应用化学 ›› 2021, Vol. 38 ›› Issue (10): 1238-1254.DOI: 10.19894/j.issn.1000-0518.210372
罗龙飞1‡, 李玉洁2‡, 沈志豪1(), 郑世军2, 范星河1
收稿日期:
2021-07-29
接受日期:
2021-08-31
出版日期:
2021-10-01
发布日期:
2021-10-15
通讯作者:
沈志豪
作者简介:
‡共同第一作者
基金资助:
Long-Fei LUO1‡, Yu-Jie LI2‡, Zhi-Hao SHEN1(), Shi-Jun ZHENG2, Xing-He FAN1
Received:
2021-07-29
Accepted:
2021-08-31
Published:
2021-10-01
Online:
2021-10-15
Contact:
Zhi-Hao SHEN
About author:
zshen@pku.edu.cnSupported by:
摘要:
偶氮苯液晶嵌段共聚物(LCBCP)是指分子中含有偶氮苯液晶高分子的一类嵌段共聚物(BCP)。偶氮苯LCBCP因结合了BCP微相分离的特性、液晶高分子的液晶相结构以及偶氮苯基元的光响应性,在纳米技术、信息存储以及光子学等领域备受研究者的关注。本文概述了近年来偶氮苯LCBCP薄膜自组装及光响应性的研究进展,阐述了排除体积效应和聚合物的表面偏析原理及其对偶氮苯LCBCP薄膜组装结构的影响,介绍了不同光源类型,包括线偏振光、紫外光以及非偏振光,对偶氮苯LCBCP薄膜组装结构的光调控,并简要介绍了偶氮苯LCBCP薄膜的功能化应用。此外,本文还讨论了现阶段偶氮苯LCBCP薄膜自组装研究方面的挑战,并对未来的研究前景进行了展望。
中图分类号:
罗龙飞, 李玉洁, 沈志豪, 郑世军, 范星河. 偶氮苯液晶嵌段共聚物薄膜自组装和光响应性研究进展[J]. 应用化学, 2021, 38(10): 1238-1254.
Long-Fei LUO, Yu-Jie LI, Zhi-Hao SHEN, Shi-Jun ZHENG, Xing-He FAN. Progress in Self⁃assembly and Photo⁃responsiveness of Thin Films of Azobenzene⁃Based Liquid Crystalline Block Copolymers[J]. Chinese Journal of Applied Chemistry, 2021, 38(10): 1238-1254.
图1 (a)棒状液晶基元在固表面处的排除体积的示意图;(b)棒状的氰基联苯液晶基元在自由表面和固表面处排列的示意图[64]
Fig.1 (a) Schematic diagram of excluded volume between the molecules of rodlike mesogens and solid surface; (b) Schematic representation of the orientation of rod-like CB mesogens on free surface and solid surface[64]
图2 (a)不同厚度的CNA57B14-TFSI薄膜热退火后的形貌以及热退火前、后在350 nm处的吸收值[65]; (b)不同厚度的A101B22-TFSI薄膜溶剂蒸气退火后的形貌以及退火前、后在336 nm处的吸收值[20]
Fig.2 (a) Morphologies of CNA57B14-TFSI films with different thicknesses after thermal annealing and the absorption values at 350 nm before and after thermal annealing (Copyright 2021 American Chemical Society)[65]; (b) Morphologies of A101B22-TFSI films with different thicknesses after solvent vapor annealing and the absorption values at 336 nm before and after solvent vapor annealing (Copyright 2020 American Chemical Society)[20]
图3 (a)线偏振光诱导偶氮苯分子取向的示意图[57];(b)Az 单元中无效率光反应的方向[61];(c)含侧链型LCP的BCP中IMDS处液晶基元的取向[61]
Fig.3 (a) Schematic diagram of the orientation of azobenzene molecules induced by linearly polarized light (LPL)[57]; (b) Direction for nonefficient photoreaction in an Az unit[61]; (c) Orientation of LC mesogens in an IMDS of a BCP containing an LCP[61]
图4 均聚物PAz薄膜和嵌段共聚物PBMA-b-PAz薄膜中偶氮苯液晶基元排列的示意图(a:均聚物PAz;b:嵌段共聚物PBMA-b-PAz)[61]
Fig.4 Schematic diagrams of the arrangement of azobenzene mesogens in homopolymer PAz film and block copolymer PBMA-b-PAz film (a: homopolymer PAz; b: block copolymer PBMA-b-PAz)[61]
