forms a quadruple hydrogen bond[57]
Binder | Binder ratio/% | Areal loading/(mg·cm-2) | Initial CE/% | Cycling performance | Current rate/(mA·g-1) | Year | Ref. |
---|---|---|---|---|---|---|---|
L-co-PAA | 20 | 0.6~0.8 | 84 | 939 mA·h/g after 1000 cycles | 840 | 2022 | [ |
OS-PAA | 10 | 62.39 | 1 386.2 mA·h/g after 100 cycles | 200 | 2021 | [ | |
P(AA-co-nBA) | 15 | 0.55~0.68 | 72.5 | 960 mA·h/g after 100 cycles | 500 | 2020 | [ |
PAA-borax | 20 | 1.2~1.5 | 85 | 1 649 mA·h/g after 100 cycles | 2 000 | 2020 | [ |
PAA-co-SN | 20 | 0.8 | 79.3 | 1 580 mA·h/g after 500 cycles | 840 | 2022 | [ |
PG-c-ECH | 10 | 1.77 | 81.6 | 2 060 mA·h/g after 200 cycles | 2 000 | 2021 | [ |
β-CD-CMC | 20 | 85.11 | 1 702 mA·h/g after 200 cycles | 2 100 | 2022 | [ | |
PAM | 20 | 0.6 | 1 526 mA·h/g after 500 cycles | 716 | 2020 | [ | |
CMC-NaPAA-PAM | 20 | 0.75 | 84 | 1 210.7 mA·h/g after 150 cycles | 420 | 2019 | [ |
GG/XNBR | 20 | 0.53 | 1 929 mA·h/g after 100 cycles | 1 000 | 2021 | [ | |
SHPET | 20 | 1.2 | 870 mA·h/g after 250 cycles | 4 200 | 2021 | [ | |
PAA-TUEG | 10 | 0.5 | 87.2 | 2 744.3 mA·h/g after 300 cycles | 2 100 | 2022 | [ |
CMC/TU | 0.8~1 | 89.9 | 1 059 mA·h/g after 150 cycles | 840 | 2022 | [ | |
PAA-UPy | 20 | 0.4~0.6 | 86.4 | 2 638 mA·h/g after 110 cycles | 2 100 | 2018 | [ |
UPy-PEG-UPy | 15 | 81 | 1 454 mA·h/g after 400 cycles | 2018 | [ | ||
PAU-g-PEG | 20 | 0.5~1 | 70.4 | 1 450.2 mA·h/g after 350 cycles | 2 100 | 2020 | [ |
CPAU | 10 | 87.1 | 2 768.8 mA·h/g after 150 cycles | 840 | 2021 | [ | |
CA-PAA | 10 | 0.6 | 89.5 | 300 cycles | 420 | 2021 | [ |
PAA-β-CDp | 20 | 85.9 | 2 326.4 mA·h/g after 100 cycles | 200 | 2022 | [ | |
GCS-I-OSA | 20 | 0.35~0.45 | 77.1 | 2 316 mA·h/g after 100 cycles | 840 | 2021 | [ |
CS-EDTA | 62.8 | 721 mA·h/g after 200 cycles | 1 000 | 2022 | [ | ||
SHA | 20 | 0.5~0.7 | 92.67 | 1 407 mA·h/g after 100 cycles | 4 000 | 2022 | [ |
γCDp/Py-PAA | 10 | 1.35~1.45 | 88.2 | 300 cycles | 2 100 | 2022 | [ |
PAA-PEI | 20 | 0.5~0.7 | 2 606 mA·h/g after 100 cycles | 840 | 2021 | [ | |
PAA-PEI-c | 20 | 100 cycles | 1 400 | 2022 | [ | ||
TEGPAA-TA | 10 | 0.6 | 83.2 | 100 cycles | 1 330 | 2021 | [ |
c-Pec-g-PAAm | 15 | 1.2 | 729 mA·h/g after 300 cycles | 2 100 | 2020 | [ | |
PAA-BFPU | 15 | 1.0 | >89 | 200 cycles | 2 000 | 2020 | [ |
表3 交联网络型硅基负极粘结剂的电化学性能
Table 3 Electrochemical properties of cross-linked network silicon-based anode binder
Binder | Binder ratio/% | Areal loading/(mg·cm-2) | Initial CE/% | Cycling performance | Current rate/(mA·g-1) | Year | Ref. |
---|---|---|---|---|---|---|---|
L-co-PAA | 20 | 0.6~0.8 | 84 | 939 mA·h/g after 1000 cycles | 840 | 2022 | [ |
OS-PAA | 10 | 62.39 | 1 386.2 mA·h/g after 100 cycles | 200 | 2021 | [ | |
P(AA-co-nBA) | 15 | 0.55~0.68 | 72.5 | 960 mA·h/g after 100 cycles | 500 | 2020 | [ |
PAA-borax | 20 | 1.2~1.5 | 85 | 1 649 mA·h/g after 100 cycles | 2 000 | 2020 | [ |
PAA-co-SN | 20 | 0.8 | 79.3 | 1 580 mA·h/g after 500 cycles | 840 | 2022 | [ |
PG-c-ECH | 10 | 1.77 | 81.6 | 2 060 mA·h/g after 200 cycles | 2 000 | 2021 | [ |
β-CD-CMC | 20 | 85.11 | 1 702 mA·h/g after 200 cycles | 2 100 | 2022 | [ | |
