应用化学 ›› 2023, Vol. 40 ›› Issue (11): 1475-1493.DOI: 10.19894/j.issn.1000-0518.230185
王俊荣1,2, 孙倩倩2, 朱国庆2, 钱彦荣2, 李春霞1,2()
收稿日期:
2023-06-29
接受日期:
2023-10-17
出版日期:
2023-11-01
发布日期:
2023-12-01
通讯作者:
李春霞
基金资助:
Jun-Rong WANG1,2, Qian-Qian SUN2, Guo-Qing ZHU2, Yan-Rong QIAN2, Chun-Xia LI1,2()
Received:
2023-06-29
Accepted:
2023-10-17
Published:
2023-11-01
Online:
2023-12-01
Contact:
Chun-Xia LI
About author:
cxli@sdu.edu.cnSupported by:
摘要:
镧系离子掺杂的上转换发光纳米材料具有独特的非线性反斯托克斯发光,在生命科学、光子传输、可编程控制和信息编码解码等领域有着广阔的应用。稀土掺杂的正交发光纳米晶是近年来在发光领域上的一大研究方向,是基于上转换发光机理,在合理的核壳结构设计中实现单一纳米粒子上的正交发光多功能性集成、拓宽光谱的可选择性范围和时空可调性,进而进一步推动其在相关领域应用的发展。本文综述了近10年来在合成稀土掺杂正交发光纳米晶的设计优化方面上所取得的进展,系统地探讨了基于核壳结构构建的稀土离子能量传递实现正交发光的调控过程,总结了其在信息安全防伪和生物成像与治疗前沿领域上的应用,并讨论了当前正交发光所面临的挑战以及未来的展望。
中图分类号:
王俊荣, 孙倩倩, 朱国庆, 钱彦荣, 李春霞. 稀土掺杂正交发光纳米晶: 从基础到前沿应用[J]. 应用化学, 2023, 40(11): 1475-1493.
Jun-Rong WANG, Qian-Qian SUN, Guo-Qing ZHU, Yan-Rong QIAN, Chun-Xia LI. Rare-Earth-Doped Orthogonal Luminescent Nanocrystals: From Fundamentals to Frontier Applications[J]. Chinese Journal of Applied Chemistry, 2023, 40(11): 1475-1493.
图1 下转移纳米材料 (a) 和上转换纳米材料 (b) 的激发和发射示意图[36]; 下转移纳米材料 (c)[37] 和上转换纳米材料 (d)[3] 的发光机制示意图
Fig.1 Schematic illustrations of excitation and emission in downshifting nanoparticles (a) and upconversion nanoparticles (b)?[36]; Schematic illustrations of luminescence mechanism in downshifting nanoparticles (c)?[37] and upconversion nanoparticles (d)[3]
图2 基于核壳结构设计的抑制上转换纳米材料表面猝灭效应。 (a) NaYF4∶Yb/Er(Tm)纳米粒子包覆NaYF4惰性层前后的发光照片以及光谱的强度变化[50]; (b) 高掺Er3+纳米粒子在不同NaLuF4惰性层厚度下的发光强度[59]; (c) Yb3+高掺的锂基上转换纳米粒子在不同LiYF4惰性层厚度下的发光强度[60]; (d) 水性NdF3纳米粒子与NdF3@SiO2纳米粒子在730 nm激发下的发光光谱[61]; (e) 油性纳米粒子(左)与包覆两层SiO2水性纳米粒子(右)的发光照片与光谱[62]
Fig.2 Suppression of surface quenching effect in upconversion nanomaterials based on core-shell structure design. (a) Luminescent photographs and spectral intensity variations of NaYF4∶Yb/Er(Tm) nanoparticles before and after coated with NaYF4 inert layer[50]; (b) Luminescent intensity of highly doped Er3+ nanoparticles at different NaLuF4 inert layer thicknesses[59]; (c) Luminescent intensity of Yb3+ highly doped lithium-based upconversion nanoparticles at different LiYF4 inert layer thickness[60]; (d) Luminescent spectra of aqueous NdF3 nanoparticles and NdF3@SiO2 nanoparticles at the excitation of 730 nm[61]; (e) Luminescent photographs and spectra of oily nanoparticles (left) and aqueous nanoparticles coated with two layers of SiO2 (right)[62]
图3 基于核壳结构设计的增强上转换纳米材料激发光吸收。 (a) NaGdF4∶Yb/Er纳米粒子分别包覆NaGdF4惰性层和NaGdF4∶Yb活性层的发光照片及光谱的强度变化[63]; (b) 活性核-发光层-活性壳结构纳米粒子与其它结构类型纳米粒子的发光比较[64]; (c) 纳米粒子与染料耦合后的敏化示意图及与IR-808染料耦合前后的发光强度[65]; (d) Er、Tm和Ho激活剂纳米粒子在ICG染料敏化前后的光谱强度[66]
Fig.3 Enhancement of excitation fluorescence absorption in upconversion nanomaterials based on core-shell structure design. (a) Luminescent photographs and spectral intensity variations of NaGdF4∶Yb/Er nanoparticles coated with NaGdF4 inert layer and NaGdF4∶Yb active layer, respectively[63]; (b) Comparison of luminescence in active core-luminescent layer-active shell structure nanoparticles and other structure types nanoparticles[64]; (c) Schematic illustration for the sensitization of nanoparticle with dye coupling and luminescent intensity before and after coupling with IR-808 dye[65]; (d) Spectral variations of nanoparticles containing Er, Tm and Ho activators after sensitization with ICG dye[66]
