应用化学 ›› 2022, Vol. 39 ›› Issue (6): 927-940.DOI: 10.19894/j.issn.1000-0518.210386
收稿日期:
2021-07-31
接受日期:
2021-11-23
出版日期:
2022-06-01
发布日期:
2022-06-27
通讯作者:
黄明华
基金资助:
Yan WANG, Shu-Cong ZHANG, Xing-Kun WANG, Zhi-Cheng LIU, Huan-Lei WANG, Ming-Hua HUANG()
Received:
2021-07-31
Accepted:
2021-11-23
Published:
2022-06-01
Online:
2022-06-27
Contact:
Ming-Hua HUANG
About author:
huangminghua@ouc.edu.cnSupported by:
摘要:
海水作为地球上最丰富的自然资源之一,在实现大规模的电解水制氢方面具有得天独厚的优势。然而,海水中的Cl-、Ca2+和Mg2+等使催化剂在阴极发生腐蚀、毒化或降解,导致其稳定性、活性以及使用寿命显著降低。近年来,为了解决上述问题,人们致力于设计开发廉价的高效稳定析氢反应(HER)催化剂,进而提高电解海水制氢效率。本文首先介绍了电解海水的优势及其HER所面临的挑战,其次从活性和稳定性等方面重点论述了硒化物、硫化物、氮化物以及磷化物等过渡金属基催化剂在电解海水HER中的研究进展,最后总结和展望了电解海水HER催化剂未来的发展前景。
中图分类号:
王岩, 张树聪, 汪兴坤, 刘志承, 王焕磊, 黄明华. 电解海水析氢反应过渡金属基催化剂的研究进展[J]. 应用化学, 2022, 39(6): 927-940.
Yan WANG, Shu-Cong ZHANG, Xing-Kun WANG, Zhi-Cheng LIU, Huan-Lei WANG, Ming-Hua HUANG. Research Progress on Transition Metal⁃Based Catalysts for Hydrogen Evolution Reaction via Seawater Electrolysis[J]. Chinese Journal of Applied Chemistry, 2022, 39(6): 927-940.
图1 (a) Ni-Mo-S/C(镍与钼的摩尔比为1∶1)在海水中的HER极化曲线,插图为测试过程中催化剂表面形成气泡的光学照片[40]; (b) Co-Se1和(c) Co-Se4的高分辨透射电子显微镜图像,插图分别为Co-Se1和Co-Se4的扫描电子显微镜图像和元素分布图;(d) Co-Se1||Co-Se4和Ir-C||Pt-C在缓冲溶液(pH=7.4)以及天然海水中的全水分解极化曲线[36];(e) Fe, P-NiSe2 NFs在0.5 mol/L KOH+海水、1.0 mol/L KOH以及天然海水中的HER极化曲线和 (f) OER极化曲线[41]
Fig.1 (a) HER polarization curves of Ni-Mo-S/C the molar ratio of Ni to Mo is 1∶1 in seawater. Inset: photograph of gas bubbles formed on the catalyst surface during the test[40]; HRTEM images of (b) Co-Se1 and (c) Co-Se4. Inset: SEM and elemental distribution mapping of (b) Co-Se1 and (c) Co-Se4; (d) Polarization curves of Co-Se1||Co-Se4 and Ir-C||Pt-C for overall water splitting in buffer solution (pH=7.4) and natural seawater[36]; (e) HER and (f) OER polarization curves of the Fe,P-NiSe2 NFs in 0.5 mol/L KOH + Seawater, 1.0 mol/L KOH and natural seawater[41]
图2 (a) Mo5N6在海水中的HER极化曲线;(b) Mo5N6在施加电势为310 mV下的计时电流曲线;(c) Mo5N6与商业Pt/C进行4 h稳定性测试后电流保持率的比较[22];(d) NiN||NiN和Ir-C||Pt-C在1.0 mol/L KOH、缓冲溶液(pH=7.4)和海水中全水分解的极化曲线;(e-f) NiNS的高分辨透射电子显微镜图像[45];(g) h-MoN@BNCNT和商业20% Pt/C在海水中的HER极化曲线,插图为所对应的Tafel图;(h) h-MoN@BNCNT和商业20% Pt/C进行第100次循环伏安测试后的HER极化曲线以及 (i) 两种催化剂的计时电流曲线[46]
Fig.2 (a) HER polarization curves of Mo5N6 in seawater; (b) Chronoamperometric curve of Mo5N6 under an applied potential of 310 mV; (c) Comparison of current retention of Mo5N6 and commercial Pt/C after 4 h stability test[22]; (d) Polarization curves of NiNS||NiNS and Ir-C||Pt-C for overall water splitting in 1.0 mol/L KOH, buffer solution (pH=7.4) and seawater; (e-f) HRTEM images of NiNS[45]; (g) HER polarization curves of h-MoN@BNCNT and commercial 20% Pt/C in seawater; Inset: the corresponding Tafel plots; (h) HER polarization curves after the 100th CV cycles tests and (i) Chronoamperometric curves of h-MoN@BNCNT and commercial 20% Pt/C catalysts[46]
图3 (a) 多孔磷化钴电催化剂的合成示意图;(b) 不同煅烧温度下得到的C300P350、C400P350 和C500P350电催化剂在模拟海水中的HER极化曲线;(c) C400P350在50 mA/cm2电流密度下的计时电势曲线[51];(d) Fe-Co2P BNRs和商业Pt/C在海水中的HER极化曲线[52];(e) 镍泡沫支撑的多孔羽毛状NiCoP电催化剂(NiCoP/NF)的合成示意图;(f) NiCoP/NF在天然海水中的HER极化曲线[53];(g) CoMoP@C和商业Pt/C(20%以及40%)催化剂进行5次、10次以及20次循环伏安测试后的HER极化曲线[54]