PAM | 20 | 0.6 | 1 526 mA·h/g after 500 cycles | 716 | 2020 | [ | |
CMC-NaPAA-PAM | 20 | 0.75 | 84 | 1 210.7 mA·h/g after 150 cycles | 420 | 2019 | [ |
GG/XNBR | 20 | 0.53 | 1 929 mA·h/g after 100 cycles | 1 000 | 2021 | [ | |
SHPET | 20 | 1.2 | 870 mA·h/g after 250 cycles | 4 200 | 2021 | [ | |
PAA-TUEG | 10 | 0.5 | 87.2 | 2 744.3 mA·h/g after 300 cycles | 2 100 | 2022 | [ |
CMC/TU | 0.8~1 | 89.9 | 1 059 mA·h/g after 150 cycles | 840 | 2022 | [ | |
PAA-UPy | 20 | 0.4~0.6 | 86.4 | 2 638 mA·h/g after 110 cycles | 2 100 | 2018 | [ |
UPy-PEG-UPy | 15 | 81 | 1 454 mA·h/g after 400 cycles | 2018 | [ | ||
PAU-g-PEG | 20 | 0.5~1 | 70.4 | 1 450.2 mA·h/g after 350 cycles | 2 100 | 2020 | [ |
CPAU | 10 | 87.1 | 2 768.8 mA·h/g after 150 cycles | 840 | 2021 | [ | |
CA-PAA | 10 | 0.6 | 89.5 | 300 cycles | 420 | 2021 | [ |
PAA-β-CDp | 20 | 85.9 | 2 326.4 mA·h/g after 100 cycles | 200 | 2022 | [ | |
GCS-I-OSA | 20 | 0.35~0.45 | 77.1 | 2 316 mA·h/g after 100 cycles | 840 | 2021 | [ |
CS-EDTA | 62.8 | 721 mA·h/g after 200 cycles | 1 000 | 2022 | [ | ||
SHA | 20 | 0.5~0.7 | 92.67 | 1 407 mA·h/g after 100 cycles | 4 000 | 2022 | [ |
γCDp/Py-PAA | 10 | 1.35~1.45 | 88.2 | 300 cycles | 2 100 | 2022 | [ |
PAA-PEI | 20 | 0.5~0.7 | 2 606 mA·h/g after 100 cycles | 840 | 2021 | [ | |
PAA-PEI-c | 20 | 100 cycles | 1 400 | 2022 | [ | ||
TEGPAA-TA | 10 | 0.6 | 83.2 | 100 cycles | 1 330 | 2021 | [ |
c-Pec-g-PAAm | 15 | 1.2 | 729 mA·h/g after 300 cycles | 2 100 | 2020 | [ | |
PAA-BFPU | 15 | 1.0 | >89 | 200 cycles | 2 000 | 2020 | [ |
Binder | Binder ratio/% | Areal loading/(mg·cm-2) | Initial CE/% | Cycling performance | Current rate/(mA·g-1) | Year | Ref. |
---|---|---|---|---|---|---|---|
CG | 10 | 80 | 1 500 mA·h/g after 700 cycles | 840 | 2018 | [ | |
ESVCA | 40 | 0.53 | 1 786 mA·h/g after 200 cycles | 500 | 2019 | [ | |
PPP | 20 | 0.4 | 200 cycles | 840 | 2020 | [ | |
PAAA | 25 | 1.5 | 1 000 mA·h/g after 300 cycles | 750 | 2018 | [ | |
CS-g-PANI | 25 | 0.8~0.9 | 72.4 | 1 091 mA·h/g after 200 cycles | 4 200 | 2020 | [ |
Alg-g-PAMAT | 15 | 1.2 | 701.2 mA·h/g after 200 cycles | 2 100 | 2022 | [ | |
PF-co-PDs | 1 250 mA·h/g after 500 cycles | 420 | 2020 | [ | |||
PFP-g-PEG | 10 | 0.6 | 605 mA·h/g after 1000 cycles | 1 400 | 2017 | [ | |
PFPQDA | 33 | 0.8 | 72.3 | 2 227 mA·h/g after 150 cycles | 840 | 2022 | [ |
表4 共轭结构型硅基负极粘结剂的电化学性能
Table 4 Electrochemical properties of conjugated structural silicon-based negative bonding agents
Binder | Binder ratio/% | Areal loading/(mg·cm-2) | Initial CE/% | Cycling performance | Current rate/(mA·g-1) | Year | Ref. |
---|---|---|---|---|---|---|---|
CG | 10 | 80 | 1 500 mA·h/g after 700 cycles | 840 | 2018 | [ | |
ESVCA | 40 | 0.53 | 1 786 mA·h/g after 200 cycles | 500 | 2019 | [ | |
PPP | 20 | 0.4 | 200 cycles | 840 | 2020 | [ | |
PAAA | 25 | 1.5 | 1 000 mA·h/g after 300 cycles | 750 | 2018 | [ | |
CS-g-PANI | 25 | 0.8~0.9 | 72.4 | 1 091 mA·h/g after 200 cycles | 4 200 | 2020 | [ |
Alg-g-PAMAT | 15 | 1.2 | 701.2 mA·h/g after 200 cycles | 2 100 | 2022 | [ | |