图4 基于核壳结构设计的正交发光。 上转换正交发光的双发光层 (a)、单发光层稳态发射 (b)、单发光层非稳态发射 (c) 及上转换/下转移正交发光的双发光层 (d) 设计[69]
Fig.4 Orthogonal luminescence based on core-shell structure design. Design of double-emitting layer (a), single-emitting layer with steady-state emission (b), single-emitting layer with non-steady-state emission (c) for upconversion orthogonal luminescence and double-emitting layer (d) for upconversion/downshifting orthogonal luminescence[69]
图5 基于核壳结构设计的双色上转换正交发光。 在双发光层设计下的4层核壳结构示意图及Tm3+离子和Ho3+离子分别在976和808 nm激发下的上转换正交蓝-绿发光光谱 (a)[73]、3层核壳结构示意图及Tm3+离子和Er3+离子分别在808 nm和不同980 nm激发功率下的上转换正交蓝-绿发光光谱 (b)[22]、5层核壳结构能级跃迁图及Tm3+离子和Er3+离子分别在980和796 nm激发下与激发功率不存在依赖关系的上转换正交蓝-绿发光光谱 (c)[21]; (d) 单发光层稳态发射设计的简单核-壳结构Er3+离子分别在980和530 nm激发下的上转换正交红-绿发光光谱图[74]; (e) 单发光层非稳态发射设计的简单核-壳结构Er3+离子在980 nm不同脉冲宽度下的上转换正交红-绿发光光谱图[75]
Fig.5 Dual-color upconversion orthogonal luminescence based on core-shell structure design. The schematic illustration of the four-layer core-shell structure and upconversion orthogonal blue-green luminescent spectra of Tm3+ ions and Ho3+ ions under 976/808 nm excitation (a)[73], the schematic illustration of the three-layer core-shell structure and upconversion orthogonal blue-green luminescent spectra of Tm3+ ions and Er3+ ions at the excition of 808 nm and different 980 nm powers (b)[22], and the five-layer core-shell structure energy transition illustration and upconversion orthogonal blue-green luminescent spectra of Tm3+ and Er3+ ions at 980/796 nm excitation without dependence on excitation power (c)[21] in the double-emitting layer design; (d) Upconversion orthogonal red-green luminescent spectra of simple core-shell structure with Er3+ ions under 980/530 nm excitation in the single-emitting layer design with steady-state emission[74]. (e) Upconversion orthogonal red-green luminescent spectra of simple core-shell structured with Er3+ ions at different pulse widths of 980 nm in the single-emitting layer design with non-steady-state emission[75]
图6 基于核壳结构设计的三基色上转换正交发光。 (a) 双发光层非稳态/稳态发射设计的4层核壳结构示意图、TEM图、光谱调控、不同激发条件下的发光照片及色坐标[34]。 (b) 双发光层稳态发射设计的4层核壳结构示意图及在808和980 nm不同激发功率密度下的发光照片和红绿比[76]。 三发光层设计的 (c) 5层核壳结构示意图及在1560/808/980 nm激发下的发光照片和光谱图[70]、(d) 7层核壳结构能级跃迁图及对应的TEM和发光照片[77]、(e) 6层核壳结构示意图及在1532/980/800 nm激发下的发光照片和光谱图[78]、(f) 6层核壳结构示意图及能级跃迁图[79]
Fig.6 RGB upconversion orthogonal luminescence based on core-shell structure design. (a) Schematic illustration of the four-layer core-shell structure, TEM diagram, spectral modulation and luminescent photographs as well as color coordinates under different excitation conditions in the double-emitting layer design with non-steady-state/steady-state emission[34];(b) Schematic illustration of the four-layer core-shell structure and luminescent photographs as well as red-green ratios at different excitation power densities of 808/980 nm in the double-emitting layer design with steady-state emission[76]; The schematic illustration of the five-layer core-shell structure and luminescent photographs as well as spectra under the excitation of 1560/808/980 nm (c)[70], the energy level transition illustration of the seven-layer core-shell structure, corresponding TEM and luminescent photographs (d)[77], the schematic illustration of the six-layer core-shell structure and luminescent photographs as well as spectra under the excitation of 1532/980/800 nm (e)[78] and the schematic illustration as well as energy level transition illustration of the six-layer core-shell structure (f) in the tri-emitting layer design[79]