Fig.3 (a) Schematic illustration for the synthesis of porous cobalt phosphide electrocatalyst; (b) HER polarization curves of C300P350, C400P350 and C500P350 electrocatalysts obtained at different calcination temperatures in simulated seawater; (c) Chronopotentiometric curve of C400P350 at 50 mA/cm2 [51]; (d) HER polarization curves of Fe-Co2P BNRs and commercial Pt/C in seawater[52]; (e) Schematic illustration for the synthesis of porous featherlike NiCoP electrocatalyst supported by nickel foam (NiCoP/NF); (f) HER polarization curves of NiCoP/NF in natural seawater[53]; (g) HER polarization curves of CoMoP@C, commercial Pt/C (20% and 40%) catalysts after the 5th, 10th and 20th CV cycles tests[54]
图4 Ni2P-Fe2P/NF在1.0 mol/L KOH+海水中的 (a) HER极化曲线和 (b) OER极化曲线;(c) Ni2P-Fe2P/NF在电流密度分别为100和500 mA/cm2时的计时电势曲线[55];(d) Ni5P4@Ni2+δ O δ (OH)2-δ 复合纳米片(NPNNS)的合成示意图;(e) NPNNS和商业Pt/C在天然海水(pH=7.8)中的HER极化曲线[56];(f) 三明治纳米结构NiCoN|Ni x P|NiCoN的合成示意图;(g) NiCoN|Ni x P|NiCoN在天然海水中的HER极化曲线,(h) 其在电流密度为10 mA/cm2时对应的过电势以及(i) 在10 mA/cm2恒电流密度下的计时电势曲线[25]
Fig.4 (a) HER and (b) OER polarization curves of Ni2P-Fe2P/NF in 1.0 mol/L KOH+Seawater; (c) Chronopotentiometric curves of Ni2P-Fe2P/NF at the current densities of 100 and 500 mA/cm2[55]; (d) Schematic illustration for the synthesis of Ni5P4@Ni2+δ O δ (OH)2-δ hybrid nanosheets (NPNNS); (e) HER polarization curves of NPNNS and commercial Pt/C in natural seawater (pH=7.8)[56]; (f) Schematic illustration for the synthesis of sandwich-like nanostructured NiCoN|Ni x P|NiCoN; (g) HER polarization curves, (h) overpotential at the current density of 10 mA/cm2 of NiCoN|Ni x P|NiCoN catalysts in natural seawater, and (i) Chronopotentiometric curves at the constant current density of 10 mA/cm2 [25]
图5 (a) Co3Mo3C/CNT修饰的镍泡沫电极在海水中的HER极化曲线;(b) 5000次循环伏安测试前后的HER极化曲线,插图为其在170 mV过电势下的计时电流曲线[59];(c) Mo2C-MoP NPC/CFP-800和商业Pt/C在海水中的HER极化曲线;(d) Mo2C-MoP-NPC/CFP-800在385 mV恒电势下的计时电流曲线[64];(e) VS2@V2C和商业Pt/C在海水中进行2次、5次、10次、20次以及50次循环伏安测试后的HER极化曲线;(f) 负载量为0.1、0.2及0.4 mg/cm2的VS2@V2C的计时电流曲线[65];(g) Co0.31Mo1.69C/MXene/NC和商业Pt/C在天然海水中进行1次和5次循环伏安测试后的HER极化曲线及 (h) 500 mV过电势下的计时电流曲线[66]
Fig.5 (a) HER polarization curve of the Co3Mo3C/CNT modified Ni foam electrode in seawater; (b) HER polarization curves before and after 5000 CV cycles tests in seawater, Inset:Chronoamperometric curve at an overpotential of 170 mV[59]; (c) HER polarization curves of Mo2C-MoP NPC/CFP-800 and commercial Pt/C in seawater; (d) Chronoamperometric curve of Mo2C-MoP NPC/CFP-800 under a static overpotential of 385 mV[64]; (e) HER polarization curves of VS2@V2C and commercial Pt/C in seawater after the 2th, 5th, 10th, 20th and 50th CV cycles tests; (f) Chronoamperometric curves of VS2@V2C with loading of 0.1, 0.2 and 0.4 mg/cm2[65]; (g) HER polarization curves after the 1 th, and 5 th CV cycles tests and (h) Chronoamperometric curves at an overpotential of 500 mV for Co0.31Mo1.69C/MXene/NC and commercial Pt/C in natural seawater[66]
催化剂 Catalysts | 过电势η10(下角标表示电流密度为10 mA/cm2,特别标注除外)/mV η10(the subscript denotes i= 10 mA/cm2, unless otherwise specified)/mV | 电解液 Electrolyte | 稳定性 Stability test/h | Tafel 斜率Tafel slope/ (mV·dec-1) | 参考文献Ref. |
