应用化学 ›› 2023, Vol. 40 ›› Issue (9): 1288-1301.DOI: 10.19894/j.issn.1000-0518.230044
收稿日期:
2023-03-01
接受日期:
2023-07-08
出版日期:
2023-09-01
发布日期:
2023-09-14
通讯作者:
李红周
基金资助:
Jun-Jie SHI, Zhe-Hang SHI, Hong-Zhou LI()
Received:
2023-03-01
Accepted:
2023-07-08
Published:
2023-09-01
Online:
2023-09-14
Contact:
Hong-Zhou LI
About author:
lihongzhou@fjnu.edu.cnSupported by:
摘要:
采用直接的无溶剂制备方法,将3种磷系阻燃剂9,10-二氢-9-氧杂-10-磷杂菲-10-氧化物(DOPO)、聚磷酸铵(APP)和三聚氰胺聚磷酸盐(MPP)分别插层到镁铝型水滑石(MAH)片层中,制备了3种含磷阻燃剂的MAH复合物(DOPO-MAH、APP-MAH和MPP-MAH),并采用模压成型法制备了MAH复合物与热塑性聚氨酯(TPU)的复合材料。采用X射线衍射、扫描电子显微镜和热重分析分别对复合物进行了表征,并且通过锥形量热仪对复合材料进行了表征。结果表明,MAH中MPP的分散性较差,DOPO和APP的分散性较好,并且磷元素分布均匀。MAH的初始层间距为4.11 nm,APP和MPP均在0.5 h时就已完成插层,最终层间距分别缩小到3.93和4.04 nm。DOPO则在0.5 h后完成,但插层后的层间距更小,为3.86 nm。与物理混合物所制得的复合材料相比,(DOPO-MAH-6h)/TPU和(APP-MAH-6h)/TPU的热释放速率峰值分别从669.3 kW/m2降至573.9 kW/m2,从657.7 kW/m2降至405.9 kW/m2,(MPP-MAH-6h)/TPU与(MPP+MAH)/TPU的热释放速率峰值的差别不大。与TPU热释放速率峰值的1236.6 kW/m2相比,(DOPO-MAH-6h)/TPU降低了53%,(APP-MAH-6h)/TPU降低了67%,(MPP-MAH-6h)/TPU降低了57%,以上表明DOPO-MAH、APP-MAH和MPP-MAH可以用来改善TPU的阻燃性能,但DOPO-MAH与APP-MAH在TPU中的阻燃应用前景更好。
中图分类号:
史俊杰, 史哲航, 李红周. 磷系阻燃剂插层镁铝型水滑石复合物的制备及其在热塑性聚氨酯中的阻燃应用[J]. 应用化学, 2023, 40(9): 1288-1301.
Jun-Jie SHI, Zhe-Hang SHI, Hong-Zhou LI. Preparation of Magnesium Aluminum-Type Hydrotalcite Compounds Intercalated with Phosphorus Flame Retardants and Their Flame Retardant Application in Thermoplastic Polyurethane[J]. Chinese Journal of Applied Chemistry, 2023, 40(9): 1288-1301.