图7 基于核壳结构设计的上转换/下转移双模正交发光。 (a) LiLuF4∶Yb/A@LiYF4∶B(A=Er, Ho, Tm; B=Eu, Tb)核壳纳米粒子多模发光特性[30]; (b) NaYF4∶Yb/Er@NaYF4∶Ce/Tb/Eu核壳纳米粒子实现上转换/下转移双模发射的能量传递和能级跃迁示意图[31]; (c) NaGdF4∶Yb/Ho/Ce@NaYF4∶A (A= Eu, Tb, Sm, Dy)纳米粒子的核壳结构设计和不同类型的核壳结构构建[29]; (d) LiYbF4∶Y@LiGdF4∶Yb/Tm@LiYF4∶A@LiGdF4∶Ce (A=Eu, Tb, Dy, Sm, Nd)核壳结构设计示意图[28]及 (e) 在不同激发波长下的发光照片和光谱[28]
Fig.7 Upconversion/downshifting dual-mode orthogonal luminescence based on core-shell structure design. (a) Multimode luminescent properties of LiLuF4∶Yb/A@LiYF4∶B (A=Er, Ho, Tm; B=Eu, Tb) core-shell nanoparticles[30]; (b) Schematic illustration of energy transfer and energy level transition of NaYF4∶Yb/Er@NaYF4∶Ce/Tb/Eu core-shell nanoparticles achieving upconversion/downshifting dual-mode emission[31]; (c) Core-shell structure design of NaGdF4∶Yb/Ho/Ce@NaYF4∶A (A=Eu, Tb, Sm, Dy) nanoparticles and construction with different types of core-shell structures[29]; (d) Schematic design of core-shell structure of LiYbF4∶Y@LiGdF4∶Yb/Tm@LiYF4∶A@LiGdF4∶Ce (A=Eu, Tb, Dy, Sm, Nd)[28] and (e) luminescent photographs as well as spectra at different excitation wavelengths[28]
图8 正交发光纳米晶的信息防伪应用。 (a) 双色上转换正交发光用于防伪图像[21]; (b) 双色上转换正交发光在时间门控下的防伪图像[23]; (c) 三基色上转换正交发光用于逻辑加密防伪和 (d) 手机辅助防伪[79]
Fig.8 Information anti-counterfeiting application of orthogonal luminescent nanocrystals. (a) Dual-color upconversion orthogonal luminescence for anti-counterfeit images[21]; (b) Dual-color upconversion orthogonal luminescence with time gating for anti-counterfeit images[23]; (c) Tri-color upconversion orthogonal luminescence for logic encryption anti-counterfeiting and (d) cell phone assisted anti-counterfeiting[79]
图9 正交发光纳米晶的生物成像与治疗应用。 (a) 双色上转换正交发光用于UCL监测的PDT[71]; (b) 单一激活剂双色上转换正交发光用于UCL实时监测的PDT[81]; (c) 单一激发下的非稳态双色上转换正交发光用于PAI实时监测的PDT[82]; (d) 上转换/下转移双模正交发光用于NIR-IIb成像监测的PDT[87]
Fig.9 Bioimaging and therapeutic applications of orthogonal luminescence nanocrystals. (a) Dual-color upconversion orthogonal luminescence for PDT via UCL monitoring[71]; (b) Dual-color upconversion orthogonal luminescence of a single activator for PDT via UCL real-time monitoring[81]; (c) Dual-color upconversion orthogonal luminescence of a single activator for PDT via PAI real-time monitoring[82]; (d) Dual-color upconversion orthogonal luminescence of a single activator for PDT via NIR-IIb imaging monitoring[87]
1 | AUZEL F. Upconversion and anti-stokes processes with f and d ions in solids[J]. Chem Rev, 2004, 104(1): 139-174. |
2 | WANG F, LIU X. Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals[J]. Chem Soc Rev, 2009, 38(4): 976-989. |
3 | LIU X, YAN C H, CAPOBIANCO J A. Photon upconversion nanomaterials[J]. Chem Soc Rev, 2015, 44(6): 1299-1301. |
4 | LIU S, HUANG J, YAN L, et al. Multiphoton ultraviolet upconversion through selectively controllable energy transfer in confined sensitizing sublattices towards improved solar photocatalysis[J]. J Mater Chem A, 2021, 9(7): 4007-4017. |
5 | CHEN G, QIU H, PRASAD P N, et al. Upconversion nanoparticles: design, nanochemistry, and applications in theranostics[J]. Chem Rev, 2014, 114(10): 5161-5214. |
6 | ZHOU B, SHI B, JIN D, et al. Controlling upconversion nanocrystals for emerging applications[J]. Nat Nanotechnol, 2015, 10(11): 924-936. |