---|---|---|---|---|---|
Ni?Mo?S/C | ~460 | 天然海水 Natural seawater | - | - | [ |
MoS2QD?aerogel?100 | ~370 | 天然海水 Natural seawater | - | - | [ |
Co?Se4 | 330 | 缓冲海水 Buffered seawater | - | - | [ |
Fe, P?NiSe2 NFs | η50≈320 | 天然海水 Natural seawater | 200 | - | [ |
Mo5N6 | 257 | 天然海水 Natural seawater | 100@310 mV | - | [ |
Ni?SA/NC | 139 | 碱性天然海水 1.0 mol/L KOH+Seawater | 14@200 mV | 123 | [ |
Ni?SN@C | 23 | 碱性天然海水 1.0 mol/L KOH+Seawater | 40@25 mV | 41 | [ |
NiMoN | η100 =339 | 碱性模拟海水 1.0 mol/L KOH+0.5 mol/L NaCl | - | - | [ |
NiNS | 197 | 天然海水 Natural seawater | - | - | [ |
Ni3N@C/NF | η100 =142 | 碱性天然海水 1.0 mol/L KOH+Seawater | 100@100 mA/cm2 | - | [ |
h? MoN@BNCNT | ~160 | 天然海水 Natural seawater | 16 | 128 | [ |
C400P350 | 454 | 模拟海水 Simulated seawater | 24@10 mA/cm2 | 107 | [ |
Fe?Co2P BNRs | 489 | 天然海水 Natural seawater | 100@40 mA/cm2 | - | [ |
PF?NiCoP/NF | 287 | 天然海水 Natural seawater | 20@290 mV | - | [ |
CoMoP@C | 448 | 天然海水 Natural seawater | 10@500 mV | - | [ |
CoNiP/Co x P | 290 | 天然海水 Natural seawater | 500@10 mA/cm2 | - | [ |
Ni2P?Fe2P | η100=252 | 碱性天然海水 1.0 mol/L KOH+Seawater | 36@100 mA/cm2 | - | [ |
NPNNS | 144 | 天然海水 Natural seawater | 40 | 108 | [ |
NiCoN|Ni x P|NiCoN | 165 | 天然海水 Natural seawater | 24@10 mA/cm2 | 139.2 | [ |
表1 过渡金属基电催化剂在海水中的HER性能
Table 1 The HER performance of transition metal?based catalysts in seawater
催化剂 Catalysts | 过电势η10(下角标表示电流密度为10 mA/cm2,特别标注除外)/mV η10(the subscript denotes i= 10 mA/cm2, unless otherwise specified)/mV | 电解液 Electrolyte | 稳定性 Stability test/h | Tafel 斜率Tafel slope/ (mV·dec-1) | 参考文献Ref. |
---|---|---|---|---|---|
Ni?Mo?S/C | ~460 | 天然海水 Natural seawater | - | - | [ |
MoS2QD?aerogel?100 | ~370 | 天然海水 Natural seawater | - | - | [ |
Co?Se4 | 330 | 缓冲海水 Buffered seawater | - | - | [ |
Fe, P?NiSe2 NFs | η50≈320 | 天然海水 Natural seawater | 200 | - | [ |
Mo5N6 | 257 | 天然海水 Natural seawater | 100@310 mV | - | [ |
Ni?SA/NC | 139 | 碱性天然海水 1.0 mol/L KOH+Seawater | 14@200 mV | 123 | [ |
Ni?SN@C | 23 | 碱性天然海水 1.0 mol/L KOH+Seawater | 40@25 mV | 41 | [ |
NiMoN | η100 =339 | 碱性模拟海水 1.0 mol/L KOH+0.5 mol/L NaCl | - | - | [ |
NiNS | 197 | 天然海水 Natural seawater | - | - | [ |
Ni3N@C/NF | η100 =142 | 碱性天然海水 1.0 mol/L KOH+Seawater | 100@100 mA/cm2 | - | [ |
h? MoN@BNCNT | ~160 | 天然海水 Natural seawater | 16 | 128 | [ |
C400P350 | 454 | 模拟海水 Simulated seawater | 24@10 mA/cm2 | 107 | [ |
Fe?Co2P BNRs | 489 | 天然海水 Natural seawater | 100@40 mA/cm2 | - | [ |
PF?NiCoP/NF | 287 | 天然海水 Natural seawater | 20@290 mV | - | [ |
CoMoP@C | 448 | 天然海水 Natural seawater | 10@500 mV | - | [ |
CoNiP/Co x P | 290 | 天然海水 Natural seawater | 500@10 mA/cm2 | - | [ |
Ni2P?Fe2P | η100=252 | 碱性天然海水 1.0 mol/L KOH+Seawater | 36@100 mA/cm2 | - | [ |
NPNNS | 144 | 天然海水 Natural seawater | 40 | 108 | [ |
NiCoN|Ni x P|NiCoN | 165 | 天然海水 Natural seawater | 24@10 mA/cm2 | 139.2 | [ |
1 | HOU X B, HAN Z K, XU X J, et al. Controllable amorphization engineering on bimetallic metal-organic frameworks for ultrafast oxygen evolution reaction[J]. Chem Eng J, 2021, 418: 129330. |
