[1] IBARRA I S, MIRANDA J M, PÉREZ-SILVA I, et al. Sample treatment based on molecularly imprinted polymers for the analysis of veterinary drugs in food samples: a review[J]. Anal Methods, 2020, 12: 2958-2977. [2] 赵文煜. 兽药残留危害及其防控措施[J]. 中国牛业科学, 2016, 42(2): 82-84. ZHAO W Y. Veterinary drug residue hazards and their prevention and control measures[J]. China Cattle Sci, 2016, 42(2): 82-84. [3] GUIDI L R, SANTOS F A, RIBEIRO A , et al. Quinolones and tetracyclines in aquaculture fish by a simple and rapid LC-MS/MS method[J]. Food Chem, 2018, 245: 1232-1238. [4] MD ROCCO, MOLONEY M , HAREN D, et al. Improving the chromatographic selectivity of β-lactam residue analysis in milk using phenyl-column chemistry prior to detection by tandem mass spectrometry[J]. Anal Bioanal Chem, 2020, 412(18): 1-15. [5] MASTRIANNI K R, METAVARAYUTH K, BREWER W E, et al. Analysis of 10 β-agonists in pork meat using automated dispersive pipette extraction and LC-MS/MS[J]. J Chromatogr B, 2018, 1084: 64-68. [6] WANG C, LI X, YU F, et al. Multi-class analysis of veterinary drugs in eggs using dispersive-solid phase extraction and ultra-high performance liquid chromatography-tandem mass spectrometry[J]. Food Chem, 2020, 334: 127598. [7] RIZZETTI T M, SOUZA M P, PRESTES O D, et al. Optimization of sample preparation by central composite design for multi-class determination of veterinary drugs in bovine muscle, kidney and liver by ultra-high-performance liquid chromatographic-tandem mass spectrometry[J]. Food Chem, 2018, 246: 404-413. [8] SHIN D, KANG H S, JEONG J, et al. Multi-residue determination of veterinary drugs in fishery products using liquid chromatography-tandem mass spectrometry[J]. Food Anal Methods. 2018, 11: 1815-1831. [9] AMELIN V G, FEDINA N M, PODKOLZIN I V, et al. Rapid screening and determination of residual veterinary drugs in milk by ultra-high performance liquid chromatography-high-resolution quadrupole time-of-flight mass spectrometry[J]. J Anal Chem, 2018, 73(6): 576-585. [10] WANG B, LIU J H, YU J M, et al. Broad spectrum detection of veterinary drugs with a highly stable metal-organic framework [J]. J Hazard Mater, 2020, 382: 121018.1-121018.9. [11] SILVA W P, OLIVEIRA L H, SANTOS A L, et al. Sample preparation combined with electroanalysis to improve simultaneous determination of antibiotics in animal derived food samples[J]. Food Chem, 2018, 250: 7-13. [12] CASADO N, MORANTE-ZARCERO S, PÉREZ-QUINTANILLA D, et al. Application of a hybrid ordered mesoporous silica as sorbent for solid-phase multi-residue extraction of veterinary drugs in meat by ultra-high-performance liquid chromatography coupled to ion-trap tandem mass spectrometry[J]. J Chromatogr A, 2016, 1459: 24-37. [13] YAMAGUCHI T, KAKIMOTO K, NAGAYOSHI H, et al. Simultaneous determination of veterinary drugs in livestock products using dispersive and cartridge column solid-phase extraction by LC-MS/MS[J]. J Food Hyg Soc Jpn, 2013, 54(4): 290-297. [14] JUNG H N, PARK D H, YOO K H, et al. Simultaneous quantification of 12 veterinary drug residues in fishery products using liquid