7 | QIAN Y, CHEN F, WANG M, et al. Near-infrared light triggered intelligent nanoplatform for synergistic chemo-photodynamic therapy of tumor[J]. Adv Opt Mater, 2023, 11(11): 2202060. |
8 | YANG D, MA P A, HOU Z, et al. Current advances in lanthanide ion (Ln3+)-based upconversion nanomaterials for drug delivery[J]. Chem Soc Rev, 2015, 44(6): 1416-1448. |
9 | ZHENG K, LOH K Y, WANG Y, et al. Corrigendum to “recent advances in upconversion nanocrystals: expanding the kaleidoscopic toolbox for emerging applications”[J]. Nano Today, 2021, 41: 101315. |
10 | WANG F, DENG R, WANG J, et al. Tuning upconversion through energy migration in core-shell nanoparticles[J]. Nat Mater, 2011, 10(12): 968-973. |
11 | ZHOU B, YAN L, TAO L, et al. Enabling photon upconversion and precise control of donor-acceptor interaction through interfacial energy transfer[J]. Adv Sci, 2018, 5(3): 1700667. |
12 | WANG F, HAN Y, LIM C S, et al. Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping[J]. Nature, 2010, 463(7284): 1061-1065. |
13 | TIAN G, GU Z, ZHOU L, et al. Mn2+ dopant-controlled synthesis of NaYF4∶Yb/Er upconversion nanoparticles for in vivo imaging and drug delivery[J]. Adv Mater, 2012, 24(9): 1226-1231. |
14 | ZENG S, YI Z, LU W, et al. Simultaneous realization of phase/size manipulation, upconversion luminescence enhancement, and blood vessel imaging in multifunctional nanoprobes through transition metal Mn2+ doping[J]. Adv Funct Mater, 2014, 24(26): 4051-4059. |
15 | ZHANG Y, LIN J D, VIJAYARAGAVAN V, et al. Tuning sub-10 nm single-phase NaMnF3 nanocrystals as ultrasensitive hosts for pure intense fluorescence and excellent T1 magnetic resonance imaging[J]. Chem Commun, 2012, 48(83): 10322-10324. |
16 | BAI Z, LIN H, JOHNSON J, et al. The single-band red upconversion luminescence from morphology and size controllable Er3+/Yb3+ doped MnF2 nanostructures[J]. J Mater Chem C, 2014, 2(9): 1736-1741. |
17 | ZHOU B, TAO L, CHAI Y, et al. Constructing interfacial energy transfer for photon up- and down-conversion from lanthanides in a core-shell nanostructure[J]. Angew Chem Int Ed, 2016, 55(40): 12356-12360. |
18 | ZHONG Y, TIAN G, GU Z, et al. Elimination of photon quenching by a transition layer to fabricate a quenching-shield sandwich structure for 800 nm excited upconversion luminescence of Nd3+-sensitized nanoparticles[J]. Adv Mater, 2014, 26(18): 2831-2837. |
19 | LI Y, GU Y, YUAN W, et al. Core-shell-shell NaYbF4∶Tm@CaF2@NaDyF4 nanocomposites for upconversion/T2-weighted MRI/computed tomography lymphatic imaging[J]. ACS Appl Mater Interfaces, 2016, 8(30): 19208-19216. |
20 | ZHANG Z, ZHANG Y. Orthogonal emissive upconversion nanoparticles: material design and applications[J]. Small, 2021, 17(11): 2004552. |
21 | LI X, GUO Z, ZHAO T, et al. Filtration shell mediated power density independent orthogonal excitations-emissions upconversion luminescence[J]. Angew Chem Int Ed, 2016, 55(7): 2464-2469. |
22 | LAI J, ZHANG Y, PASQUALE N, et al. An upconversion nanoparticle with orthogonal emissions using dual NIR excitations for controlled two-way photoswitching[J]. Angew Chem Int Ed, 2014, 53(52): 14419-14423. |
23 | DONG H, SUN L D, FENG W, et al. Versatile spectral and lifetime multiplexing nanoplatform with excitation orthogonalized upconversion luminescence[J]. ACS Nano, 2017, 11(3): 3289-3297. |
24 | LIU L, YAN D, XU L, et al. Intense and color-tunable upconversion through 980 and 1530 nm excitations[J]. J Lumin, 2020, 224: 117306. |