PF-co-PDs | 1 250 mA·h/g after 500 cycles | 420 | 2020 | [ | |||
PFP-g-PEG | 10 | 0.6 | 605 mA·h/g after 1000 cycles | 1 400 | 2017 | [ | |
PFPQDA | 33 | 0.8 | 72.3 | 2 227 mA·h/g after 150 cycles | 840 | 2022 | [ |
1 | WHITTINGHAM M S. Electrical energy storage and intercalation chemistry[J]. Science, 1976, 192(4244): 1126-1127. |
2 | FAN E, LI L, WANG Z, et al. Sustainable recycling technology for Li-ion batteries and beyond: challenges and future prospects[J]. Chem Rev, 2020, 120(14): 7020-7063. |
3 | WANG C, YANG C, ZHENG Z. Toward practical high-energy and high-power lithium battery anodes: present and future[J]. Adv Sci (Weinh), 2022, 9(9): e2105213. |
4 | MASIAS A, MARCICKI J, PAXTON W A. Opportunities and challenges of lithium ion batteries in automotive applications[J]. ACS Energy Lett, 2021, 6(2): 621-630. |
5 | XIAO Z, WANG C, SONG L, et al. Research progress of nano-silicon-based materials and silicon-carbon composite anode materials for lithium-ion batteries[J]. J Solid State Electrochem, 2022, 26(5): 1125-1136. |
6 | YAN Z, JIANG J, ZHANG Y, et al. Scalable and low-cost synthesis of porous silicon nanoparticles as high-performance lithium-ion battery anode[J]. MT Nano, 2022, 18: 100175. |
7 | AN W, HE P, CHE Z, et al. Scalable synthesis of pore-rich Si/C@C core-shell-structured microspheres for practical long-life lithium-ion battery anodes[J]. ACS Appl Mater Interfaces, 2022, 14(8): 10308-10318. |
8 | YANG Z, DU Y, YANG Y, et al. Large-scale production of highly stable silicon monoxide nanowires by radio-frequency thermal plasma as anodes for high-performance Li-ion batteries[J]. J Power Sources, 2021, 497: 229906. |
9 | WANG H C, HSU C M, GU B, et al. Glancing angle deposition of large-scale helical Si@Cu3Si nanorod arrays for high-performance anodes in rechargeable Li-ion batteries[J]. Nanoscale, 2021, 13(44): 18626-18631. |
10 | ZHUO Y, SUN H, UDDIN M H, et al. An additive-free silicon anode in nanotube morphology as a model lithium ion battery material[J]. Electrochim Acta, 2021, 388: 138522. |
11 | TANG J, YIN Q, WANG Q, et al. Two-dimensional porous silicon nanosheets as anode materials for high performance lithium-ion batteries[J]. Nanoscale, 2019, 11(22): 10984-10991. |
12 | WANG F, SUN L, ZI W, et al. Solution synthesis of porous silicon particles as an anode material for lithium ion batteries[J]. Chem, 2019, 25(38): 9071-9077. |
13 | WU Q, SHI B, BARENO J, et al. Investigations of Si thin films as anode of lithium-ion batteries[J]. ACS Appl Mater Interfaces, 2018, 10(4): 3487-3494. |
14 | YANG Y, WU S, ZHANG Y, et al. Towards efficient binders for silicon based lithium-ion battery anodes[J]. Chem Eng J, 2021, 406: 126807. |
15 | MA Y, MA J, CUI G. Small things make big deal: powerful binders of lithium batteries and post-lithium batteries[J]. Energy Storage Mater, 2019, 20: 146-175. |
16 | RAJEEVAN S, JOHN S, GEORGE S C. The effect of poly(vinylidene fluoride) binder on the electrochemical performance of graphitic electrodes[J]. J Energy Storage, 2021, 39: 102654. |
