应用化学 ›› 2023, Vol. 40 ›› Issue (11): 1457-1474.DOI: 10.19894/j.issn.1000-0518.230106
• 稀土 • 下一篇
收稿日期:
2023-04-14
接受日期:
2023-08-18
出版日期:
2023-11-01
发布日期:
2023-12-01
通讯作者:
胡全丽,刘景海
基金资助:
Wang SU, Quan-Li HU(), Jing-Hai LIU()
Received:
2023-04-14
Accepted:
2023-08-18
Published:
2023-11-01
Online:
2023-12-01
Contact:
Quan-Li HU,Jing-Hai LIU
About author:
jhliu2008@sinano.ac.cnSupported by:
摘要:
忆阻器是一种将电荷和磁通量关联起来的电路学基本元器件,在量纲上它与电阻相同,表现为随电压电流变换的非线性电阻变换行为。作为一种新型的非易失性存储器件,忆阻器具有结构简单、存储密度高和能够模拟生物神经突触等特性。因其独特的“记忆特性”,在阻变存储器、人工神经网络和非线性运算电路设计等领域被广泛的研究。其中,稀土基氧化物忆阻器因其更加稳定的性能和多元的应用前景,成为忆阻器研究关注的热门材料。但目前对于稀土氧化物材料,尤其对重稀土元素并没有较为全面的总结和归纳。因此,文章从忆阻器的结构、组成和电阻转换机理进行了论述。以元素为分类标准,系统地梳理从Y元素到Lu元素,国内外每种稀土氧化物以及稀土掺杂氧化物忆阻器在阻变存储器,人工神经网络等方面应用的重点工作。最后,对目前稀土基忆阻器研究遇到的问题和挑战进行了分析,总结了稀土基氧化物忆阻器优缺点,提出了目前可行的方法,并展望了发展趋势和应用潜力。
中图分类号:
苏旺, 胡全丽, 刘景海. 稀土基氧化物忆阻器的研究进展[J]. 应用化学, 2023, 40(11): 1457-1474.
Wang SU, Quan-Li HU, Jing-Hai LIU. Research Progress on Rare Earth-Based Oxide Memristor[J]. Chinese Journal of Applied Chemistry, 2023, 40(11): 1457-1474.
图1 阻变式存储器薄膜(RRAM)器件的电传输机制和初始金属丝路径图,其中(A) RESET过程和(B) SET过程[18]Fig.?1 Conduction mechanisms and initial metallic filament path of resistive random access memory (RRAM) devices for (A) RESET process and (B) SET process[18]
图4 EPIR测试曲线(A)EPIR值随不同刺激电压的变化曲线和(B)四线制模式下EPIR测量曲线[26]
Fig.4 EPIR measurement curves (A) and the variation of EPIR value with different stimulating voltages (B) under the 4-wire mode[26]
图5 (A) CeO x /TiN堆叠膜中Ce、Ti、O和N的深度分布[16]; (B) CeO x /TiN堆叠膜中O/Ce和Ti/N原子比[16]; (C) SDC∶SrTiO3 (STO)垂直异质结外延生长纳米复合材料(Vertical heteroepitaxial nanocomposite, VHN)器件测量配置示意图[31]; (D) SDC∶STO VHN器件无初始化过程的R-V迟滞回线[31]
Fig.5 (A) The depth profiles of Ce, Ti, O and N[16]; (B) The atomic ratios of O/Ce and Ti/N for CeO x /TiN stacked film[16];(C) Schematic configuration of SDC∶SrTiO3 (STO) vertical heteroepitaxial nanocomposite(VHN) device[31]; (D) Electroforming-free R-V hysteresis loops in SDC∶STO VHN device[31]
图6 (A)在反复脉冲+10 V 10 ms后,保持长期记忆稳定性[32];(B)在温度为300和380 K时,I-V曲线分别为0→+5→0 V 5次,0→-5→0 V 5次,最后0→+5→0 V 1次[33];(C)Pt/CeO2/Pt基准器件在0→+5→0 V电压重复扫描5次和0→-5→0 V电压连续扫描5次时的I-V曲线[34]; (D)Pt/ITO/CeO2/Pt在10次重复电压下的I-V曲线[34]
Fig.6 (A) Retention for long-term memory stability after repeated pulsing +10 V for 10 ms[32]; (B) I-V curves as repeating voltage sweep of 0→+5→0 V five times first, and 0→-5→0 V five times second, and then finally 0→+5→0 V once at the temperature of 300 and 380 K[33]; I-V curves of (C) Pt/CeO2/Pt reference device during five repeated voltage sweeps of 0→+5→0 V and five successive sweeps of 0→-?5→0 V and (D) Pt/ITO/CeO2/Pt during ten repeated voltage sweeps of 0→+8→0 V and ten successive sweeps of 0→-4→0 V[34]
图7 氧化钕薄膜在(A) 40%和(B) 60%(体积分数)氧浓度参数下的双极开关曲线[18]; XPS(C) Nd3d轨道和(D) O1s轨道[38]
Fig.7 Bipolar switching curves of the neodymium oxide thin films for (A) 40% and (B) 60% (volume fraction) oxygen concentration parameters[18]; XPS (C) Nd3d states and (D) O1s states[38]
图8 (A) Pt/SGO/Pt ReRAM设备在不同ICC下超过120个周期的续航能力; (B)器件不同电阻状态下的保持特性[40]
Fig.8 (A) The endurance of the Pt/SGO/Pt ReRAM device over 120 cycles with different ICC; (B) The retention characteristic of different resistance states for the device[40]