25 | XU M, CHEN D, HUANG P, et al. A dual-functional upconversion core@shell nanostructure for white-light-emission and temperature sensing[J]. J Mater Chem C, 2016, 4(27): 6516-6524. |
26 | FISCHER S, BRONSTEIN N D, SWABECK J K, et al. Precise tuning of surface quenching for luminescence enhancement in core-shell lanthanide-doped nanocrystals[J]. Nano Lett, 2016, 16(11): 7241-7247. |
27 | ZHENG K, HAN S, ZENG X, et al. Rewritable optical memory through high-registry orthogonal upconversion[J]. Adv Mater, 2018, 30(30): 1801726. |
28 | LIU S, YAN L, LI Q, et al. Tri-channel photon emission of lanthanides in lithium-sublattice core-shell nanostructures for multiple anti-counterfeiting[J]. Chem Eng J, 2020, 397: 125451. |
29 | DING M, DONG B, LU Y, et al. Energy manipulation in lanthanide-doped core-shell nanoparticles for tunable dual-mode luminescence toward advanced anti-counterfeiting[J]. Adv Mater, 2020, 32(45): 2002121. |
30 | LIU J, RIJCKAERT H, ZENG M, et al. Simultaneously excited downshifting/upconversion luminescence from lanthanide-doped core/shell fluoride nanoparticles for multimode anticounterfeiting[J]. Adv Funct Mater, 2018, 28(17): 1707365. |
31 | JU D, SONG F, KHAN A, et al. Simultaneous dual-mode emission and tunable multicolor in the time domain from lanthanide-doped core-shell microcrystals[J]. Nanomaterials, 2018, 8(12): 1023. |
32 | LIU B, LI C, YANG P, et al. 808-nm-light-excited lanthanide-doped nanoparticles: rational design, luminescence control and theranostic applications[J]. Adv Mater, 2017, 29(18): 1605434. |
33 | TIAN Q, YAO W, WU W, et al. NIR light-activated upconversion semiconductor photocatalysts[J]. Nanoscale Horiz, 2019, 4(1): 10-25. |
34 | DENG R, QIN F, CHEN R, et al. Temporal full-colour tuning through non-steady-state upconversion[J]. Nat Nanotechnol, 2015, 10(3): 237-242. |
35 | WU Y, SONG M, ZHANG Q, et al. Review of rare-earths recovery from polishing powder waste[J]. Resour Conserv Recy, 2021, 171: 105660. |
36 | LI H, WANG X, OHULCHANSKYY T Y, et al. Lanthanide-doped near-infrared nanoparticles for biophotonics[J]. Adv Mater, 2021, 33(6): 2000678. |
37 | WEGH R T, DONKER H, OSKAM K D, et al. Visible quantum cutting in LiGdF4∶Eu3+ through downconversion[J]. Science, 1999, 283(5402): 663-666. |
38 | BLOEMBERGEN N. Solid state infrared quantum counters[J]. PhRvL, 1959, 2(3): 84-85. |
39 | BOGDAN N, VETRONE F, OZIN G A, et al. Synthesis of ligand-free colloidally stable water dispersible brightly luminescent lanthanide-doped upconverting nanoparticles[J]. Nano Lett, 2011, 11(2): 835-840. |
40 | DONG H, SUN L D, WANG Y F, et al. Efficient tailoring of upconversion selectivity by engineering local structure of lanthanides in NaxREF3+ x nanocrystals[J]. J Am Chem Soc, 2015, 137(20): 6569-6576. |
41 | HUANG Z, LI X, MAHBOUB M, et al. Hybrid molecule-nanocrystal photon upconversion across the visible and near-infrared[J]. Nano Lett, 2015, 15(8): 5552-5557. |
42 | XIAO Y, ZENG L, XIA T, et al. Construction of an upconversion nanoprobe with few-atom silver nanoclusters as the energy acceptor[J]. Angew Chem Int Ed, 2015, 54(18): 5323-5327. |
43 | YU N, HUANG L, ZHOU Y, et al. Near-infrared-light activatable nanoparticles for deep-tissue-penetrating wireless optogenetics[J]. Adv Healthc Mater, 2019, 8(6): 1801132. |
