1 |
TAN T, WANG W, ZHANG K, et al. Upcycling plastic wastes into value-added products by heterogeneous catalysis[J]. ChemSusChem, 2022, 15(14): e202200522.
|
2 |
SOONG Y H V, SOBKOWICZ M J, XIE D. Recent advances in biological recycling of polyethylene terephthalate (PET) plastic wastes[J/OL] 2022, 9(3):10.3390/bioengineering9030098.
|
3 |
THACHNATHAREN N, SHAHABUDDIN S, SRIDEWI N. The waste management of polyethylene terephthalate (PET) pastic waste: a review[J]. IOP Conference Series: Mater Sci Eng, 2021, 1127(1): 012002.
|
4 |
年产120亿PET瓶罐的可口可乐应对循环经济再出新举措[J]. 塑料工业, 2018(8): 158.
|
|
Coca Cola, with an annual production of 12 billion PET bottles and cans, has taken new measures to address the circular economy[J]. China Plastic Ind, 2018(8): 158.
|
5 |
周迎鑫, 翁云宣, 张彩丽, 等. 聚对苯二甲酸乙二醇酯回收技术和标准现状[J]. 中国塑料, 2021, 35(8): 162-171.
|
|
ZHOU Y X, WENG Y X, ZHANG C L, et al. Current status of polyethylene terephthalate recovery technology and standards[J]. China Plast, 2021, 35(8): 162-171.
|
6 |
HONGKAILERS S, JING Y, WANG Y, et al. Recovery of arenes from polyethylene terephthalate (PET) over a Co/TiO2 catalyst[J]. ChemSusChem, 2021, 14(19): 4330-4339.
|
7 |
TANG H, LI N, LI G, et al. Synthesis of gasoline and jet fuel range cycloalkanes and aromatics from poly(ethylene terephthalate) waste[J]. Green Chem, 2019, 21(10): 2709-2719.
|
8 |
DE SOUZA P M, RABELO-NETO R C, BORGES L E P, et al. Hydrodeoxygenation of phenol over Pd catalysts. effect of support on reaction mechanism and catalyst deactivation[J]. ACS Catal, 2017, 7(3): 2058-2073.
|
9 |
BARRIOS A M, TELES C A, DE SOUZA P M, et al. Hydrodeoxygenation of phenol over niobia supported Pd catalyst[J]. Catal Today, 2018, 302: 115-124.
|
10 |
SHAO Y, XIA Q, DONG L, et al. Selective production of arenes via direct lignin upgrading over a niobium-based catalyst[J]. Nat Commun, 2017, 8(1): 16104.
|
11 |
ZHOU L, LIN W, LIU K, et al. Hydrodeoxygenation of ethyl stearate over Re-promoted Ru/TiO2 catalysts: rate enhancement and selectivity control by the addition of Re[J]. Catal Sci Technol, 2020, 10: 220-230.
|
12 |
JIN W, PASTOR-PÉREZ L, SHEN D, et al. Catalytic upgrading of biomass model compounds: novel approaches and lessons learnt from traditional hydrodeoxygenation-a review[J]. ChemCatChem, 2019, 11(3): 924-960.
|
13 |
MAMUN O, WALKER E, FAHEEM M, et al. Theoretical investigation of the hydrodeoxygenation of levulinic acid to γ-valerolactone over Ru(0001)[J]. ACS Catal, 2016, 7: 215-228.
|
14 |
ZHANG X, TANG W, ZHANG Q, et al. Production of hydrocarbon fuels from heavy fraction of bio-oil through hydrodeoxygenative upgrading with Ru-based catalyst[J]. Fuel, 2018, 215: 825-834.
|
15 |
YAN P, MENSAH J, DREWERY M, et al. Role of metal support during Ru-catalysed hydrodeoxygenation of biocrude oil[J]. Appl Catal B, 2020, 281: 119470.
|
16 |
张洪杰. 纳米材料前沿—稀土纳米材料[M]. 北京: 化学工业出版社, 2018: 002-005.
|
|
ZHANG H J. Frontiers of nanomaterials—rare earth nanomaterials[M]. Beijing: Chemical Industry Press, 2018: 002-005.
|
17 |
MONTINI T, MELCHIONNA M, MONAI M, et al. Fundamentals and catalytic applications of CeO2-based materials[J]. Chem Rev, 2016, 116(10): 5987-6041.
|
18 |
LIU Z, GRINTER D C, LUSTEMBERG P G, et al. Dry reforming of methane on a highly-active Ni-CeO2 catalyst: effects of metal-support interactions on C―H bond breaking[J]. Angew Chem Int Ed, 2016, 55(26): 7455-7459.
|
19 |
SHEN H, DONG Y, YANG S, et al. Identifying the roles of Ce3+-OH and Ce-H in the reverse water-gas shift reaction over highly active Ni-doped CeO2 catalyst[J]. Nano Res, 2022, 15(7): 5831-5841.
|
20 |
SU Z, LI X, SI W, et al. Probing the actual role and activity of oxygen vacancies in toluene catalytic oxidation: evidence from in situ XPS/NEXAFS and DFT + U calculation[J]. ACS Catal, 2023, 13(6): 3444-3455.
|
21 |
HUANG Z Q, LIU L P, QI S, et al. Understanding all-solid frustrated-Lewis-pair sites on CeO2 from theoretical perspectives[J]. ACS Catal, 2018, 8(1): 546-554.