图9 (A) STP相对于时间的弛豫过程, 这类似于人类记忆的“遗忘过程”,插图显示突触的示意图[41]; (B) YDH薄膜的O1s、 Y3p和Hf4d XPS谱[42]; (C)制备的柔性ITO/Y2O3/Ag RRAM器件的光学图像, 插图显示了制造器件的结构示意图[43]; (D)对数尺度中具有代表性的I-V曲线, 插图显示线性比例的I-V曲线[43]
Fig.9 (A) The relaxation process of STP with respect to time and this is analogous to human-memory “forgetting process”, inset shows a schematic illustration of synapses[41]; (B) Normalized O1s, Y3p and Hf4d XPS spectra for the YDH thin film[42]; (C) Optical image of a fabricated flexible ITO/Y2O3/Ag RRAM device, inset shows a schematic of the fabricated devices[43]; (D) Representative I-V curve in the log scale, inset shows an I-V curve in the linear scale[43]
图10 (A)不同电压和电流条件下后退火器件的I-V曲线[48]; (B) Tm2O3、Yb2O3和Lu2O3薄膜制备Ru/RE2O3/TaN RRAM器件的电阻转换行为的I-V曲线[49]
Fig.10 (A) I-V hysteresis loops of post-annealed devices for difference voltage and current conditions[48]; (B) I-V curves of resistive switching behavior in the Ru/RE2O3/TaN RRAM devices using Tm2O3,Yb2O3 and Lu2O3 thin films[49]
Structure | Ron/Roff | VSET/V | VRESET/V | Endurance performance | Retention capability | Mechanism | Ref. |
---|---|---|---|---|---|---|---|
Pt/LaFeO3/LaAlO3(100)/LaNiO3 | 1×102 | -4 | +1 | >2×103 | — | VO-CFs | [ |
Au/La0.5Pr0.5FeO3/Pt(111)/Ti/SiO2/Si/Au | 1 | +18 | +28.12 | — | — | Schottkybarrier | [ |
Au/H-dopedNdNiO3/LaAlO3/Pt | ≈1×103 | ≈+0.06 | ≈-0.3 | >1.6×106 | — | — | [ |
Au/BM-SCO/LSM/STO | 15.5 | +1~2 | +1~-2 | — | >3×102 | VO-CFs | [ |
Au/BM-SCO/LSM/LAO | 3.5 | +1~2 | +1~-2 | — | >1×102 | VO-CFs | [ |
Au/Zn-CeO2/Au | 105 | +2.25~0.75 | -1~-2 | 250 | — | VO-CFs | [ |
Au/Ti/Ce1-x Y x O2-y /Pt | ≈1×103 | +0.5 | -1~-2 | 1×102 | 1 Year | VO-CFs | [ |
Au/Ce0.9Y0.1O2/TiO2/Pt(1R1S) | 2.8×103 | +4~+8 | -4~-8 | — | — | Schottkybarrier | [ |
Pt/HfO2∶CeO2/STO | 10~1×102 | 0~-1 | -4~-6 | — | — | VO-CFs | [ |
Ag/CeO2/Pt | ≈4.3 | <+0.2 | <-0.4 | 1×102 | >5×104 s | Ag-CFs | [ |
Pt/CeO2/Pt | 10 | <+1 | <-1 | >30 | >4.8×103 s | Schottkybarrier | [ |
Pt/Ti-EL/Dy2O3/Pt | 1×106 | +0.54 | +0.2 | 1×103 | >1×106 s | VO-CFs | [ |
Cu/Pt-nc/Dy2O3/Pt | 1×104 | +1.2 | +0.42 | 1×103 | >1×105 s, | VO-CFs | [ |
Pt/DyMn2O5/TiN | 1×102 | +1~+2 | -1~-2 | 1×102 | >1×104 s | VO-CFs | [ |
Ag/Er2O3/ITO | 7 | +1.95 | -3.63 | >250 | >2×104 s | VO-CFs | [ |
Pt/Gd2O3/Pt | 1×106~1×107 | ≈+0.6 | — | >60 | >10 Year | VO-CFs | [ |
IrO x /GdO x /Al2O3/TiN | 7 | +1.65/-2.43 | +3/-3.6 | >1×103 | — | VO-CFs | [ |
TiN/Hf/Gd-O/TiN | >1×103 | <+2 | <+2 | 1×109 | >1×1010 s | — | [ |
Au/Pr-CeO2/FTO | ≈2×103 | +0.5 | — | 1×103 | — | VO-CFs | [ |
Pt/PCMO/TiN | — | -1.25 | +1.3 | — | — | [ | |
Ni/Sm2O3/ITO | >1×103 | <+0.3 | <+0.7 | >1×104 | >1×105 s | Schottkybarrier | [ |
Pt/YMn1-δ O3/Pt | 1×105 | +2.2~+10 | +0.6~+1.3 | 10 | >1×105 s | VO-CFs | [ |
Pt/YCrO3(YCO)/Pt | 1×105 | +3.5 | +0.8 | 1×102 | 1×103 s | VO-CFs | [ |
TiN/Y2O3/Pt | 1×102 | -1 | +0.97 | 8×102 | >1×108 | — | [ |
n-Si/Y2O3/Al | ≈3~5 | +2~+4 | -2~-4 | >7×103 | 1×103 | Schottkybarrier | [ |
AL/Y2O3/GZO/Y2O3/SI | ≈10 | +3 | -3 | — | — | VO-CFs | [ |
ITO/Y2O3/Ag | 1×104~1×105 | <+2.5 | >-5 | 1.8×105 | 1×104 s | CFs | [ |
GZO/Y2O3/Al | 2×102 | +1.8 | -1.93 | 7×105 | 1.5×105 s | — | [ |
Au/Zr/YSZ/TiN/Ti | ≈1×104 | ±0.7 | ±1.1 | 1×103 | — | CFs | [ |