2 | CAO X P, LI Z, CHEN H, et al. Synthesis of biomass porous carbon materials from bean sprouts for hydrogen evolution reaction electrocatalysis and supercapacitor electrode[J]. Int J Hydrogen Energ, 2021, 46(36): 18887-18897. |
3 | DONG X S, LIU X W, CHEN H, et al. Hard template-assisted N, P-doped multifunctional mesoporous carbon for supercapacitors and hydrogen evolution reaction[J]. J Mater Sci, 2021, 56: 2385-2398. |
4 | DING W L, CAO Y H, LIU H, et al. In situ growth of NiSe@Co0.85Se heterointerface structure with electronic modulation on nickel foam for overall water splitting[J]. Rare Met, 2021, 40(7): 1373-1382. |
5 | HUA W, SUN H H, XU F, et al. A review and perspective on molybdenum-based electrocatalysts for hydrogen evolution reaction[J]. Rare Met, 2020, 39(4): 335-351. |
6 | XU X J, DU P Y, CHEN Z K, et al. An electrodeposited cobalt-selenide-based film as an efficient bifunctional electrocatalyst for full water splitting[J]. J Mater Chem A, 2016, 4: 10933-10939. |
7 | CHUNG D Y, YOO J M, SUNG Y E. Highly durable and active Pt-based nanoscale design for fuel-cell oxygen-reduction electrocatalysts[J]. Adv Mater, 2018, 30: 1704123. |
8 | GUO T, XU X J, WANG X K, et al. Enabling the full exposure of Fe2P@NixP heterostructures in tree-branch-like nanoarrays for promoted urea electrolysis at high current densities[J]. Chem Eng J, 2021, 417: 128067. |
9 | ZHANG J Y, WANG H, TIAN Y, et al. Anodic hydrazine oxidation assists energy-efficient hydrogen evolution over a bifunctional cobalt perselenide nanosheet electrode[J]. Angew Chem Int Ed, 2018, 57(26): 7649-7653. |
10 | GAO J X, ZHANG Y J, WANG X K, et al. Nitrogen-doped Sr2Fe1.5Mo0.5O6- δ perovskite as an efficient and stable catalyst for hydrogen evolution reaction[J]. Mater Today Energy, 2021,20: 100695. |
11 | ZHAO Y X, CHANG C, TENG F, et al. Defect-engineered ultrathin δ-MnO2 nanosheet arrays as bifunctional electrodes for efficient overall water splitting[J]. Adv Energy Mater, 2017, 7: 1700005. |
12 | ZHOU J, HAN Z K, WANG X K, et al. Discovery of quantitative electronic structure-OER activity relationship in metal-organic framework electrocatalysts using an integrated theoretical-experimental approach[J]. Adv Funct Mater, 2021,31(30): 2102066. |
13 | LIU T Y, DIAO P. Nickel foam supported Cr-doped NiCo2O4/FeOOH nanoneedle arrays as a high-performance bifunctional electrocatalyst for overall water splitting[J]. Nano Res, 2020, 13(12): 3299-3309. |
14 | ZHANG Y J, WANG Y C, JIANG H J, et al. Multifunctional nickel sulfide nanosheet arrays for solar-intensified oxygen evolution reaction[J]. Small, 2020, 16: 2002550. |
15 | YU F, YU L, MISHRA I K, et al. Recent developments in earth-abundant and non-noble electrocatalysts for water electrolysis[J]. Mater Today Phys, 2018, 7: 121-138. |
16 | LIANG W, ZOU P C, NAIRAN A, et al. Exceptional performance of hierarchical Ni-Fe oxyhydroxide@NiFe alloy nanowire array electrocatalysts for large current density water splitting[J]. Energy Environ Sci, 2020, 13: 86-95. |