17 | ZHAO X, NIKETIC S, YIM C H, et al. Revealing the role of poly(vinylidene fluoride) binder in Si/graphite composite anode for Li-ion batteries[J]. ACS Omega, 2018, 3(9): 11684-11690. |
18 | MAGASINSKI A, ZDYRKO B, KOVALENKO I, et al. Toward efficient binders for Li-ion battery Si-based anodes: polyacrylic acid[J]. ACS Appl Mater Inter, 2010, 2(11): 3004-3010. |
19 | LÜ L, LOU H, XIAO Y, et al. Synthesis of triblock copolymer polydopamine-polyacrylic-polyoxyethylene with excellent performance as a binder for silicon anode lithium-ion batteries[J]. RSC Adv, 2018, 8(9): 4604-4609. |
20 | HOCHGATTERER N S, SCHWEIGER M R, KOLLER S, et al. Silicon/graphite composite electrodes for high-capacity anodes: influence of binder chemistry on cycling stability[J]. Electrochem Solid ST, 2008, 11(5): A76-A80. |
21 | KOVALENKO I, ZDYRKO B, MAGASINSKI A, et al. A major constituent of brown algae for use in high-capacity Li-ion batteries[J]. Science, 2011, 334(6052): 75-79. |
22 | CHEN C, LEE S H, CHO M, et al. Cross-linked chitosan as an efficient binder for Si anode of Li-ion batteries[J]. ACS Appl Mater Inter, 2016, 8(4): 2658-2665. |
23 | WENZEL V, NIRSCHL H, NÖTZEL D. Challenges in lithium-ion-battery slurry preparation and potential of modifying electrode structures by different mixing processes[J]. Energy Technol, 2015, 3(7): 692-698. |
24 | WANG X, LIU S, ZHANG Y, et al. Highly elastic block copolymer binders for silicon anodes in lithium-ion batteries[J]. ACS Appl Mater Inter, 2020, 12(34): 38132-38139. |
25 | JUNG C H, KIM K H, HONG S H. Stable silicon anode for lithium-ion batteries through covalent bond formation with a binder via esterification[J]. ACS Appl Mater Inter, 2019, 11(30): 26753-26763. |
26 | PAN Y, GE S, RASHID Z, et al. Adhesive polymers as efficient binders for high-capacity silicon electrodes[J]. ACS Appl Energy Mater, 2020, 3(4): 3387-3396. |
27 | HU L, JIN M, ZHANG Z, et al. Interface-adaptive binder enabled by supramolecular interactions for high-capacity Si/C composite anodes in lithium-ion batteries[J]. Adv Funct Mater, 2022: 2111560. |
28 | YUE L, ZHANG L, ZHONG H. Carboxymethyl chitosan: a new water soluble binder for Si anode of Li-ion batteries[J]. J Power Sources, 2014, 247: 327-331. |
29 | HU S, CAI Z, HUANG T, et al. A modified natural polysaccharide as a high-performance binder for silicon anodes in lithium-ion batteries[J]. ACS Appl Mater Inter, 2019, 11(4): 4311-4317. |
30 | REN X, HUANG T, YU A. Carboxymethylated tamarind polysaccharide gum as a green binder for silicon-based lithium-ion battery anodes[J]. Electrochem Commun, 2022, 136: 107241. |
31 | GAO Y, QIU X, WANG X, et al. Chitosan-g-poly(acrylic acid) copolymer and its sodium salt as stabilized aqueous binders for silicon anodes in lithium-ion batteries[J]. ACS Sustain Chem Eng, 2019, 7(19): 16274-16283. |
32 | RAJEEV K K, JANG W, KIM S, et al. Chitosan-grafted-gallic acid as a nature-inspired multifunctional binder for high-performance silicon anodes in lithium-ion batteries[J]. ACS Appl Energy Mater, 2022, 5(3): 3166-3178. |