44 | RUAN H, BU L, HU Q, et al. Strategies of combination drug delivery for immune checkpoint blockades[J]. Adv Healthc Mater, 2019, 8(4): 1801099. |
45 | FU Y, LI X, REN Z, et al. Multifunctional electrospun nanofibers for enhancing localized cancer treatment[J]. Small, 2018, 14(33): 1801183. |
46 | YUE Z, HONG T, SONG X, et al. Construction of a targeted photodynamic nanotheranostic agent using upconversion nanoparticles coated with an ultrathin silica layer[J]. Chem Commun, 2018, 54(75): 10618-10621. |
47 | ZHAO J, SUN S, LI X, et al. Enhancing photodynamic therapy efficacy of upconversion-based nanoparticles conjugated with a long-lived triplet excited state iridium(III)-naphthalimide complex: toward highly enhanced hypoxia-inducible factor-1[J]. ACS Appl Bio Mater, 2020, 3(1): 252-262. |
48 | LIU Y, MENG X, BU W. Upconversion-based photodynamic cancer therapy[J]. Coordin Chem Rev, 2019, 379: 82-98. |
49 | LEZHNINA M M, JÜSTEL T, KÄTKER H, et al. Efficient luminescence from rare-earth fluoride nanoparticles with optically functional shells[J]. Adv Funct Mater, 2006, 16(7): 935-942. |
50 | YI G S, CHOW G M. Water-soluble NaYF4∶Yb,Er(Tm)/NaYF4/polymer core/shell/shell nanoparticles with significant enhancement of upconversion fluorescence[J]. Chem Mater, 2007, 19(3): 341-343. |
51 | ZHANG F, CHE R, LI X, et al. Direct imaging the upconversion nanocrystal core/shell structure at the subnanometer level: shell thickness dependence in upconverting optical properties[J]. Nano Lett, 2012, 12(6): 2852-2858. |
52 | GUO H, LI Z, QIAN H, et al. Seed-mediated synthesis of NaYF4∶Yb,Er/NaGdF4 nanocrystals with improved upconversion fluorescence and MR relaxivity[J]. Nat Nanotechnol, 2010, 21(12): 125602. |
53 | DONG C, KORINEK A, BLASIAK B, et al. Cation exchange: a facile method to make NaYF4∶Yb,Tm-NaGdF4 core-shell nanoparticles with a thin, tunable, and uniform shell[J]. Chem Mater, 2012, 24(7): 1297-1305. |
54 | MAI H X, ZHANG Y W, SUN L D, et al. Highly efficient multicolor up-conversion emissions and their mechanisms of monodisperse NaYF4∶Yb,Er core and core/shell-structured nanocrystals[J]. J Phys Chem C, 2007, 111(37): 13721-13729. |
55 | WANG Y, TU L, ZHAO J, et al. Upconversion luminescence of β-NaYF4∶Yb3+,Er3+@β-NaYF4 core/shell nanoparticles: excitation power density and surface dependence[J]. J Phys Chem C, 2009, 113(17): 7164-7169. |
56 | WANG F, WANG J, LIU X. Direct evidence of a surface quenching effect on size-dependent luminescence of upconversion nanoparticles[J]. Angew Chem Int Ed, 2010, 49(41): 7456-7460. |
57 | PARK Y I, KIM J H, LEE K T, et al. Nonblinking and nonbleaching upconverting nanoparticles as an optical imaging nanoprobe and T1 magnetic resonance imaging contrast agent[J]. Adv Mater, 2009, 21(44): 4467-4471. |
58 | CHEN G, OHULCHANSKYY T Y, LIU S, et al. Core/shell NaGdF4∶Nd3+/NaGdF4 nanocrystals with efficient near-infrared to near-infrared downconversion photoluminescence for bioimaging applications[J]. ACS Nano, 2012, 6(4): 2969-2977. |
59 | JOHNSON N J J, HE S, DIAO S, et al. Direct evidence for coupled surface and concentration quenching dynamics in lanthanide-doped nanocrystals[J]. J Am Chem Soc, 2017, 139(8): 3275-3282. |
60 | CHENG T, MARIN R, SKRIPKA A, et al. Small and bright lithium-based upconverting nanoparticles[J]. J Am Chem Soc, 2018, 140(40): 12890-12899. |