图1 DOPO5-MAH1 (A)、APP5-MAH1 (B)和MPP5-MAH1 (C)复合物随时间变化红外曲线和对应超声制备复合物红外曲线
Fig.1 FT-IR curves of DOPO5-MAH1 (A), APP5-MAH1 (B) and MPP5-MAH1 (C) compounds over time and corresponding ultrasonic preparation compounds
图2 DOPO5-MAH1 (A)、APP5-MAH1 (B)和MPP5-MAH1 (C)复合物和混合物的XRD对比图
Fig.2 XRD comparison of DOPO5-MAH1 (A), APP5-MAH1 (B) and MPP5-MAH1 (C) compounds and mixtures
图3 DOPO5-MAH1 (A)、APP5-MAH1 (B)和MPP5-MAH1 (C)复合物形成过程的XRD图谱
Fig.3 XRD patterns of formation process of DOPO5-MAH1 (A), APP5-MAH1 (B) and MPP5-MAH1 (C) compounds
图4 MAH (A)、DOPO5-MAH1-6h (B)、APP5-MAH1-6h (C)和MPP5-MAH1-6h (D)复合物的SEM照片及相应的EDS映射图像
Fig.4 SEM images and the corresponding EDS mapping images of MAH (A), DOPO5-MAH1-6h (B), APP5-MAH1-6h (C) and MPP5-MAH1-6h (D) compounds
Sample | T5%/℃ | T10%/℃ | Maximum thermal mass loss temperature/℃ | Mass residue ratio/% at 800 ℃ |
---|---|---|---|---|
DOPO | 221.4 | 237.0 | 303.0 | 0 |
MAH | 170.1 | 206.8 | 215.3 | 57.8 |
DOPO5+MAH1 | 176.5 | 207.7 | 214.8 | 47.8 |
DOPO5-MAH1-6h | 191.4 | 209.9 | 203.0 | 55.3 |
表1 DOPO5-MAH1复合物和混合物的热失重参数表
Table 1 Thermogravimetric parameters of DOPO5-MAH1 compounds and mixtures
Sample | T5%/℃ | T10%/℃ | Maximum thermal mass loss temperature/℃ | Mass residue ratio/% at 800 ℃ |
---|---|---|---|---|
DOPO | 221.4 | 237.0 | 303.0 | 0 |
MAH | 170.1 | 206.8 | 215.3 | 57.8 |
DOPO5+MAH1 | 176.5 | 207.7 | 214.8 | 47.8 |
DOPO5-MAH1-6h | 191.4 | 209.9 | 203.0 | 55.3 |
Sample | T5%/℃ | T10%/℃ | Maximum thermal mass loss temperature/℃ | Mass residue ratio/% at 800 ℃ |
---|---|---|---|---|
APP | 296.2 | 324.9 | 578.7 | 44.1 |
MAH | 170.1 | 206.8 | 215.3 | 57.8 |
APP5+MAH1 | 176.8 | 209.1 | 349.4 | 56.6 |
APP5-MAH1-6h | 259.3 | 301.8 | 319.3 | 64.6 |
表2 APP5-MAH1复合物和混合物的热失重参数表
Table 2 Thermogravimetric parameters of APP5-MAH1 compounds and mixtures
Sample | T5%/℃ | T10%/℃ | Maximum thermal mass loss temperature/℃ | Mass residue ratio/% at 800 ℃ |
---|---|---|---|---|
APP | 296.2 | 324.9 | 578.7 | 44.1 |
MAH | 170.1 | 206.8 | 215.3 | 57.8 |
APP5+MAH1 | 176.8 | 209.1 | 349.4 | 56.6 |
APP5-MAH1-6h | 259.3 | 301.8 | 319.3 | 64.6 |
Sample | T5%/℃ | T10%/℃ | Maximum thermal mass loss temperature/℃ | Mass residue ratio/% at 800 ℃ |
---|---|---|---|---|
MPP | 241.2 | 275.4 | 390.5 | 30.2 |
MAH | 171.5 | 206.8 | 215.0 | 57.8 |
MPP5+MAH1 | 110.6 | 232.6 | 299.7 | 35.2 |
MPP5-MAH1-6h | 207.5 | 264.2 | 402.1 | 33.4 |
表3 MPP5-MAH1复合物和混合物的热失重参数表