TiN/CeO x /ZnO/ITO/Mica | — | — | — | — | — | CFs | [ |
Ag/CeO2/SiO2/Pt | ≈1× | +0.08~+0.34 | >1×103 | — | [ |
表1 稀土基忆阻器总结
Table 1 Summary of rare earth based memristor
Structure | Ron/Roff | VSET/V | VRESET/V | Endurance performance | Retention capability | Mechanism | Ref. |
---|---|---|---|---|---|---|---|
Pt/LaFeO3/LaAlO3(100)/LaNiO3 | 1×102 | -4 | +1 | >2×103 | — | VO-CFs | [ |
Au/La0.5Pr0.5FeO3/Pt(111)/Ti/SiO2/Si/Au | 1 | +18 | +28.12 | — | — | Schottkybarrier | [ |
Au/H-dopedNdNiO3/LaAlO3/Pt | ≈1×103 | ≈+0.06 | ≈-0.3 | >1.6×106 | — | — | [ |
Au/BM-SCO/LSM/STO | 15.5 | +1~2 | +1~-2 | — | >3×102 | VO-CFs | [ |
Au/BM-SCO/LSM/LAO | 3.5 | +1~2 | +1~-2 | — | >1×102 | VO-CFs | [ |
Au/Zn-CeO2/Au | 105 | +2.25~0.75 | -1~-2 | 250 | — | VO-CFs | [ |
Au/Ti/Ce1-x Y x O2-y /Pt | ≈1×103 | +0.5 | -1~-2 | 1×102 | 1 Year | VO-CFs | [ |
Au/Ce0.9Y0.1O2/TiO2/Pt(1R1S) | 2.8×103 | +4~+8 | -4~-8 | — | — | Schottkybarrier | [ |
Pt/HfO2∶CeO2/STO | 10~1×102 | 0~-1 | -4~-6 | — | — | VO-CFs | [ |
Ag/CeO2/Pt | ≈4.3 | <+0.2 | <-0.4 | 1×102 | >5×104 s | Ag-CFs | [ |
Pt/CeO2/Pt | 10 | <+1 | <-1 | >30 | >4.8×103 s | Schottkybarrier | [ |
Pt/Ti-EL/Dy2O3/Pt | 1×106 | +0.54 | +0.2 | 1×103 | >1×106 s | VO-CFs | [ |
Cu/Pt-nc/Dy2O3/Pt | 1×104 | +1.2 | +0.42 | 1×103 | >1×105 s, | VO-CFs | [ |
Pt/DyMn2O5/TiN | 1×102 | +1~+2 | -1~-2 | 1×102 | >1×104 s | VO-CFs | [ |
Ag/Er2O3/ITO | 7 | +1.95 | -3.63 | >250 | >2×104 s | VO-CFs | [ |
Pt/Gd2O3/Pt | 1×106~1×107 | ≈+0.6 | — | >60 | >10 Year | VO-CFs | [ |
IrO x /GdO x /Al2O3/TiN | 7 | +1.65/-2.43 | +3/-3.6 | >1×103 | — | VO-CFs | [ |
TiN/Hf/Gd-O/TiN | >1×103 | <+2 | <+2 | 1×109 | >1×1010 s | — | [ |
Au/Pr-CeO2/FTO | ≈2×103 | +0.5 | — | 1×103 | — | VO-CFs | [ |
Pt/PCMO/TiN | — | -1.25 | +1.3 | — | — | [ | |
Ni/Sm2O3/ITO | >1×103 | <+0.3 | <+0.7 | >1×104 | >1×105 s | Schottkybarrier | [ |
Pt/YMn1-δ O3/Pt | 1×105 | +2.2~+10 | +0.6~+1.3 | 10 | >1×105 s | VO-CFs | [ |
Pt/YCrO3(YCO)/Pt | 1×105 | +3.5 | +0.8 | 1×102 | 1×103 s | VO-CFs | [ |
TiN/Y2O3/Pt | 1×102 | -1 | +0.97 | 8×102 | >1×108 | — | [ |
n-Si/Y2O3/Al | ≈3~5 | +2~+4 | -2~-4 | >7×103 | 1×103 | Schottkybarrier | [ |
AL/Y2O3/GZO/Y2O3/SI | ≈10 | +3 | -3 | — | — | VO-CFs | [ |
ITO/Y2O3/Ag | 1×104~1×105 | <+2.5 | >-5 | 1.8×105 | 1×104 s | CFs | [ |
GZO/Y2O3/Al | 2×102 | +1.8 | -1.93 | 7×105 | 1.5×105 s | — | [ |
Au/Zr/YSZ/TiN/Ti | ≈1×104 | ±0.7 | ±1.1 | 1×103 | — | CFs | [ |
TiN/CeO x /ZnO/ITO/Mica | — | — | — | — | — | CFs | [ |
Ag/CeO2/SiO2/Pt | ≈1× | +0.08~+0.34 | >1×103 | — | [ |
1 | CHUA L. Memristor-the missing circuit element[J]. IEEE Trans Circuit Theory, 1971, 18(5): 507-519. |
2 | STRUKOV D B, SNIDER G S, STEWART D R, et al. The missing memristor found[J]. Nature, 2008, 453(7191): 80-83. |
3 | 刘东青, 程海峰, 朱玄, 等. 忆阻器及其阻变机理研究进展[J]. 物理学报, 2014, 63(18): 187301. |
LIU D Q, CHENG H F, ZHU X, et al. Research progress of memristors and memristive mechanism[J]. Acta Phys Sin, 2014, 63(18): 187301. | |
4 | PRAKASH A, JANA D, MAIKAP S. TaOx-based resistive switching memories: prospective and challenges[J]. Nanoscale Res Lett, 2013, 8(1): 1-17. |
5 | BIOLEK D, BIOLEK Z, BIOLKOVA V. Pinched hysteretic loops of ideal memristors, memcapacitors and meminductors must be ‘self-crossing’[J]. Electronics Lett, 2011, 47(25): 1385-1387. |