17 | JIN Y S, WANG H T, LI J J, et al. Porous MoO2 nanosheets as non-noble bifunctional electrocatalysts for overall water splitting[J]. Adv Mater, 2016, 28: 3785-3790. |
18 | CAI Z Y, BU X M, WANG P, et al. Recent advances in layered double hydroxide electrocatalysts for the oxygen evolution reaction[J]. J Mater Chem A, 2019, 7: 5069-5089. |
19 | TONG W M, FORSTER M, DIONIGI F, et al. Electrolysis of low-grade and saline surface water[J]. Nat Energy, 2020, 5: 367-377. |
20 | LI L Y, ZHOU Z M, LI L Y, et al. Thioether-functionalized 2D covalent organic framework featuring specific affinity to Au for photocatalytic hydrogen production from seawater[J]. ACS Sustainable Chem Eng, 2019, 7: 18574-18581. |
21 | LIU J C, XU S M, LI Y F, et al. Facet engineering of WO3 arrays toward highly efficient and stable photoelectrochemical hydrogen generation from natural seawater[J]. Appl Catal B, 2020, 264: 118540. |
22 | JIN H Y, LIU X, VASILEFF A, et al. Single-crystal nitrogen-rich 2D Mo5N6 nanosheets for efficient and stable seawater splitting[J]. ACS Nano, 2018, 12: 12761-12769. |
23 | LU X Y, PAN J, LOVELL E, et al. A sea-change: manganese doped nickel/nickel oxide electrocatalysts for hydrogen generation from seawater[J]. Energy Environ Sci, 2018, 11: 1898-1910. |
24 | BENNETT J E. Electrodes for generation of hydrogen and oxygen from seawater[J].Int J Hydrog Energy, 1980, 5(4): 401-408. |
25 | YU L, WU L, SONG S W, et al. Hydrogen generation from seawater electrolysis over a sandwich-like NiCoN|NixP|NiCoN microsheet arrays catalyst[J]. ACS Energy Lett, 2020, 5: 2681-2689. |
26 | WANG C, SHANG H Y, JIN L J, et al. Advances in hydrogen production from electrocatalytic seawater splitting[J]. Nanoscale, 2021, 13: 7897-7912. |
27 | HSU S H, MIAO J W, ZHANG L P, et al. An earth-abundant catalyst-based seawater photoelectrolysis system with 17.9% solar-to-hydrogen efficiency[J]. Adv Mater, 2018, 30(18): 1707261. |
28 | YU L, ZHU Q, SONG S W, et al. Non-noble metal-nitride based electrocatalysts for high-performance alkaline seawater electrolysis[J]. Nat Commun, 2019, 10(1): 5106. |
29 | KUANG Y, KENNEY M J, MENG Y T, et al. Solar-driven, highly sustained splitting of seawater into hydrogen and oxygen fuels[J]. Proc Natl Acad Sci USA, 2019, 116(14): 6624-6629. |
30 | HISATOMI T, DOMEN K. Reaction systems for solar hydrogen production via water splitting with particulate semiconductor photocatalysts[J]. Nat Catal, 2019, 2: 387-399. |
31 | NIU X M, TANG Q W, HE B L, et al. Robust and stable ruthenium alloy electrocatalysts for hydrogen evolution by seawater splitting[J]. Electrochim Acta, 2016, 208: 180-187. |
32 | OH B S, SANG G O, HWANG Y Y, et al. Formation of hazardous inorganic by-products during electrolysis of seawater as a disinfection process for desalination[J]. Sci Total Environ, 2010, 408(23): 5958-5965. |
33 | SONG H J, YOON H, JU B, et al. Electrocatalytic selective oxygen evolution of carbon-coated Na2Co1- xFexP2O7 nanoparticles for alkaline seawater electrolysis[J]. ACS Catal, 2019, 10: 702-709. |
34 | DIONIGI F, REIER T, PAWOLEK Z, et al. Design criteria, operating conditions, and nickel-iron hydroxide catalyst materials for selective seawater electrolysis[J]. Chem Sus Chem, 2016,9(9): 962-972. |