Table 3 Thermogravimetric parameters of MPP5-MAH1 compounds and mixtures
Sample | T5%/℃ | T10%/℃ | Maximum thermal mass loss temperature/℃ | Mass residue ratio/% at 800 ℃ |
---|---|---|---|---|
MPP | 241.2 | 275.4 | 390.5 | 30.2 |
MAH | 171.5 | 206.8 | 215.0 | 57.8 |
MPP5+MAH1 | 110.6 | 232.6 | 299.7 | 35.2 |
MPP5-MAH1-6h | 207.5 | 264.2 | 402.1 | 33.4 |
图8 TPU、DOPO-MAH复合物和复合材料的锥形量热测试: 热释放速率 (A)、总热释放量 (B)和烟气产生速率 (C)
Fig.8 Cone calorimeter tests of TPU, DOPO-MAH compounds and composites: HRR (A), THR (B) and SPR (C)
Sample | TTI/s | Peak-HRR/(kW·m-2) | THR/(MJ·m-2) | SPR/(m2·s-1) | MLR/(g·s-1) |
---|---|---|---|---|---|
TPU | 22 | 1 236.6 | 105.7 | 0.19 | 0.36 |
MAH/TPU | 35 | 679.7 | 97.0 | 0.11 | 0.23 |
DOPO/TPU | 36 | 1 214.5 | 102.1 | 0.24 | 0.29 |
(DOPO+MAH)/TPU | 40 | 669.3 | 103.4 | 0.13 | 0.22 |
(DOPO-MAH-6h)/TPU | 45 | 573.9 | 98.2 | 0.13 | 0.20 |
表4 TPU和DOPO-MAH的锥量数据
Table 4 Cone test data of TPU and DOPO-MAH
Sample | TTI/s | Peak-HRR/(kW·m-2) | THR/(MJ·m-2) | SPR/(m2·s-1) | MLR/(g·s-1) |
---|---|---|---|---|---|
TPU | 22 | 1 236.6 | 105.7 | 0.19 | 0.36 |
MAH/TPU | 35 | 679.7 | 97.0 | 0.11 | 0.23 |
DOPO/TPU | 36 | 1 214.5 | 102.1 | 0.24 | 0.29 |
(DOPO+MAH)/TPU | 40 | 669.3 | 103.4 | 0.13 | 0.22 |
(DOPO-MAH-6h)/TPU | 45 | 573.9 | 98.2 | 0.13 | 0.20 |
图9 TPU、APP-MAH复合物和复合材料的锥形量热测试热释放速率(A)、总热释放量(B)和烟气产生速率(C)
Fig.9 Cone calorimeter tests of TPU, APP-MAH compounds and composites: HRR (A), THR (B) and SPR (C)
Sample | TTI/s | Peak-HRR/(kW·m-2) | THR/(MJ·m-2) | SPR/(m2·s-1) | MLR/(g·s-1) |
---|---|---|---|---|---|
TPU | 22 | 1 236.6 | 105.7 | 0.19 | 0.36 |
MAH/TPU | 35 | 679.7 | 97.0 | 0.11 | 0.23 |
APP/TPU | 32 | 963.0 | 96.7 | 0.16 | 0.31 |
(APP+MAH)/TPU | 33 | 657.7 | 89.1 | 0.12 | 0.25 |
(APP-MAH-6h)/TPU | 36 | 405.9 | 71.2 | 0.09 | 0.14 |
表5 TPU和APP-MAH的锥量数据
Table 5 Cone test data of TPU and APP-MAH
Sample | TTI/s | Peak-HRR/(kW·m-2) | THR/(MJ·m-2) | SPR/(m2·s-1) | MLR/(g·s-1) |
---|---|---|---|---|---|
TPU | 22 | 1 236.6 | 105.7 | 0.19 | 0.36 |
MAH/TPU | 35 | 679.7 | 97.0 | 0.11 | 0.23 |
APP/TPU | 32 | 963.0 | 96.7 | 0.16 | 0.31 |
(APP+MAH)/TPU | 33 | 657.7 | 89.1 | 0.12 | 0.25 |
(APP-MAH-6h)/TPU | 36 | 405.9 | 71.2 | 0.09 | 0.14 |
图10 TPU、MPP-MAH复合物和复合材料的锥形量热测试: 热释放速率 (A)、总热释放量 (B)和烟气产生速率 (C)
Fig.10 Cone calorimeter tests of TPU, MPP-MAH compounds and composites: HRR (A), THR (B) and SPR (C)
Sample | TTI/s | Peak-HRR/(kW·m-2) | THR/(MJ·m-2) | SPR/(m2·s-1) | MLR/(g·s-1) |