33 | HE J, ZHANG L, ZHONG H. Enhanced adhesion and electrochemical performance of Si anodes with gum arabic grafted poly(acrylic acid) as a water-soluble binder[J]. Polym Int, 2021, 70(12): 1668-1679. |
34 | ZHONG H, HE J, ZHANG L. Crosslinkable aqueous binders containing arabic gum-grafted-poly(acrylic acid) and branched polyols for Si anode of lithium-ion batteries[J]. Polymer, 2021, 215: 123377. |
35 | HE J, ZHANG L. Polyvinyl alcohol grafted poly(acrylic acid) as water-soluble binder with enhanced adhesion capability and electrochemical performances for Si anode[J]. J Alloys Compd, 2018, 763: 228-240. |
36 | LIU S, ZHANG L. Partially lithiated ternary graft copolymer with enhanced elasticity as aqueous binder for Si anode[J]. J Appl Polym Sci, 2020, 138(10): e49950. |
37 | LEE J I, KANG H, PARK K H, et al. Amphiphilic graft copolymers as a versatile binder for various electrodes of high-performance lithium-ion batteries[J]. Small, 2016, 12(23): 3119-3127. |
38 | JIANG S, HU B, SHI Z, et al. Re-engineering poly(acrylic acid) binder toward optimized electrochemical performance for silicon lithium-ion batteries: branching architecture leads to balanced properties of polymeric binders[J]. Adv Funct Mater, 2019, 30(10): 1908558. |
39 | YUAN J M, REN W F, WANG K, et al. Ultrahighly elastic lignin-based copolymers as an effective binder for silicon anodes of lithium-ion batteries[J]. ACS Sustain Chem Eng, 2021, 10(1): 166-176. |
40 | HU X, LIANG K, LI J, et al. A highly crosslinked polymeric binder for silicon anode in lithium-ion batteries[J]. Mater Today Commun, 2021, 28: 102530. |
41 | SON J, VO T N, CHO S, et al. Acrylic random copolymer and network binders for silicon anodes in lithium-ion batteries[J]. J Power Sources, 2020, 458: 228054. |
42 | CAO P F, YANG G, LI B, et al. Rational design of a multifunctional binder for high-capacity silicon-based anodes[J]. ACS Energy Lett, 2019, 4(5): 1171-1180. |
43 | WANG S, DUAN Q, LEI J, et al. Slime-inspired polyacrylic acid-borax crosslinked binder for high-capacity bulk silicon anodes in lithium-ion batteries[J]. J Power Sources, 2020, 468: 228365. |
44 | LI Z, WAN Z, ZENG X, et al. A robust network binder via localized linking by small molecules for high-areal-capacity silicon anodes in lithium-ion batteries[J]. Nano Energy, 2021, 79: 105430. |
45 | JIANG H W, YANG Y, NIE Y M, et al. Cross-linked β-CD-CMC as an effective aqueous binder for silicon-based anodes in rechargeable lithium-ion batteries[J]. RSC Adv, 2022, 12(10): 5997-6006. |
46 | SU T T, REN W F, YUAN J M, et al. Fabrication of polyacrylic acid-based composite binders with strong binding forces on copper foils for silicon anodes in lithium-ion batteries[J]. J Ind Eng Chem, 2022, 109: 521-529. |
47 | WOO H, PARK K, KIM J, et al. 3D meshlike polyacrylamide hydrogel as a novel binder system via in situ polymerization for high-performance Si-based electrode[J]. Adv Mater Interfaces, 2019, 7(2): 1901475. |
48 | YU L, LIU J, HE S, et al. A novel high-performance 3D polymer binder for silicon anode in lithium-ion batteries[J]. J Phy Chem Solids, 2019, 135: 109113. |
