1 |
LIANG Y R, ZHAO C Z, YUAN H, et al. A review of rechargeable batteries for portable electronic devices[J]. Infomat, 2019, 1(1): 6-32.
|
2 |
CHENG F Y, LIANG J, TAO Z L, et al. Functional materials for rechargeable batteries[J]. Adv Mater, 2011, 23(15): 1695-1715.
|
3 |
XU C H, XU B H, GU Y, et al. Graphene-based electrodes for electrochemical energy storage[J]. Energy Environ Sci, 2013, 6(5): 1388-1414.
|
4 |
LI G C, YANG Z W, YIN Z L, et al. Non-aqueous dual-carbon lithium-ion capacitors: a review[J]. J Mater Chem A, 2019, 7(26): 15541-15563.
|
5 |
WANG H, WU P, SHI H M, et al. Hollow porous silicon oxide nanobelts for high-performance lithium storage[J]. J Power Sources, 2015, 274: 951-956.
|
6 |
AN W L, FU J J, SU J J, et al. Mesoporous hollow nanospheres consisting of carbon coated silica nanoparticles for robust lithium-ion battery anodes[J]. J Power Sources, 2017, 345: 227-236.
|
7 |
DINH K N, LIANG Q H, DU C F, et al. Nanostructured metallic transition metal carbides, nitrides, phosphides, and borides for energy storage and conversion[J]. Nano Today, 2019, 25: 99-121.
|
8 |
LI J, YANG Q Q, HU Y X, et al. Design of lamellar Mo2C nanosheets assembled by Mo2C nanoparticles as an anode material toward excellent sodium-ion capacitors[J]. ACS Sustainable Chem Eng, 2019, 7(22): 18375-18383.
|
9 |
YANG Z W, WANG H F, CHENG B H, et al. Micronano porous Mo2C@C nanorods composites as robust anodes for Li-ion battery[J]. Energy Technol, 2020, 8(6): 2000189.
|
10 |
XIN H L, HAI Y, LI D Z, et al. Coupling Mo2C@C core-shell nanocrystals on 3D graphene hybrid aerogel for high-performance lithium ion battery[J]. Appl Surf Sci, 2018, 441: 69-76.
|
11 |
YU B, YANG D X, HU Y, et al. Mo2C nanodots anchored on N-doped porous CNT microspheres as electrode for efficient Li-ion storage[J]. Small Methods, 2019, 3(2): 1800287.
|
12 |
XU J G, ZHANG Y, QI J S, et al. Preparation of nanocrystalline MoSi2 with enhanced lithium storage by sol-gel and carbonthermal reduction method[J]. Ceram Int, 2018, 44(8): 9494-9498.
|
13 |
BUGA M R, SPINU-ZAULET A A, UNGUREANU C G, et al. Carbon-coated SiO2 composites as promising anode material for Li-ion batteries[J]. Molecules, 2021, 26(15): 4531.
|
14 |
FENG Y, LIU L, LIU X Y, et al. Enabling the ability of Li storage at high rate as anodes by utilizing natural rice husks-based hierarchically porous SiO2/N-doped carbon composites[J]. Electrochim Acta, 2020, 359: 136933.
|
15 |
LIU X G, LI Z X, ZHANG S H, et al. Mo2C@onion-like carbon/amorphous carbon nanocomposites as outstanding anode materials for ideal lithium-ion batteries[J]. Ceram Int, 2017, 43(16): 14446-14452.
|
16 |
KWAK W J, LAU K C, SHIN C D, et al. A Mo2C/carbon nanotube composite cathode for lithium-oxygen batteries with high energy efficiency and long cycle life[J]. ACS Nano, 2015, 9(4): 4129-4137.
|
17 |
XIAO J, ZHANG Y, ZHANG Z Y, et al. Self-supported biocarbon-fiber electrode decorated with molybdenum carbide nanoparticles for highly active hydrogen-evolution reaction[J]. ACS Appl Mater Interfaces, 2017, 9(27): 22604-22611.
|
18 |
YUE X, CAO M L, WU L M, et al. Rational synthesis of a hierarchical Mo2C/C nanosheet composite with enhanced lithium storage properties[J]. RSC Adv, 2021, 11(41): 25497-25503.
|
19 |
LYU F C, ZENG S S, SUN Z F, et al. Lamellarly stacking porous N, P Co-doped Mo2C/C nanosheets as high performance anode for lithium-ion batteries[J]. Small, 2019, 15(8): 1805022.
|
20 |
WANG L, ZHU X X, TU K K, et al. Synthesis of carbon-SiO2 hybrid layer @ SiO2@CNT coaxial nanotube and its application in lithium storage[J]. Electrochim Acta, 2020, 354: 136726.
|
21 |
WANG H, XU H B, JIA K, et al. ZIF-8-templated hollow cubelike Si/SiO2@C nanocomposites for superior lithium storage performance[J]. ACS Appl Energy Mater, 2019, 2(1): 531-538.
|
22 |
LI H Q, HOU Y H, LI L C. Synthesis of the SiO2@C composites with high-performance electromagnetic wave absorption[J]. Powder Technol, 2019, 343: 129-136.
|
23 |
CHEN Z, XIANG T, XIONG Q M, et al. Highly active SiO2@C nanofiber: high rate and long cycling for lithium ion batteries[J]. Ionics, 2021, 27(4): 1385-1392.
|
24 |
LI R R, WANG S G, WANG W, et al. Ultrafine Mo2C nanoparticles encapsulated in N-doped carbon nanofibers with enhanced lithium storage performance[J]. Phys Chem Chem Phys, 2015, 17(38): 24803-24809.
|
25 |
XIAO Y, ZHENG L R, CAO M H. Hybridization and pore engineering for achieving high-performance lithium storage of carbide as anode material[J]. Nano Energy, 2015, 12: 152-160.
|
26 |
GAO Q, ZHAO X Y, XIAO Y, et al. A mild route to mesoporous Mo2C-C hybrid nanospheres for high performance lithium-ion batteries[J]. Nanoscale, 2014, 6(11): 6151-6157.
|
27 |
WANG B B, WANG G, WANG H. Hybrids of Mo2C nanoparticles anchored on graphene sheets as anode materials for high performance lithium-ion batteries[J]. J Mater Chem A, 2015, 3(33): 17403-17411.
|
28 |
LIAO H X, HOU H S, ZHANG Y, et al. Nano-confined Mo2C particles embedded in a porous carbon matrix: a promising anode for ultra-stable Na storage[J]. Chem Electro Chem, 2017, 4(10): 2669-2676.
|
29 |
MIR R A, PANDEY O P. An ecofriendly route to synthesize C-Mo2C and C/N-Mo2C utilizing waste polyethene for efficient hydrogen evolution reaction (HER) activity and high performance capacitors[J]. Sustainable Energy Fuels, 2020, 4(2): 655-669.
|
30 |
HUSSAIN S, MUHAMMAD S, FAIZAN M, et al. Hierarchical Mo2C@CNT hybrid structure formation for the improved lithium-ion battery storage performance[J]. Nanomaterials, 2021, 11(9): 2195.
|