---|---|---|---|---|---|
TPU | 22 | 1 236.6 | 105.7 | 0.19 | 0.36 |
MAH/TPU | 35 | 679.7 | 97.0 | 0.11 | 0.23 |
MPP/TPU | 30 | 744.3 | 99.5 | 0.12 | 0.26 |
(MPP+MAH)/TPU | 32 | 513.7 | 94.4 | 0.11 | 0.19 |
(MPP-MAH-6h)/TPU | 40 | 524.0 | 91.3 | 0.10 | 0.18 |
表6 TPU和MPP-MAH的锥量数据
Table 6 Cone test data of TPU and MPP-MAH
Sample | TTI/s | Peak-HRR/(kW·m-2) | THR/(MJ·m-2) | SPR/(m2·s-1) | MLR/(g·s-1) |
---|---|---|---|---|---|
TPU | 22 | 1 236.6 | 105.7 | 0.19 | 0.36 |
MAH/TPU | 35 | 679.7 | 97.0 | 0.11 | 0.23 |
MPP/TPU | 30 | 744.3 | 99.5 | 0.12 | 0.26 |
(MPP+MAH)/TPU | 32 | 513.7 | 94.4 | 0.11 | 0.19 |
(MPP-MAH-6h)/TPU | 40 | 524.0 | 91.3 | 0.10 | 0.18 |
1 | WANG S S, FANG Q, LIU C, et al. Biomass tannic acid intermediated surface functionalization of ammonium polyphosphate for enhancing fire safety and smoke suppression of thermoplastic polyurethane[J]. Eur Polym J, 2023, 187:111897. |
2 | 秦建雨, 赵翰鹏, 姚金雨, 等. 有机磷阻燃剂插层钙基蒙脱土纳米复合物的制备和表征[J]. 材料工程, 2022, 50(9): 78-88. |
QIN J Y, ZHAO H P, YAO J Y, et al. Preparation and characterization of intercalated calcium-based montmorillonite nanocompounds with organophosphorus flame retardants[J]. J Mater Eng, 2022, 50(9): 78-88. | |
3 | 林渊, 陈嘉炼, 李红周. 单宁酸/聚乙烯醇的阻燃性能[J]. 应用化学, 2023, 40(1): 69-78. |
LIN Y, CHEN J L, LI H Z. Flame retardant properties of tannic acid/poly(vinyl alcohol)[J]. Chin J Appl Chem, 2023, 40(1): 69-78. | |
4 | 周伯龙, 张明聪, 史翎. 反应型有机硅阻燃剂研究进展[J]. 应用化学, 2021, 38(12): 1556-1575. |
ZHOU B L, ZHANG M C, SHI L. Research progress on reactive silicone flame retardants[J]. Chin J Appl Chem, 2021, 38(12): 1556-1575. | |
5 | MOLINARI F N, BARRAGAN E, BILBAO E, et al. An electrospun polymer composite with fullerene-multiwalled carbon nanotube exohedral complexes can act as memory device[J]. Polymer, 2020, 184: 122380. |
6 | FARAHANCHI A, MALLOY R A, SOBKOWICZ M J. Extreme shear processing for exfoliating organoclay in nanocomposites with incompatible polymers[J]. Polymer, 2018, 145: 117-126. |
7 | ZHANG J, KONG Q, YANG L, et al. Few layered Co(OH)2 ultrathin nanosheet-based polyurethane nanocomposites with reduced fire hazard: from eco-friendly flame retardance to sustainable recycling[J]. Green Chem, 2016, 18(10): 3066-3074. |
8 | VATTATHURVALAPPIL S H, KUNDURTHI S, DRZAL L T, et al. Thermo-mechanical degradation in ABS-Fe3O4 polymer nanocomposite due to repeated electromagnetic heating[J]. Compos Part B-Eng, 2020, 201: 108374. |