49 | GENDENSUREN B, HE C, OH E S. Sulfonation of alginate grafted with polyacrylamide as a potential binder for high-capacity Si/C anodes[J]. RSC Adv, 2020, 10(62): 37898-37904. |
50 | ZHAO E, GUO Z, LIU J, et al. A low-cost and eco-friendly network binder coupling stiffness and softness for high-performance Li-ion batteries[J]. Electrochim Acta, 2021, 387: 138491. |
51 | XU Z, YANG J, ZHANG T, et al. Silicon microparticle anodes with self-healing multiple network binder[J]. Joule, 2018, 2(5): 950-961. |
52 | TANG R, ZHENG X, ZHANG Y, et al. Highly adhesive and stretchable binder for silicon-based anodes in Li-ion batteries[J]. Ionics, 2020, 26(12): 5889-5896. |
53 | CHEN H, WU Z, SU Z, et al. A mechanically robust self-healing binder for silicon anode in lithium ion batteries[J]. Nano Energy, 2021, 81: 105654. |
54 | LIU H, WU Q, GUAN X, et al. Ionically conductive self-healing polymer binders with poly(ether-thioureas) segments for high-performance silicon anodes in lithium-ion batteries[J]. ACS Appl Energy Mater, 2022, 5(4): 4934-4944. |
55 | SU T T, REN W F, WANG K, et al. Bifunctional hydrogen-bonding cross-linked polymeric binders for silicon anodes of lithium-ion batteries[J]. Electrochim Acta, 2022, 402: 139552. |
56 | LI J, ZHANG G, YANG Y, et al. Glycinamide modified polyacrylic acid as high-performance binder for silicon anodes in lithium-ion batteries[J]. J Power Sources, 2018, 406: 102-109. |
57 | ZHANG G, YANG Y, CHEN Y, et al. A quadruple-hydrogen-bonded supramolecular binder for high-performance silicon anodes in lithium-ion batteries[J]. Small, 2018, 14(29): 1801189. |
58 | YANG J, ZHANG L, ZHANG T, et al. Self-healing strategy for Si nanoparticles towards practical application as anode materials for Li-ion batteries[J]. Electrochem Commun, 2018, 87: 22-26. |
59 | NAM J, KIM E, K K R, et al. A conductive self healing polymeric binder using hydrogen bonding for Si anodes in lithium ion batteries[J]. Sci Rep, 2020, 10(1): 14966. |
60 | LIU Z, FANG C, HE X, et al. In situ-formed novel elastic network binder for a silicon anode in lithium-ion batteries[J]. ACS Appl Mater Inter, 2021, 13(39): 46518-46525. |
61 | WANG Y, XU H, CHEN X, et al. Novel constructive self-healing binder for silicon anodes with high mass loading in lithium-ion batteries[J]. Energy Storage Mater, 2021, 38: 121-129. |
62 | LIN S, WANG F, HONG R. Polyacrylic acid and beta-cyclodextrin polymer cross-linking binders to enhance capacity performance of silicon/carbon composite electrodes in lithium-ion batteries[J]. J Colloid Interface Sci, 2022, 613: 857-865. |
63 | RAJEEV K K, NAM J, JANG W, et al. Polysaccharide-based self-healing polymer binder via schiff base chemistry for high-performance silicon anodes in lithium-ion batteries[J]. Electrochim Acta, 2021, 384: 138364. |
64 | LIAO H, LIU N, HE W, et al. Three-dimensional cross-linked binder based on ionic bonding for a high-performance siox anode in lithium-ion batteries[J]. ACS Appl Energy Mater, 2022, 5(4): 4788-4795. |