6 | HSU C H, FAN Y S, LIU P T. Multilevel resistive switching memory with amorphous InGaZnO-based thin film[J]. Appl Phys Lett, 2013, 102(6): 062905. |
7 | 张颖, 龙世兵, 刘明. 新型阻变存储器的物理研究与产业化前景[J]. 物理, 2017, 46(10): 645-657. |
ZHANG Y, LONG S B,LIU M. The physics and industrialization prospects of RRAMs[J]. Physics, 2017, 46(10): 645-657. | |
8 | HUANG C H, HUANG J S, LIN S M, et al. ZnO1- x nanorod arrays/ZnO thin film bilayer structure: from homojunction diode and high-performance memristor to complementary 1D1R application[J]. ACS Nano, 2012, 6(9): 8407-8414. |
9 | KIM K M, LEE S R, KIM S, et al. Self-limited switching in Ta2O5/TaOx memristors exhibiting uniform multilevel changes in resistance[J]. Adv Funct Mater, 2015, 25(10): 1527-1534. |
10 | CHOI B J, TORREZAN A C, NORRIS K J, et al. Electrical performance and scalability of Pt dispersed SiO2 nanometallic resistance switch[J]. Nano Lett, 2013, 13(7): 3213-3217. |
11 | XIA Q, ROBINETT W, CUMBIE M W, et al. Memristor-CMOS hybrid integrated circuits for reconfigurable logic[J]. Nano Lett, 2009, 9(10): 3640-3645. |
12 | HUANG X, ZHANG G, PAN A, et al. Protecting the environment and public health from rare earth mining[J]. Earths Future, 2016, 4(11): 532-535. |
13 | LUO X, ZHANG Y, ZHOU H, et al. Review on the development and utilization of ionic rare earth ore[J]. Minerals, 2022, 12(5): 554. |
14 | ZHANG B, SONG Z, JIN J, et al. Efficient rare earth Co-doped TiO2 electron transport layer for high-performance perovskite solar cells[J]. J Colloid Interfaces Sci, 2019, 553: 14-21. |
15 | DAS M, KUMAR A, MANDAL B, et al. Impact of Schottky junctions in the transformation of switching modes in amorphous Y2O3-based memristive system[J]. J Phys D Appl Phys, 2018, 51(31): 315102. |
16 | ZHOU Q, ZHAI J. Study of the resistive switching characteristics and mechanisms of Pt/CeOx/TiN structure for RRAM applications[J]. Integr Ferroelectr, 2012, 140(1): 16-22. |
17 | MENZEL S. Comprehensive modeling of electrochemical metallization memory cells[J]. J Comput Electron, 2017, 16(4): 1017-1037. |
18 | CHEN K H, KAO M C, HUANG S J, et al. Bipolar switching properties of neodymium oxide RRAM devices using by a low temperature improvement method[J]. Materials, 2017, 10(12): 1415. |
19 | MOHAMMAD B, JAOUDE M A, KUMAR V, et al. State of the art of metal oxide memristor devices[J]. Nanotechnol Rev, 2016, 5(3): 311-329. |
20 | KAMIYA K, YANG M Y, PARK S G, et al. ON-OFF switching mechanism of resistive-random-access-memories based on the formation and disruption of oxygen vacancy conducting channels[J]. Appl Phys Lett, 2012, 100(7): 073502. |
21 | PAN F, GAO S, CHEN C, et al. Recent progress in resistive random access memories: materials, switching mechanisms, and performance[J]. Mat Sci Eng R, 2014, 83: 1-59. |
22 | 王玮, 陈晋, 余林峰, 等. 两类阻变机理及性能改善方法的研究[J]. 中国电子学报, 2017, 45(4): 989. |
WANG W, CHEN J, YU L F, et al. A research of two kind of mechanism and performance improvement of resistive switching access memory[J]. Chin J Electron, 2017, 45(4): 989. | |
23 | 秦瑞东, 陈玲丽, 朱宇波, 等. 忆阻器及其在人工突触器件中的研究进展[J]. 功能材料与器件学报, 2021, 27(6): 494-504. |