9 | 吉婉丽, 钟少锋, 余雪满. 阻燃超疏水棉纤维的制备及性能[J]. 应用化学, 2020, 37(3): 301-306. |
JI W L, ZHONG S F, YU X M. Preparation and properties of superhydrophobic and flame-retardant cotton fabric[J]. Chin J Appl Chem, 2020, 37(3): 301-306. | |
10 | KILIARIS P, PAPASPYRIDES C D. Polymer/layered silicate(clay) nanocomposites: an overview of flame retardancy[J]. Prog Polym Sci, 2010, 35(7): 902-958. |
11 | KOKLUKAYA O, CAROSIO F, DURAN V L, et al. Layer-by-layer modified low density cellulose fiber networks: a sustainable and fireproof alternative to petroleum based foams[J]. Carbohyd Polym, 2020, 230: 115616. |
12 | HU X, LI M, YANG J, et al. In situ fabrication of melamine hydroxyl ethylidene diphosphonate wrapped montmorillonite for reducing the fire hazards of epoxy resin[J]. Appl Clay Sci, 2021, 201: 105934. |
13 | WANG Q, O′HARE D. Recent advances in the synthesis and application of layered double hydroxide (LDH) nanosheets[J]. Chem Rev, 2012, 112(7): 4124-4155. |
14 | KHAN A I, O′HARE D. Intercalation chemistry of layered double hydroxides: recent developments and applications[J]. J Mater Chem, 2002, 12(11): 3191-3198. |
15 | WEHBI M, MEHDI A, NEGRELL C, et al. Phosphorus-containing fluoropolymers: state of the art and applications[J]. ACS Appl Mater Interfaces, 2020, 12(1): 38-59. |
16 | HUO S, YANG S, WANG J, et al. A liquid phosphorus-containing imidazole derivative as flame-retardant curing agent for epoxy resin with enhanced thermal latency, mechanical, and flame-retardant performances[J]. J Hazard Mater, 2020, 386: 121984. |
17 | XU Y J, SHI X H, LU J H, et al. Novel phosphorus-containing imidazole as hardener for epoxy resin aiming at controllable latent curing behavior and flame retardancy[J]. Compos Part B-Eng, 2020, 184: 107673. |
18 | CHEN T, HONG J, PENG C, et al. Superhydrophobic and flame retardant cotton modified with DOPO and fluorine-silicon-containing crosslinked polymer[J]. Carbohyd Polym, 2019, 208: 14-21. |
19 | CHEN R, HU K, TANG H, et al. A novel flame retardant derived from DOPO and piperazine and its application in epoxy resin: flame retardance, thermal stability and pyrolysis behavior[J]. Polym Degrad Stabil, 2019, 166: 334-343. |
20 | SHI Y Q, FU T, XU Y J, et al. Novel phosphorus-containing halogen-free ionic liquid toward fire safety epoxy resin with well-balanced comprehensive performance[J]. Chem Eng J, 2018, 354: 208-219. |