35 | DRESP S, DIONIGI F, LOOS S, et al. Direct electrolytic splitting of seawater: activity, selectivity, degradation, and recovery studied from the molecular catalyst structure to the electrolyzer cell level[J]. Adv Energy Mater, 2018, 8(22): 1800338. |
36 | ZHAO Y Q, JIN B, ZHENG Y, et al. Charge state manipulation of cobalt selenide catalyst for overall seawater electrolysis[J]. Adv Energy Mater, 2018, 8(29): 1801926. |
37 | CHEN Z J, DUAN X G, WEI W, et al. Recent advances in transition metal-based electrocatalysts for alkaline hydrogen evolution[J].J Mater Chem A, 2019, 7: 14971-15005. |
38 | LIU G B, XU Y S, YANG T, et al. Recent advances in electrocatalysts for seawater splitting[J]. Nano Mater Sci, 2020, https://doi.org/10.1016/j.nanoms.2020.12.003. |
39 | CUMMINS D R, MARTINEZ U, SHEREHIY A, et al. Efficient hydrogen evolution in transition metal dichalcogenides via a simple one-step hydrazine reaction[J]. Nat Commun, 2016,7: 11857. |
40 | MIAO J W, XIAO F X, HONG B Y, et al. Hierarchical Ni-Mo-S nanosheets on carbon fiber cloth: a flexible electrode for efficient hydrogen generation in neutral electrolyte[J]. Sci Adv, 2015, 1(7): e1500259. |
41 | CHANG J F, WANG G Z, YANG Z Z, et al. Dual-doping and synergism toward high-performance seawater electrolysis[J]. Adv Mater, 2021, 33(33): 2101425. |
42 | XIE J F, LI S, ZHANG X D, et al. Atomically-thin molybdenum nitride nanosheets with exposed active surface sites for efficient hydrogen evolution[J]. Chem Sci, 2014, 5: 4615-4620. |
43 | DINH K N, LIANG Q H, DU C F, et al. Nanostructured metallic transition metal carbides, nitrides, phosphides, and borides for energy storage and conversion[J].Nano Today, 2019, 25: 99-121. |
44 | LIU Z, LIU D Y, ZHAO L Y, et al. Efficient overall water splitting catalyzed by robust FeNi3N nanoparticles with hollow interiors[J]. J Mater Chem A, 2020, 9: 7750-7758. |
45 | ZHAO Y Q, JIN B, VASILEFF A, et al. Interfacial nickel nitride/sulfide as a bifunctional electrode for highly efficient overall water/seawater electrolysis[J]. J Mater Chem A, 2019, 7: 8117-8121. |
46 | MIAO J, LANG Z L, ZHANG X Y, et al. Polyoxometalate-derived hexagonal molybdenum nitrides (MXenes) supported by boron, nitrogen codoped carbon nanotubes for efficient electrochemical hydrogen evolution from Seawater[J]. Adv Funct Mater, 2019, 29(8): 1805893. |
47 | LI Y, DONG Z H, JIAO L F. Multifunctional transition metal‐based phosphides in energy‐related electrocatalysis[J]. Adv Energy Mater, 2019, 10(11): 1902104. |
48 | FANG Y, ZHOU H Q, HUANG Y F, et al. High-performance bifunctional porous non-noble metal phosphide catalyst for overall water splitting[J]. Nat Commun, 2018, 9(1): 2251. |
49 | WU R, XIAO B, GAO Q, et al. A janus nickel cobalt phosphide Catalyst for high-efficiency neutral-pH water splitting[J]. Angew Chem Int Ed, 2018, 57: 15445-15449. |
50 | YOU B, ZHANG Y D, JIAO Y, et al. Negative charging of transition-metal phosphides via strong electronic coupling for destabilization of alkaline water[J]. Angew Chem Int Ed, 2019, 58(34): 11796-11800. |