QIN R D, CHEN L L, ZHU Y B, et al. Research progress of memristor and its application in artificial synaptic devices[J]. J Funct Mater Dev, 2021, 27(6): 494-504. | |
24 | DIRKMANN S, HANSEN M, ZIEGLER M, et al. The role of ion transport phenomena in memristive double barrier devices[J]. Sci Rep-UK, 2016, 6(1): 1-12. |
25 | 贾林楠, 黄安平, 郑晓虎, 等. 界面效应调制忆阻器研究进展[J]. 物理学报, 2012, 61(21): 432-442. |
JIA L N, HUANG A P, ZHENG X H, et al. Progress of memristor modulated by interfacial effect[J]. Acta Phys Sin, 2012, 61(21): 432-442. | |
26 | WU M L, YANG C P, SHI D W, et al. Electric-pulse-induced resistance switching effect in the bulk of La0.5Ca0.5MnO3 ceramics[J]. Aip Adv, 2014, 4(4): 047123. |
27 | KANG W, WOO K, NA H B, et al. Analog memristive characteristics of square shaped lanthanum oxide nanoplates layered device[J]. Nanomaterials, 2021, 11(2): 441. |
28 | HU Q, KANG T S, ABBAS H, et al. Resistive switching characteristics of Ag/MnO/CeO2/Pt heterostructures memory devices[J]. Microelectron Eng, 2018, 189: 28-32. |
29 | HU Q, KANG T S, ABBAS H, et al. Forming-free resistive switching characteristics of manganese oxide and cerium oxide bilayers with crossbar array structure[J]. Jpn J Appl Phys, 2018, 57(8): 086501. |
30 | YOUNIS A, CHU D, LIN X, et al. High-performance nanocomposite based memristor with controlled quantum dots as charge traps[J]. ACS Appl Mater Interfaces, 2013, 5(6): 2249-2254. |
31 | CHO S, YUN C, TAPPERTZHOFEN S, et al. Self-assembled oxide films with tailored nanoscale ionic and electronic channels for controlled resistive switching[J]. Nat Commun, 2016, 7(1): 12373. |
32 | KIM H J, ZHENG H, PARK J S, et al. Artificial synaptic characteristics with strong analog memristive switching in a Pt/CeO2/Pt structure[J]. Nanotechnology, 2017, 28(28): 285203. |
33 | KIM H J, PARK D, YANG P, et al. Synaptic characteristics with strong analog potentiation, depression, and short-term to long-term memory transition in a Pt/CeO2/Pt crossbar array structure[J]. Nanotechnology, 2018, 29(26): 265204. |
34 | KIM H J, KIM M, BEOM K, et al. A Pt/ITO/CeO2/Pt memristor with an analog, linear, symmetric, and long-term stable synaptic weight modulation[J]. APL Mater, 2019, 7(7): 071113. |
35 | SONG L W, NIU S S, SUN Y C, et al. Crystallinity dependence of resistive switching in Ti/Pr(Sr0.1Ca0.9)2Mn2O7/Pt: filamentary versus interfacial mechanisms[J]. Appl Phys Lett, 2014, 104(9): 093502. |
36 | HE S, HAO A, QIN N, et al. Unipolar resistive switching properties of Pr-doped ZnO thin films[J]. Ceram Int, 2017, 43: S474-S480. |
37 | KUKLI K, AARIK L, VINUESA G, et al. Structure and electrical behavior of hafnium-praseodymium oxide thin films grown by atomic layer deposition[J]. Materials, 2022, 15(3): 877. |
38 | KOSSAR S, AMIRUDDIN R, RASOOL A, et al. Study on ferroelectric polarization induced resistive switching characteristics of neodymium-doped bismuth ferrite thin films for random access memory applications[J]. Curr Appl Phys, 2022, 39: 221-229. |
39 | HUANG S Y, CHANG T C, CHEN M C, et al. Resistive switching characteristics of Sm2O3 thin films for nonvolatile memory applications[J]. Solid-State Electron, 2011, 63(1): 189-191. |