21 | HOU S, WANG J, YANG S, et al. Synergistic effect between a novel triazine-based flame retardant and DOPO/HPCP on expoxy resin[J]. Polym Adv Technol, 2018, 29(11): 2774-2783. |
22 | 刘懿德, 陈嘉炼, 李红周, 等. 协效阻燃聚丙烯的阻燃性能[J]. 应用化学, 2019, 36(10): 1165-1171. |
LIU Y D, CHEN J L, LI H Z, et al. Flame retardant properties of synergistic flame retardant polypropylene[J]. Chin J Appl Chem, 2019, 36(10): 1165-1171. | |
23 | 杜以波, 何静, 李峰, 等. 水滑石及柱撑水滑石的制备和表征[J]. 北京化工大学学报, 1997, 24(3): 76-80. |
DU Y B, HE J, LI F, et al. Preparation and characterization of hydrotalcite and pillared hydrotalcite[J]. J Beijing Univ Chem Technol, 1997, 24(3): 76-80. | |
24 | CASTROVICI A, CAMINO G, DREVELLE C, et al. Ammonium polyphosphate-aluminum trihydroxide antagonism in fire retarded butadiene-styrene block copolymer[J]. Eur Polum J, 2005, 41(9): 2023-2033. |
25 | 张泽江, 梅秀娟, 冯良荣, 等. 三聚氰胺聚磷酸盐阻燃剂的合成与表征[J]. 应用化学, 2003, 20(11): 1035-1038. |
ZHANG Z J, MEI X J, FENG L R, et al. Preparation and characterization of melamine polyphosphate as a flame retardant[J]. Chin J Appl Chem, 2003, 20(11): 1035-1038. |
[1] | 王梦瑶, 高美珍, 石琪, 董晋湘. 基于甲苯模板合成的ZIF-93及其对1,3-丙二醇和2,3-丁二醇的吸附分离性能[J]. 应用化学, 2023, 40(9): 1302-1311. |
[2] | 熊兴泉, 张辉, 高利柱. 木质素的功能化与应用研究进展[J]. 应用化学, 2023, 40(6): 806-819. |
[3] | 范鹏辉, 刘杰, 娄生辉, 唐涛. 环氧树脂中磷系阻燃剂协效体系的研究进展[J]. 应用化学, 2023, 40(5): 653-665. |
[4] | 许祥民, 邓杰, 杜雨琪, 沈红亮, 安泽坤, 孙才英. 螺环磷酰咪唑阻燃棉织物的热解挥发物分析及热解机理推测[J]. 应用化学, 2023, 40(3): 380-388. |
[5] | 林渊, 陈嘉炼, 李红周. 单宁酸/聚乙烯醇的阻燃性能[J]. 应用化学, 2023, 40(1): 69-78. |
[6] | 张丹, 刘芳, 杨雪, 许东华, 石彤非. 热塑性聚氨酯共混物的硬度与冲击性能的关系[J]. 应用化学, 2022, 39(8): 1216-1223. |
[7] | 温景惠, 赵冰, 阚伟, 王丽艳, 孙立, 宋天舒, 宋波. 可区别铁离子荧光探针异构体的合成及其水样分析[J]. 应用化学, 2022, 39(5): 787-796. |
[8] | 冷冰冰, 朱春卉, 石埕荧, 王志鹏, 刘洋, 张宏岩, 许文革, 刘佰军. 含环三磷腈衍生物的辐照交联聚乙烯基复合材料的制备及阻燃性能[J]. 应用化学, 2022, 39(11): 1672-1679. |
[9] | 闫宇飞, 陈继, 李凯, 邹丹, 李德谦. 含氟硫酸介质中伯胺N1923对Ce(Ⅳ)的萃取[J]. 应用化学, 2022, 39(02): 307-314. |
[10] | 周伯龙, 张明聪, 史翎. 反应型有机硅阻燃剂研究进展[J]. 应用化学, 2021, 38(12): 1556-1575. |
[11] | 吉婉丽, 钟少锋, 余雪满. 阻燃超疏水棉纤维的制备及性能[J]. 应用化学, 2020, 37(3): 301-306. |
[12] | 游歌云, 冯彬, 范方方, 杨昌杰, 梁聪. 含亚胺结构新型磷-氮协效阻燃化合物的合成及对环氧树脂的阻燃作用[J]. 应用化学, 2020, 37(2): 144-154. |
[13] | 文芸, 王磊, 程骋, 王洲, 裴锋, 贾蕗路, 李志美, 邓瑞红. 大电流加速蓄电池循环试验测试分析[J]. 应用化学, 2020, 37(11): 1309-1315. |
[14] | 刘西德, 周迪, 张兆顺. 1,2,3,9-四氢咔唑-4-酮生产废液处理及氯化锌回收利用[J]. 应用化学, 2020, 37(1): 117-122. |
[15] | 朱德钦, 生瑜, 郑守扬, 童庆松. 三聚氰胺聚磷酸盐/季戊四醇配比、协效剂组及表面改性对聚丙烯基木塑复合材料的膨胀阻燃影响[J]. 应用化学, 2019, 36(6): 649-657. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||