61 | YU X F, CHEN L D, LI M, et al. Highly efficient fluorescence of NdF3/SiO2 core/shell nanoparticles and the applications for in vivo NIR detection[J]. Adv Mater, 2008, 20(21): 4118-4123. |
62 | LIU B, LI C, YANG D, et al. Upconversion-luminescent core/mesoporous-silica-shell-structured β-NaYF4∶Yb3+,Er3+@SiO2@mSiO2 composite nanospheres: fabrication and drug-storage/release properties[J]. Eur J Inorg Chem, 2014, 2014(11): 1906-1913. |
63 | VETRONE F, NACCACHE R, MAHALINGAM V, et al. The active-core/active-shell approach: a strategy to enhance the upconversion luminescence in lanthanide-doped nanoparticles[J]. Adv Funct Mater, 2009, 19(18): 2924-2929. |
64 | DING M, CHEN D, MA D, et al. Highly enhanced upconversion luminescence in lanthanide-doped active-core/luminescent-shell/active-shell nanoarchitectures[J]. J Mater Chem C, 2016, 4(13): 2432-2437. |
65 | ZOU W, VISSER C, MADURO J A, et al. Broadband dye-sensitized upconversion of near-infrared light[J]. Nat Photonics, 2012, 6(8): 560-564. |
66 | CHEN G, SHAO W, VALIEV R R, et al. Efficient broadband upconversion of near-infrared light in dye-sensitized core/shell nanocrystals[J]. Adv Opt Mater, 2016, 4(11): 1760-1766. |
67 | LIU S, YAN L, HUANG J, et al. Controlling upconversion in emerging multilayer core-shell nanostructures: from fundamentals to frontier applications[J]. Chem Soc Rev, 2022, 51(5): 1729-1765. |
68 | HUANG J, AN Z, YAN L, et al. Engineering orthogonal upconversion through selective excitation in a single nanoparticle[J]. Adv Funct Mater, 2023, 33(18): 2212037. |
69 | 刘松彬, 阎龙, 黄今殊, 等. 上转换正交发光材料的纳米结构设计、光色调控及应用[J]. 激光与光电子学进展, 2021, 58(15): 67-79. |
LIU S B, YAN L, HUANG J S, et al. Nanostructure design, multi-color manipulation and application of orthogonal upconversion materials[J]. Laser Optoelectron P, 2021, 58(15): 67-79. | |
70 | JIA H, LI D, ZHANG D, et al. High color-purity red, green, and blue-emissive core-shell upconversion nanoparticles using ternary near-infrared quadrature excitations[J]. ACS Appl Mater Interfaces, 2021, 13(3): 4402-4409. |
71 | ZUO J, TU L, LI Q, et al. Near infrared light sensitive ultraviolet-blue nanophotoswitch for imaging-guided “off-on” therapy[J]. ACS Nano, 2018, 12(4): 3217-3225. |
72 | WANG L, DONG H, LI Y, et al. Luminescence-driven reversible handedness inversion of self-organized helical superstructures enabled by a novel near-infrared light nanotransducer[J]. Adv Mater, 2015, 27(12): 2065-2069. |
73 | WEN H, ZHU H, CHEN X, et al. Upconverting near-infrared light through energy management in core-shell-shell nanoparticles[J]. Angew Chem Int Ed, 2013, 52(50): 13419-13423. |
74 | ZHOU B, YAN L, HUANG J, et al. NIR II-responsive photon upconversion through energy migration in an ytterbium sublattice[J]. Nat Photonics, 2020, 14(12): 760-766. |
75 | HUANG J, YAN L, LIU S, et al. Dynamic control of orthogonal upconversion in migratory core-shell nanostructure toward information security[J]. Adv Funct Mater, 2021, 31(14): 2009796. |
76 | WU M, YAN L, WANG T, et al. Controlling red color-based multicolor upconversion through selective photon blocking[J]. Adv Funct Mater, 2019, 29(25): 1804160. |
77 | LIU X, CHEN H, WANG Y, et al. Near-infrared manipulation of multiple neuronal populations via trichromatic upconversion[J]. Nat Commun, 2021, 12(1): 5662. |
78 | HONG A R, KYHM J H, KANG G, et al. Orthogonal R/G/B upconversion luminescence-based full-color tunable upconversion nanophosphors for transparent displays[J]. Nano Lett, 2021, 21(11): 4838-4844. |