40 | SHARMA Y, MISRA P, PAVUNNY S P, et al. Multilevel unipolar resistive memory switching in amorphous SmGdO3 thin film[J]. Appl Phys Lett, 2014, 104(7): 073501. |
41 | DAS M, KUMAR A, SINGH R, et al. Realization of synaptic learning and memory functions in Y2O3 based memristive device fabricated by dual ion beam sputtering[J]. Nanotechnology, 2018, 29(5): 055203. |
42 | WANG Y, NIU G, WANG Q, et al. Reliable resistive switching of epitaxial single crystalline cubic Y-HfO2 RRAMs with Si as bottom electrodes[J]. Nanotechnology, 2020, 31(20): 205203. |
43 | KIM H J, KIM D W, LEE W Y, et al. Flexible sol-gel-processed Y2O3 RRAM devices obtained via UV/ozone-assisted photochemical annealing process[J]. Materials, 2022, 15(5): 1899. |
44 | HER J L, PAN T M, LU C H. Unipolar resistive switching behavior in Dy2O3 films for nonvolatile memory applications[J]. Thin Solid Films, 2012, 520(17): 5706-5709. |
45 | ZHAO H, TU H, WEI F, et al. Highly transparent dysprosium oxide-based RRAM with multilayer graphene electrode for low-power nonvolatile memory application[J]. IEEE Trans Electron Dev, 2014, 61(5): 1388-1393. |
46 | PANIGRAHY S, DHAR J C. Non-volatile memory application of glancing angle deposition synthesized Er2O3 capped SnO2 nanostructures[J]. Semicond Sci Tech, 2020, 35(5): 055035. |
47 | JANA D, DUTTA M, SAMANTA S, et al. RRAM characteristics using a new Cr/GdOx/TiN structure[J]. Nanoscale Res Lett, 2014, 9: 1-9. |
48 | YUN H J, RYU S Y, LEE H Y, et al. Multilevel operation of GdOx-based resistive switching memory device fabricated by post-deposition annealing[J]. Ceram Int, 2021, 47(12): 16597-16602. |
49 | PAN T M, LU C H, MONDAL S, et al. Resistive switching characteristics of Tm2O3, Yb2O3, and Lu2O3-based metal-insulator-metal memory devices[J]. IEEE Trans Nanotechnol, 2012, 11(5): 1040-1046. |
50 | FU Y J, XIA F J, JIA Y L, et al. Bipolar resistive switching behavior of La0.5Sr0.5CoO3- σ films for nonvolatile memory applications[J]. Appl Phys Lett, 2014, 104(22): 223505. |
51 | GADANI K, RATHOD K N, DHRUV D, et al. Defects induced resistive switching behavior in Ca doped YMnO3-based non-volatile memory devices through electronic excitations[J]. Mat Sci Semicon Proc, 2021, 121: 105347. |
52 | SCHMITT R, KUBICEK M, SEDIVA E, et al. Accelerated ionic motion in amorphous memristor oxides for nonvolatile memories and neuromorphic computing[J]. Adv Funct Mater, 2018: 1804782. |
53 | RANIERI M G A, ORTEGA P P, MORENO H, et al. Resistive switching and multiferroic behavior of La0.5Pr0.5FeO3 ferrite thin films[J]. J Alloys Compd, 2020, 851: 156936. |
54 | ZHANG H T, PARK T J, ISLAM A N M N, et al. Reconfigurable perovskite nickelate electronics for artificial intelligence[J].Science, 2022, 375(6580): 533-539. |
55 | XIANG X, RAO J, LIM C, et al. Manipulating the resistive switching in epitaxial SrCoO2.5 thin-film-based memristors by strain engineering[J]. ACS Appl Electron Mater, 2022, 4(6): 2729-2738. |
56 | REHMAN S, KIM H, FAROOQ Khan M, et al. Tuning of ionic mobility to improve the resistive switching behavior of Zn-doped CeO2[J]. Sci Rep-UK, 2019, 9(1): 19387. |