|
22 |
ZHANG S, HUANG Z Q, MA Y, et al. Solid frustrated-Lewis-pair catalysts constructed by regulations on surface defects of porous nanorods of CeO2[J]. Nat Commun, 2017, 8(1): 15266.
|
23 |
LI L, LIU W, CHEN R, et al. Atom-economical synthesis of dimethyl carbonate from CO2: engineering reactive frustrated Lewis pairs on ceria with vacancy clusters[J]. Angew Chem Int Ed, 2022, 61(51): e202214490.
|
24 |
WANG Y, XUE Y, ZHAO C, et al. Catalytic combustion of toluene with La0.8Ce0.2MnO3 supported on CeO2 with different morphologies[J]. Chem Eng J, 2016, 300: 300-305.
|
25 |
ZHANG Z, WANG Y, LU J, et al. Pr-doped CeO2 catalyst in the Prins condensation-hydrolysis reaction: are all of the defect sites catalytically active?[J]. ACS Catal, 2018, 8(4): 2635-2644.
|
26 |
HADJIIVANOV K, LAVALLEY J C, LAMOTTE J, et al. FTIR study of CO interaction with Ru/TiO2 catalysts[J]. J Catal, 1998, 176(2): 415-425.
|
27 |
CHIN S Y, WILLIAMS C T, AMIRIDIS M D. FTIR studies of CO adsorption on Al2O3- and SiO2-supported Ru catalysts[J]. J Phys Chem B, 2006, 110(2): 871-882.
|
28 |
BROWN M F, GONZALEZ R D. An infrared study of the adsorption of carbon monoxide on the reduced and oxidized forms of silica supported ruthenium[J]. J Phys Chem, 1976, 80(15): 1731-1735.
|
29 |
CHEN H W, ZHONG Z, WHITE J M. CO chemisorption on RuSiO2: the influence of coadsorbates[J]. J Catal, 1984, 90(1): 119-126.
|
30 |
JIN Z, SHEN Y, DA X, et al. Construction of high-performance CeO2 ultrafiltration membrane for high-temperature dye/salt separation[J]. J Membr Sci, 2021, 637: 119608.
|
31 |
OGADA J J, IPADEOLA A K, MWONGA P V, et al. CeO2 modulates the electronic states of a Palladium onion-like carbon interface into a highly active and durable electrocatalyst for hydrogen oxidation in anion-exchange-membrane fuel cells[J]. ACS Catal, 2022, 12(12): 7014-7029.
|
32 |
SCHILLING C, HOFMANN A, HESS C, et al. Raman spectra of polycrystalline CeO2: a density functional theory study[J]. J Phys Chem C, 2017, 121(38): 20834-20849.
|
33 |
SILVA I D C, SIGOLI F A, MAZALI I O. Reversible oxygen vacancy generation on pure CeO2 nanorods evaluated by in situ Raman spectroscopy[J]. J Phys Chem C, 2017, 121(23): 12928-12935.
|
34 |
KRAYNIS O, LUBOMIRSKY I, LIVNEH T. Resonant Raman scattering in undoped and lanthanide-doped CeO2[J]. J Phys Chem C, 2019, 123(39): 24111-24117.
|
35 |
GUPTA M, KUMAR A, SAGDEO A, et al. Doping-induced combined Fano and Phonon confinement effect in La-doped CeO2: Raman spectroscopy analysis[J]. J Phys Chem C, 2021, 125(4): 2648-2658.
|
36 |
LEE Y, HE G, AKEY A J, et al. Raman analysis of mode softening in nanoparticle CeO2- δ and Au-CeO2- δ during CO oxidation[J]. J Am Chem Soc, 2011, 133(33): 12952-12955.
|
37 |
MI R, LI D, HU Z, et al. Morphology effects of CeO2 nanomaterials on the catalytic combustion of toluene: a Combined kinetics and diffuse reflectance infrared Fourier transform spectroscopy study[J]. ACS Catal, 2021, 11(13): 7876-7889.
|
38 |
PANTALEO G, PAROLA V L, DEGANELLO F, et al. Ni/CeO2 catalysts for methane partial oxidation: synthesis driven structural and catalytic effects[J]. Appl Catal B, 2016, 189: 233-241.
|
39 |
LUCENTINI I, GARCíA COLLI G, LUZI C D, et al. Catalytic ammonia decomposition over Ni-Ru supported on CeO2 for hydrogen production: effect of metal loading and kinetic analysis[J]. Appl Catal B, 2021, 286: 119896.
|
40 |
MASLOBOISHCHIKOVA O V, VASINA T V, KHELKOVSKAYA-SERGEEVA E G, et al. Cyclohexane transformations over metal oxide catalysts. 1. effect of the nature of metal and support on the catalytic activity in cyclohexane ring opening[J]. Russ Chem Bull, 2002, 51(2): 249-254.
|
41 |
SHEN J, YIN X, KARPUZOV D, et al. PVP-stabilized mono- and bimetallic Ru nanoparticles for selective ring opening[J]. Catal Sci Technol, 2013, 3(1): 208-221.
|
42 |
KUSTOV L M, FINASHINA E D, AVAEV V I, et al. Decalin ring opening on Pt-Ru/SiO2 catalysts[J]. Fuel Process Technol, 2018, 173: 270-275.
|