79 | ZHOU S, WANG Y, HU P, et al. Cascaded photon confinement-mediated orthogonal RGB-switchable NaErF4-cored upconversion nanoarchitectures for logicalized information encryption and multimodal luminescent anti-counterfeiting[J]. Laser Photonics Rev, 2023, 17(2): 2200531. |
80 | XU Z, MA P A, LI C, et al. Monodisperse core-shell structured up-conversion Yb(OH)CO3@YbPO4∶Er3+ hollow spheres as drug carriers[J]. Biomaterials, 2011, 32(17): 4161-4173. |
81 | TANG M, ZHU X, ZHANG Y, et al. Near-infrared excited orthogonal emissive upconversion nanoparticles for imaging-guided on-demand therapy[J]. ACS Nano, 2019, 13(9): 10405-10418. |
82 | YANG Y, HUANG J, WEI W, et al. Switching the NIR upconversion of nanoparticles for the orthogonal activation of photoacoustic imaging and phototherapy[J]. Nat Commun, 2022, 13(1): 3149. |
83 | MA D, MENG L, CHEN Y, et al. NaGdF4∶Yb3+/Er3+@NaGdF4∶Nd3+@sodium-gluconate: multifunctional and biocompatible ultrasmall core-shell nanohybrids for UCL/MR/CT multimodal imaging[J]. ACS Appl Mater Interfaces, 2015, 7(30): 16257-16265. |
84 | SHEN J W, YANG C X, DONG L X, et al. Incorporation of computed tomography and magnetic resonance imaging function into NaYF4∶Yb/Tm upconversion nanoparticles for in vivo trimodal bioimaging[J]. Anal Chem, 2013, 85(24): 12166-12172. |
85 | CHEN G, ÅGREN H, OHULCHANSKYY T Y, et al. Light upconverting core-shell nanostructures: nanophotonic control for emerging applications[J]. Chem Soc Rev, 2015, 44(6): 1680-1713. |
86 | LIU Y, KANG N, LV J, et al. Deep photoacoustic/luminescence/magnetic resonance multimodal imaging in living subjects using high-efficiency upconversion nanocomposites[J]. Adv Mater, 2016, 28(30): 6411-6419. |
87 | ZHAO H, LI Y, ZHANG X, et al. Orthogonal excitations of lanthanide nanoparticle up/down conversion emissions via switching NIR lights for in-vivo theranostics[J]. Biomaterials, 2022, 291: 121873. |
[1] | 刘嘉欣, 范家禾, 李曙辉, 马亮. Rh@Pt内凹立方体核壳催化剂的制备及其乙醇电氧化性能[J]. 应用化学, 2023, 40(8): 1195-1204. |
[2] | 卜芃, 李宏亮. 稀土Yb3+/Tm3+掺杂NaGd(MO4)2荧光粉的制备及其光致发光[J]. 应用化学, 2023, 40(3): 374-379. |
[3] | 郝斌,赵文武,郁建元,刘进强,刘剑,董秀珍,王秀文. 荧光粉Ba5-3x/2B4O11∶xEu3+的制备及发光性能[J]. 应用化学, 2019, 36(5): 548-553. |
[4] | 金晟中, 张爱清. 原子级壳层厚度Ru@Pt核壳结构纳米粒子的制备与表征[J]. 应用化学, 2018, 35(2): 239-244. |
[5] | 于畅,邵帅,李贺杰,刘国锋,丁彬彬,马平安,林君. 上转换纳米粒子结合DNA链式扩增技术在阿霉素光控释放中的应用[J]. 应用化学, 2018, 35(12): 1485-1491. |
[6] | 于畅, 邵帅, 李贺杰, 刘国锋, 丁彬彬, 马平安, 林君. 上转换纳米粒子结合DNA链式扩增技术在阿霉素光控释放中的应用[J]. 应用化学, 2018, 35(12): 0-0. |
[7] | 孟庆男,杜路路,汤玉斐,赵康,赵朗. MnOX-C@SiO2核壳微球的制备及催化性能[J]. 应用化学, 2018, 35(11): 1357-1363. |
[8] | 张宁子, 周瑶伟, 于镇, 夏志国. La2.4Mo1.6O8:Yb3+,Er3+材料的制备及其上转换发光性质[J]. 应用化学, 2016, 33(10): 1140-1146. |
[9] | 郑义智, 王海水. 银/二氧化硅核壳纳米颗粒的制备及其壳层厚度对其光学性质的影响[J]. 应用化学, 2014, 31(03): 323-327. |
[10] | 叶林静, 关卫省, 宋优男, 杨莉. 磁性Fe3O4/ZnO核壳材料的制备及降解四环素类抗生素[J]. 应用化学, 2013, 30(09): 1023-1029. |
[11] | 陈世兰, 柳明珠, 吕少瑜, 金淑萍, 陈勇. 壳聚糖-g-聚甲基丙烯酸凝胶粒的制备及其药物释放行为[J]. 应用化学, 2013, 30(03): 252-259. |
[12] | 彭冲, 杨冬梅, 李国岗, 连洪洲, 林君. 静电纺丝方法制备CaTiO3∶Er3+微米带及其上转换发光性质[J]. 应用化学, 2012, 29(12): 1438-1446. |
[13] | 侯陕, 张春雨, 陈斌, 张学全. 聚丙烯釜内合金性能及微观形态[J]. 应用化学, 2012, 29(01): 18-22. |
[14] | 董文举, 席君兰, 路雅惠, 李中华, 张培培. 核壳结构聚苯胺-聚电解质-碳酸钙微球复合材料的制备、表征和应用[J]. 应用化学, 2011, 28(01): 22-26. |
[15] | 郭琦, 缪建军, 耿珺, 朱俊杰. 微波热解法制备Cu/Cu2O纳米材料[J]. 应用化学, 2010, 27(12): 1438-1443. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||