57 | KIM S M, MOON H G, LEE H S. Resistive switching characteristics of directly patterned Y-doped CeO2 by photochemical organic-metal deposition[J]. Ceram Int, 2020, 46(14): 22831-22836. |
58 | KIM S E, LEE J G, CHOI I Y, et al. Resistive switching characteristic of Ce0.9Y0.1O2/TiO2 bi-layer structure by photochemical metal-organic deposition[J]. J Korean Ceram Soc, 2020, 57: 73-79. |
59 | DOU H, GAO X, ZHANG D, et al. Electroforming-free HfO2∶CeO2 vertically aligned nanocomposite memristors with anisotropic dielectric response[J]. ACS Appl Electron Mater, 2021, 3(12): 5278-5286. |
60 | LI H, LIU T, WANG Y, et al. Electronic synaptic characteristics and simulation application of Ag/CeO2/Pt memristor[J]. Ceram Int, 2022, 48(10): 13754-13760. |
61 | PARK K, CHUNG P H, SAHU D P, et al. Interface state-dependent synaptic characteristics of Pt/CeO2/Pt memristors controlled by post-deposition annealing[J]. Mater Sci Semicon Proc, 2022, 147: 106718. |
62 | ZHAO H, TU H, WEI F, et al. The enhancement of unipolar resistive switching behavior via an amorphous TiOx layer formation in Dy2O3-based forming-free RRAM[J]. Solid State Electron, 2013, 89: 12-16. |
63 | ZHAO H B, TU H L, WEI F, et al. Resistive switching characteristics of Dy2O3 film with a Pt nanocrystal embedding layer formed by pulsed laser deposition[J]. Rare Met, 2014, 33: 75-79. |
64 | TSAI Y T, CHANG T C, HUANG W L, et al. Investigation for coexistence of dual resistive switching characteristics in DyMn2O5 memory devices[J]. Appl Phys Lett, 2011, 99(9): 092106. |
65 | MAO S, ZHOU G, SUN B, et al. Mechanism analysis of switching direction transformation in an Er2O3 based RRAM device[J]. Curr Appl Phys, 2019, 19(12): 1421-1426. |
66 | PAN T M, LU C H. Forming-free resistive switching behavior in Nd2O3, Dy2O3, and Er2O3 films fabricated in full room temperature[J]. Appl Phys Lett, 2011, 99(11): 113509. |
67 | JANA D, SAMANTA S, MAIKAP S, et al. Evolution of complementary resistive switching characteristics using IrOx/GdOx/Al2O3/TiN structure[J]. Appl Phys Lett, 2016, 108(1): 011605. |
68 | CHEN C Y, GOUX L, FANTINI A, et al. Doped Gd-O based RRAM for embedded application[C]. In 2016 IEEE 8th International Memory Workshop (IMW). IEEE, 2016: 1-4. |
69 | CHEN N, LI S. Synthesis of oxygen-deficient and monodispersed Pr doped CeO2 nanocubes with enhanced resistive switching properties[C]. IOP Conference Series: Materials Science and Engineering. IOP Publishing, 2019, 576(1): 012035. |
70 | PYO Y, NAHM S, JEONG J, et al. Implementation of hardware-based neural network using memristors with abrupt SET and gradual RESET characteristics[C]. 2020 8th International Winter Conference on Brain-Computer Interface (BCI). IEEE, 2020: 1-3. |
71 | MONDAL S, CHUEH C H, PAN T M. High-performance flexible Ni/Sm2O3/ITO ReRAM device for low-power nonvolatile memory applications[J]. IEEE Electr Device L, 2013, 34: 1145-1147. |
72 | YAN J, CHENG H C, GAUZA S, et al. Extended Kerr effect of polymer-stabilized blue-phase liquid crystals[J]. Appl Phys Lett, 2010, 96(7): 071105. |
73 | SHARMA Y, MISRA P, KATIYAR R S. Unipolar resistive switching behavior of amorphous YCrO3 films for nonvolatile memory applications[J]. J Appl Phys, 2014, 116(8): 084505. |