51 | LIU G B, WANG M, XU Y S, et al. Porous CoP/Co2P heterostructure for efficient hydrogen evolution and application in magnesium/seawater battery[J]. J Power Sources, 2021, 486(28): 229351. |
52 | LIN Y, SUN K, CHEN X M, et al. High-precision regulation synthesis of Fe-doped Co2P nanorod bundles as efficient electrocatalysts for hydrogen evolution in all-pH range and seawater[J]. J Energy Chem, 2020, 55: 92-101. |
53 | LV Q L, HAN J X, TAN X L, et al. Feather-like NiCoP holey nanoarrys for efficient and stable seawater splitting[J]. ACS Appl Energy Mater, 2019, 2(5): 3910-3917. |
54 | MA Y Y, WU C X, FENG X J, et al. Highly efficient hydrogen evolution from seawater by a low-cost and stable CoMoP@C electrocatalyst superior to Pt/C[J].Energy Environ Sci, 2017, 10: 788-798. |
55 | WU L B, YU L, ZHANG F H, et al. Heterogeneous bimetallic phosphide Ni2P-Fe2P as an efficient bifunctional catalyst for water/seawater splitting[J]. Adv Funct Mater, 2021, 31: 2006484. |
56 | HUANG Y C, HU L, LIU R, et al. Nitrogen treatment generates tunable nanohybridization of Ni5P4 nanosheets with nickel hydr(oxy)oxides for efficient hydrogen production in alkaline, seawater and acidic media[J]. Appl Catal B: Environ, 2019,251: 181-194. |
57 | BENCK J D, CHEN Z B, KURITZKY L Y, et al. Amorphous molybdenum sulfide catalysts for electrochemical hydrogen production: insights into the origin of their catalytic activity[J]. ACS Catal, 2012, 2(9): 1916-1923. |
58 | WU Z Z, FANG B Z, BONAKDARPOUR A, et al. WS2 nanosheets as a highly efficient electrocatalyst for hydrogen evolution reaction[J]. Appl Catal B: Environ, 2012, 125: 59-66. |
59 | ZHAO Y Y, TANG Q W, HE B, et al. Carbide decorated carbon nanotube electrocatalyst for high-efficiency hydrogen evolution from seawater[J]. RSC Adv, 2016, 6: 93267-93274. |
60 | WANG X H, ZHANG M H, LI W, et al. Synthesis and characterization of cobalt-molybdenum bimetallic carbides catalysts[J]. Catal Today, 2008, 131(1/4): 111-117. |
61 | KORLANN S, DIAZ B, BUSSELL M E. Synthesis of bulk and alumina-supported bimetallic carbide and nitride catalysts[J]. Chem Mater, 2002, 14(1): 4049-4058. |
62 | LIU P, RODRIGUEZ J A. Catalysts for hydrogen evolution from the [NiFe] hydrogenase to the Ni2P(001) surface: the importance of ensemble effect[J]. J Am Chem Soc, 2005, 127(42): 14871-14878. |
63 | LIU P, RODRIGUEZ J A, ASAKURA T, et al. Desulfurization reactions on Ni2P(001) and α-Mo2C(001) surfaces: complex role of P and C sites[J]. J Phys Chem B, 2005, 109: 4575-4583. |
64 | LIU T T, LIU H, WU X J, et al. Molybdenum carbide/phosphide hybrid nanoparticles embedded P, N co-doped carbon nanofibers for highly efficient hydrogen production in acidic, alkaline solution and seawater[J].Electrochim Acta, 2018, 281: 710-716. |
65 | WANG Z G, XU W Q, YU K, et al. 2D heterogeneous vanadium compound interfacial modulation enhanced synergistic catalytic hydrogen evolution for full pH range seawater splitting[J]. Nanoscale, 2020, 12(10): 6176-6187. |