chromatography-tandem mass spectrometry[J]. Food Chem, 2021, 348(46): 129105. [15] HOFF R B, MOLOGNONI L, DEOLINDO C T P, et al. Determination of 62 veterinary drugs in feedingstuffs by novel pressurized liquid extraction methods and LC-MS/MS[J]. J Chromatogr B, 2020, 1152: 1222-1232. [16] KHALED A, GOMEZ-RIOS G A, PAWLISZYN J. Optimization of coated blade spray for rapid screening and quantitation of 105 veterinary drugs in biological tissue samples[J]. Anal Chem, 2020, 92(8): 5937-5943. [17] LEE J, KIM L, SHIN Y, et al. Rapid and simultaneous analysis of 360 pesticides in brown rice, spinach, orange, and potato using microbore GC-MS/MS[J]. Agric Food Chem, 2017, 65: 3387-3395. [18] GRIMALT S, DEHOUCK P J. Review of analytical methods for the determination of pesticide residues in grapes[J]. J Chromatogr A, 2016, 1433: 1-23. [19] ZHANG C Y, DENG Y C, ZHENG J F, et al. The application of the QuEChERS methodology in the determination of antibiotics in food: a review[J]. TrAC Trends Anal Chem, 2019,118: 517-537. [20] US Food & Drug Administration Office of Foods and Veterinary Medicine. Guidelines for the validation of chemical methods for the FDA FVM Program, 2nd edition, 2015[Z]. [21] 中国营养学会. 中国居民膳食指南[M]. 北京: 人民卫生出版社, 2016: 87-106. Chinese Nutrition Society. Chinese dietary guidelines[M]. Beijing: People′s Medical Publishing House, 2016: 87-106. [22] 杨月欣. 中国食物成分表[M]. 北京:北京大学医学出版社, 2018: 50. YANG Y X. China food composition tables[M]. Beijing: Peking University Medical Press, 2018: 50. [23] KIM L, LEE D, CHO H K, et al. Review of the QuEChERS method for the analysis of organic pollutants: persistent organic pollutants, polycyclic aromatic hydrocarbons, and pharmaceuticals[J]. Trends Environ Anal Chem, 2019, 22: e00063. [24] SCHENCK F J, CALLERY P, GANNETT P M, et al. Comparison of magnesium sulfate and sodium sulfate for removal ofwater from pesticide extracts of foods[J]. J AOAC Int, 2002,85: 1177-1180. [25] 徐芷怡, 陈梦婷, 侯锡爱, 等. QuEChERS-高效液相色谱-串联质谱法同时测定芝麻油中7 种农药残留[J]. 分析化学, 2020, 48(7): 928-936. XU Z Y, CHEN M T, HOU X A, et al. Simultaneous determination of seven pesticide residues in sesame oil using QuEChERS-high performance liquid chromatography-tandem mass spectrometry[J]. Chinese J Anal Chem, 2020, 48(7): 928-936. [26] 王思威, 刘艳萍, 孙海滨. 超高效液相色谱-串联质谱法测定荔枝花粉花蜜中吡唑醚菌酯及其代谢物[J]. 分析化学, 2018, 46(5): 704-709. WANG S W, LIU Y P, SUN H B. Determination of pyraclostrobin and its metabolite residues in pollens and honeys oflitchi by ultra performance liquid chromatography-tandem mass spectrometry[J]. Chinese J Anal Chem, 2018, 46(5): 704-709. [27] 徐炎炎, 李森, 张芹, 等. 气质联用和液质联用中基质效应的分析和总结[J]. 农药. 2017, 56(3): 162-167. XU Y Y, LI S, ZHANG Q, et al. Analysis and summary of matrix effects in GC-MS and LC-MS[J]. Agrochemals, 2017, 56(3): 162-167. [28] 韩梅,侯雪,邱世婷,等. QuEChERS-超高效液相色谱-四极杆/静电场轨道阱高分辨质谱测定蔬菜中61种农药残留[J]. 分析测试学报, 2019, 38(9): 1126-1131. HAN M, HOU X, QIU S T, et al. Determination of 61 pesticide residues in vegetables using QuEChERS-UPLC-quadrupole/electrostatic field orbitrap high resolution mass spectrometry[J]. J Instrum Anal, 2019, 38(9): 1126-1131. |