74 | PETZOLD S, PIROS E, SHARATH S U, et al. Gradual reset and set characteristics in yttrium oxide based resistive random access memory[J]. Semicond Sci Tech, 2019, 34(7): 075008. |
75 | MANDAL B, SIDDHARTH G, MUKHERJEE S. Impact of interfacial SiO2 on dual ion beam sputtered Y2O3-based memristive system[J]. IEEE Trans Nanotechnol, 2020, 19: 332-337. |
76 | GAUTAM M K, KUMAR S, MUKHERJEE S. Y2O3-based memristive crossbar array for synaptic learning[J]. J Phys D Phys, 2022, 55(20): 205103. |
77 | KIM D W, KIM H J, LEE W Y, et al. Enhanced switching reliability of sol-gel-processed Y2O3 RRAM devices based on Y2O3 surface roughness-induced local electric field[J]. Materials, 2022, 15(5): 1943. |
78 | KUMAR S, DAS M, HTAY M T, et al. Electroforming-free Y2O3 memristive crossbar array with low variability[J]. ACS Appl Electron Mater, 2022, 4(6): 3080-3087. |
79 | KUMAR S, GAUTAM M K, GILL G S, et al. 3-D physical electro-thermal modeling of nanoscale Y2O3 memristors for synaptic application[J]. IEEE Trans Electron Dev, 2022, 69(6): 3124-3129. |
80 | ZHOU Z, PEI Y, ZHAO J, et al. Visible light responsive optoelectronic memristor device based on CeOx/ZnO structure for artificial vision system[J]. Appl Phys Lett, 2021, 118(19): 191103. |
81 | SAHU D P, PARK K, HAN J, et al. Improvement of forming-free threshold switching reliability of CeO2-based selector device by controlling volatile filament formation behaviors[J]. Appl Mater, 2022, 10(5): 051111. |
82 | CHIEN C S, TSAI M H, HUANG C L. Electrical properties and current conduction mechanisms of LaGdO3 thin film by RF sputtering for RRAM applications[J]. J Asian Ceram Soc, 2020, 8(3): 948-956. |
[1] | 史俊杰, 史哲航, 李红周. 磷系阻燃剂插层镁铝型水滑石复合物的制备及其在热塑性聚氨酯中的阻燃应用[J]. 应用化学, 2023, 40(9): 1288-1301. |
[2] | 张毅城, 查飞, 唐小华, 常玥, 田海锋, 郭效军. 非均相催化制备有机过氧化物的研究进展[J]. 应用化学, 2023, 40(6): 769-788. |
[3] | 于宜辰, 张雨宸, 张耀远, 吴芹, 史大昕, 陈康成, 黎汉生. 本体金属氧化物在丙烷无氧脱氢中的研究进展[J]. 应用化学, 2023, 40(6): 789-805. |
[4] | 伍凡, 田贺元, 刘鹏, 孙立伟, 张一波, 杨向光. 高氧空位尖晶石型锰基催化剂用于低温NH3-SCR反应[J]. 应用化学, 2023, 40(5): 697-707. |
[5] | 师文君, 孙中辉, 宋忠乾, 许佳楠, 韩冬雪, 牛利. 钠离子电池层状过渡金属氧化物正极材料研究进展[J]. 应用化学, 2023, 40(4): 583-596. |
[6] | 卜芃, 李宏亮. 稀土Yb3+/Tm3+掺杂NaGd(MO4)2荧光粉的制备及其光致发光[J]. 应用化学, 2023, 40(3): 374-379. |
[7] | 王俊荣, 孙倩倩, 朱国庆, 钱彦荣, 李春霞. 稀土掺杂正交发光纳米晶: 从基础到前沿应用[J]. 应用化学, 2023, 40(11): 1475-1493. |
[8] | 彭宇轩, 汪啸, 纪红艳, 吴雪婷, 宋术岩, 张洪杰. 载体还原处理提高Ru/CeO2催化对苯二甲酸加氢转化性能[J]. 应用化学, 2023, 40(11): 1494-1503. |
[9] | 孟君玲, 田川, 徐娜, 赵丽娜, 钟海霞, 徐占林. 固体氧化物燃料电池电极表面原位析出的研究进展[J]. 应用化学, 2023, 40(10): 1335-1346. |
[10] | 王琳枫, 田慧, 龚光碧, 吴春姬, 王保力, 崔冬梅. 稀土配合物催化的乙烯、环烯烃和1-辛烯三元共聚[J]. 应用化学, 2023, 40(10): 1396-1404. |
[11] | 杨琴, 陈宁华, 张宇杰, 叶芝祥, 杨迎春. 铈锆复合氧化物修饰电极的制备及用于水样中Pb2+的检测[J]. 应用化学, 2022, 39(6): 990-999. |
[12] | 孟玉, 张晴, 彭文浩, 朱晓飞, 周德凤. Pr0.8Sr0.2Fe0.7Ni0.3O3-δ -Pr1.2Sr0.8Ni0.6Fe0.4O4+δ 复合阴极的制备及其电化学性能[J]. 应用化学, 2022, 39(5): 797-808. |
[13] | 陈洪霞, 李宝霞, 姚英明, 刘朋. 苯胺基桥联双芳氧基稀土金属配合物的合成、表征及催化性能[J]. 应用化学, 2022, 39(5): 843-851. |
[14] | 张琦, 张乾, 师晓梦, 孔娅淇, 高可心, 杜亚平. 稀土溴化物固态电解质材料在全固态电池中的应用研究进展[J]. 应用化学, 2022, 39(4): 585-598. |
[15] | 张松涛, 王樱蕙, 张洪杰. Nd3+离子敏化的荧光纳米探针用于近红外二区血管成像[J]. 应用化学, 2022, 39(4): 685-693. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||