66 | WU X H, ZHOU S, WANG Z Y, et al. Engineering multifunctional collaborative catalytic interface enabling efficient hydrogen evolution in all pH range and seawater[J]. Adv Energy Mater, 2019, 9(34): 1901333. |
67 | CHEN I W P, HSIAO C H, HUANG J Y, et al. Highly efficient hydrogen evolution from seawater by biofunctionalized exfoliated MoS2 quantum dot aerogel electrocatalysts that is superior to Pt[J]. ACS Appl Mater Inter, 2019, 11: 14159-14165. |
68 | GAO S, LI G D, LIU Y P, et al. Electrocatalytic H2 production from seawater over Co, N-codoped nanocarbons[J]. Nanoscale, 2015, 7: 2306-2316. |
69 | WANG B R, LU M J, CHEN D, et al. NixFeyN@C microsheet arrays on Ni foam as an efficient and durable electrocatalyst for electrolytic splitting of alkaline seawater[J]. J Mater Chem A, 2021, 9: 13562-13569. |
70 | LIU D, AI H Q, CHEN M P, et al. Multi-phase heterostructure of CoNiP/CoxP for enhanced hydrogen evolution under alkaline and seawater conditions by promoting H2O dissociation[J]. Small, 2021, 17: 2007557. |
71 | ZANG W J, SUN T, YANG T, et al. Efficient hydrogen evolution of oxidized Ni-N3 defective sites for alkaline freshwater and seawater electrolysis[J]. Adv Mater, 2021, 33(8): 2003846. |
72 | JIN H Y, WANG X S, TANG C, et al. Stable and highly efficient hydrogen evolution from seawater enabled by an unsaturated nickel surface nitride[J]. Adv Mater, 2021, 33: 2007508. |
73 | SHUO D, LIU Z, ZHUO H H, et al. Hydrochloric acid corrosion induced bifunctional free-standing NiFe hydroxide nanosheets towards high-performance alkaline seawater splitting[J]. Nanoscale, 2020, 12(42): 21743-21749. |
74 | WU L, YANG G, LI Z, et al. Electrochemical performance of porous Ni-alloy electrodes for hydrogen evolution reaction from seawater electrolysis[J]. RSC Adv, 2020, 10(73): 44933-44945. |
[1] | 王路飞, 甄蒙蒙, 沈伯雄. 贫电解液下电催化剂对调控锂硫电池性能的研究进展[J]. 应用化学, 2023, 40(2): 188-209. |
[2] | 杜卫民, 刘欣, 朱琳, 付佳敏, 郭文山, 杨晓晴, 双培硕. 三元镍基硫属化物纳米棒阵列的简单合成及其高效的电催化析氧性能[J]. 应用化学, 2022, 39(8): 1252-1261. |
[3] | 张超. 单原子催化剂电催化还原二氧化碳研究进展[J]. 应用化学, 2022, 39(6): 871-887. |
[4] | 曹维锦, 白璐, 武兰兰, 李敬德, 宋术岩. 多壳层中空镍钴双金属磷化物纳米球用于高效电催化析氧[J]. 应用化学, 2022, 39(4): 666-672. |
[5] | 商林杰, 刘江, 兰亚乾. 共价有机框架材料用于光/电催化CO2还原的研究进展[J]. 应用化学, 2022, 39(4): 559-584. |
[6] | 张艺潆, 李翠艳, 赵杰, 余笑明, 方千荣. 卟啉-硫醚基共价有机框架材料用于氧还原反应电催化剂[J]. 应用化学, 2022, 39(4): 647-656. |
[7] | 孙立智, 吕浩, 闵晓文, 刘犇. 介孔钯-硼合金纳米颗粒的制备和甲醇氧化电催化性能[J]. 应用化学, 2022, 39(4): 673-684. |
[8] | 吴小峰, 陈德顺, 马伟, 黄科科. 电喷雾沉积WO3/Fe2TiO5复合光阳极及其光电催化水裂解性能[J]. 应用化学, 2022, 39(4): 694-696. |
[9] | 毕一飘, 宫雪, 杨发, 阮明波, 宋平, 徐维林. 多价MnOx/C电催化剂用于高效氮还原反应[J]. 应用化学, 2020, 37(9): 1048-1055. |
[10] | 李琳, 任慧敏, 卫博慧, 李军, 王杰, 李晖, 姚陈忠. 钒-氮共掺杂碳基介孔纳米材料的制备及氮还原电催化性能[J]. 应用化学, 2020, 37(8): 930-938. |
[11] | 蒙阳, 杨婵, 彭娟. 基于铁、钴、镍金属磷化物纳米催化剂的碱性条件下电解水制氢的研究进展[J]. 应用化学, 2020, 37(7): 733-745. |
[12] | 陈佳琪, 周焱, 孙敬文, 朱俊武, 汪信, 付永胜. 基于金属有机框架中空材料的研究进展[J]. 应用化学, 2020, 37(11): 1221-1235. |
[13] | 车婷华, 谭潇, 晏嘉伟, 宋凤丹, 张红梅, 齐随涛. 铜修饰多孔镍自支撑电极的构建及其葡萄糖氧化性能[J]. 应用化学, 2019, 36(9): 1091-1098. |
[14] | 李新杰,徐鹤,于美,张超,郭安儒,刘畅. 氮掺杂石墨炭包覆的钴纳米催化剂作高效、高稳定性电催化制氢[J]. 应用化学, 2019, 36(5): 571-577. |
[15] | 李新杰, 徐鹤, 于美, 张超, 郭安儒, 刘畅. 氮掺杂石墨炭包覆的钴纳米催化剂作高效、高稳定性电催化制氢[J]. 应用化学, 2019, 36(5): 0-0. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||