65 | GENDENSUREN B, OH E S. Dual-crosslinked network binder of alginate with polyacrylamide for silicon/graphite anodes of lithium ion battery[J]. J Power Sources, 2018, 384: 379-386. |
66 | HUANG H, CHEN R, YANG S, et al. High-performance Si flexible anode with rGO substrate and Ca2+ crosslinked sodium alginate binder for lithium ion battery[J]. Synthetic Metals, 2019, 247: 212-218. |
67 | JEONG Y K, CHOI J W. Mussel-inspired self-healing metallopolymers for silicon nanoparticle anodes[J]. ACS Nano, 2019, 13(7): 8364-8373. |
68 | LI Y, JIN B, WANG K, et al. Coordinatively-intertwined dual anionic polysaccharides as binder with 3D network conducive for stable sei formation in advanced silicon-based anodes[J]. Chem Eng J, 2022, 429: 132235. |
69 | CHOI S, KWON T W, COSKUN A, et al. Highly elastic binders integrating polyrotaxanes for silicon microparticle anodes in lithium ion batteries[J]. Science, 2017, 357(6348): 279-283. |
70 | KIM J, CHOI J, PARK K, et al. Host-guest interlocked complex binder for silicon-graphite composite electrodes in lithium ion batteries[J]. Adv Energy Mater, 2022, 12(11): 2103718. |
71 | CHUANG Y P, LIN Y L, WANG C C, et al. Dual cross-linked polymer networks derived from the hyperbranched poly(ethyleneimine) and poly(acrylic acid) as efficient binders for silicon anodes in lithium-ion batteries[J]. ACS Appl Energy Mater, 2021, 4(2): 1583-1592. |
72 | SHI Z, LIU Q, YANG Z, et al. A chemical switch enabled autonomous two-stage crosslinking polymeric binder for high performance silicon anodes[J]. J Mater Chem A, 2022, 10(3): 1380-1389. |
73 | HU L, ZHANG X, LI B, et al. Design of high-energy-dissipation, deformable binder for high-areal-capacity silicon anode in lithium-ion batteries[J]. Chem Eng J, 2021, 420: 129991. |
74 | GENDENSUREN B, HE C, OH E S. Preparation of pectin-based dual-crosslinked network as a binder for high performance Si/C anode for libs[J]. Korean J Chem Eng, 2020, 37(2): 366-373. |
75 | JIAO X, YIN J, XU X, et al. Highly energy‐dissipative, fast self‐healing binder for stable Si anode in lithium-ion batteries[J]. Adv Funct Mater, 2020, 31(3): 2005699. |
76 | SHI Y, PENG L, DING Y, et al. Nanostructured conductive polymers for advanced energy storage[J]. Chem Soc Rev, 2015, 44(19): 6684-6696. |
77 | PANIGRAHY S, KANDASUBRAMANIAN B. Polymeric thermoelectric pedot: pss & composites: synthesis, progress, and applications[J]. Eur Polym J, 2020, 132: 109726. |
78 | HIGGINS T M, PARK S H, KING P J, et al. A commercial conducting polymer as both binder and conductive additive for silicon nanoparticle-based lithium-ion battery negative electrodes[J]. ACS Nano, 2016, 10(3): 3702-3713. |
79 | WANG L, LIU T, PENG X, et al. Highly stretchable conductive glue for high-performance silicon anodes in advanced lithium-ion batteries[J]. Adv Funct Mater, 2018, 28(3): 1704858. |
80 | HU S, WANG L, HUANG T, et al. A conductive self-healing hydrogel binder for high-performance silicon anodes in lithium-ion batteries[J]. J Power Sources, 2020, 449: 227472. |
81 | TANG R, MA L, ZHANG Y, et al. A flexible and conductive binder with strong adhesion for high performance silicon-based lithium-ion battery anode[J]. ChemElectroChem, 2020, 7(9): 1992-2000. |
82 | LEE K, KIM T H. Poly(aniline-co-anthranilic acid) as an electrically conductive and mechanically stable binder for high-performance silicon anodes[J]. Electrochim Acta, 2018, 283: 260-268. |
83 | RAJEEV K K, KIM E, NAM J, et al. Chitosan-grafted-polyaniline copolymer as an electrically conductive and mechanically stable binder for high-performance si anodes in Li-ion batteries[J]. Electrochim Acta, 2020, 333: 135532. |
84 | TONG J, HAN C, HAO X, et al. Conductive polyacrylic acid-polyaniline as a multifunctional binder for stable organic quinone electrodes of lithium-ion batteries[J]. ACS Appl Mater Inter, 2020, 12(35): 39630-39638. |
85 | GENDENSUREN B, SUGARTSEREN N, KIM M, et al. Incorporation of aniline tetramer into alginate-grafted-polyacrylamide as polymeric binder for high-capacity silicon/graphite anodes[J]. Chem Eng J, 2022, 433: 133553. |
86 | LIU D, ZHAO Y, TAN R, et al. Novel conductive binder for high-performance silicon anodes in lithium ion batteries[J]. Nano Energy, 2017, 36: 206-212. |
87 | BULUT E, GÜZEL E, YUCA N, et al. Novel approach with polyfluorene/polydisulfide copolymer binder for high-capacity silicon anode in lithium-ion batteries[J]. J Appl Poly Sci, 2019, 137(4): 48303. |
88 | YUCA N, CETINTASOGLU M E, DOGDU M F, et al. Highly efficient poly(fluorene phenylene) copolymer as a new class of binder for high-capacity silicon anode in lithium-ion batteries[J]. Int J Energ Res, 2018, 42(3): 1148-1157. |
89 | SONG Z, ZHANG T, WANG L, et al. Bio-inspired binder design for a robust conductive network in silicon-based anodes[J]. Small Methods, 2022: e2101591. |
[1] | 雷学博, 刘慧景, 丁赫宇, 申国栋, 孙润军. 用于降解印染废水中有机污染物的光催化剂的研究进展[J]. 应用化学, 2023, 40(5): 681-696. |
[2] | 陶雨晨, 候晓慧, 尹登科, 杨晔. 基于电场调控的胆固醇基液晶薄膜对成纤维细胞生长分化的影响[J]. 应用化学, 2023, 40(4): 546-553. |
[3] | 胡方正, 高兴, 刘雷, 袁天恒, 曹宁, 李凯, 王亚涛, 李建华, 连慧琴, 汪晓东, 崔秀国. 锂离子电池黑磷负极的储能优势及其优化的研究进展[J]. 应用化学, 2023, 40(4): 571-582. |
[4] | 刘进剑, 陆艺炜. 羧苄基紫精配位聚合物的多重响应行为[J]. 应用化学, 2023, 40(3): 397-403. |
[5] | 刘进剑, 刘娜, 杨凤意. 2种同构紫精配位聚合物的合成及其光致变色性能[J]. 应用化学, 2023, 40(2): 245-251. |
[6] | 李玉凰, 卢泽毅, 袁红梅, 王刚, 张成江. 酰腙键聚合物凝胶的制备及其在硝基呋喃类药物分析中的应用[J]. 应用化学, 2023, 40(1): 100-108. |
[7] | 王恩通, 杨林芳. 高比容量锂离子电池正极材料LiNi0.6Co0.2Mn0.2O2的制备及性能[J]. 应用化学, 2022, 39(8): 1209-1215. |
[8] | 解冠宇, 李茂. 拓扑结构不同金属有机聚合物的电化学聚合行为和光谱电化学性质[J]. 应用化学, 2022, 39(8): 1246-1251. |
[9] | 李自力, 徐兴冉, 湛江浩, 胡晓华, 张子英, 熊诗圣. 先进光刻材料[J]. 应用化学, 2022, 39(6): 859-870. |
[10] | 宋林虎, 李世友, 王洁, 张晶晶, 张宁霜, 赵冬妮, 徐菲. 锂离子电池电解液除酸除水添加剂的研究进展[J]. 应用化学, 2022, 39(5): 697-706. |
[11] | 张琦, 张乾, 师晓梦, 孔娅淇, 高可心, 杜亚平. 稀土溴化物固态电解质材料在全固态电池中的应用研究进展[J]. 应用化学, 2022, 39(4): 585-598. |
[12] | 王玉乐, 杨柯利, 高艳芳. 碳化钼改性二氧化硅的制备及其电化学性能[J]. 应用化学, 2022, 39(11): 1716-1725. |
[13] | 焦元昊, 崔洪燕, 张留伟, 曾爽, 王浩, 张明, 王静云, 陈麒先. 基于原位聚合技术构建细胞内微环境响应型DNA递送系统[J]. 应用化学, 2022, 39(10): 1510-1522. |
[14] | 叶祥志, 邓云水, 刘源, 周咏柳, 贺建雄, 熊春荣. 玻璃球负载非晶态有机钛聚合物提高光催化还原CO2的转换频率[J]. 应用化学, 2022, 39(10): 1554-1563. |
[15] | 赵莹, 邵奕嘉, 李罗钱, 任建伟, 廖世军. 富锂正极材料的衰减机理及循环稳定性提升的研究进展[J]. 应用化学, 2022, 39(02): 205-222. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||