图5 (a)均聚物PAz以及嵌段共聚物PBMA-b-PAz和PS-b-PAz的化学结构;PBMA-b-PAz的表面偏析诱导的PAz薄膜(b)和PS-b-PAz薄膜(c)中偶氮苯液晶基元面内排列及光诱导其面内单轴取向的示意图[70]
Fig.5 (a) Chemical structures of homopolymer PAz and block copolymers PBMA-b-PAz and PS-b-PAz; Schematic diagrams of in-plane orientation induced by surface segregation of PBMA-b-PAz and photo-induced in-plane uniaxial alignment of azobenzene mesogens in PAz film (b) and PS-b-PAz film (c)[70]
图6 (a)辐照区域和非辐照区域中偶氮苯LCBCP薄膜中液晶基元及PEO纳米柱排列的示意图[36];(b)偶氮苯LCBCP薄膜经两个相干的线偏振光诱导产生的表面浮雕结构中不同厚度区域内PEO纳米柱的排列示意图[79];(c)不同厚度的偶氮苯LCBCP薄膜在线偏振光取向前、后在350 nm处的吸收值及线偏振光取向后的形貌[65]
Fig.6 (a) Schematic diagram of alignment of azobenzene mesogens and microphase-separated structures in the irradiated and unirradiated areas of the azobenzene LCBCP films[36]; (b) Schematic diagram of the arrangement of PEO cylinders in regions of different thicknesses in the surface-relief structures produced by two coherent LPL of the azobenzene LCBCP films[79]; (c) Absorption values of azobenzene LCBCP films with different thicknesses before and after being aligned with LPL and the morphologies of LPL aligned films[65]
图7 (a)线偏振光诱导取向结构重排的过程中各级有序结构排列的示意图[38]; (b)二嵌段共聚物和三嵌段共聚物的分子结构以及线偏振光诱导取向结构重排的示意图[40]
Fig.7 (a) Schematic diagram of the arrangement of various hierarchical structures in the process of the rearrangement of the oriented structure induced by LPL[38]; (b) Chemical structures of diblock copolymers and triblock copolymers and the rearrangement of the oriented structures induced by LPL[40]
图8 与1,2-DITFB复合前、后的PEO-b-PAzPy薄膜热退火后的形貌以及与1,2-DITFB复合后的PEO-b-PAzPy薄膜经过线偏振光诱导取向后的形貌[81]
Fig.8 Morphologies of the thermally annealed PEO-b-PAzPy films before and after being doped with 1,2-DITFB, and morphologies of PEO-b-PAzPy films doped with 1,2-DITFB after photo-alignment by LPL[81]
图9 紫外光辐照前、后PEO-b-PM11Az薄膜的形貌以及紫外光致相转变诱导PEO纳米柱取向转变的示意图[39]
Fig.9 Morphologies of PEO-b-PM11Az film before and after UV light irradiation and schematic diagram of the orientation transformation of PEO nanocylinders induced by the photo-induced phase transition[39]
图10 不同厚度的CNA57B14-TFSI薄膜在热退火和非偏振光取向后的形貌[65]
Fig.10 Morphologies of CNA57B14-TFSI thin films with different thicknesses after thermal annealing and unpolarized light (UPL) orientation[65]
图11 PDMS65-b-PAz35薄膜在热退火和非偏振光取向后的形貌示意图[82]
Fig.11 Schematic diagram of the morphologies of PDMS65-b-PAz35 thin films after thermal annealing and UPL orientation[82]
图12 P40A37的化学结构及记录在P40A37薄膜上的全息光栅热退火前后的结构示意图[12]
Fig.12 Chemical structure of P40A37 and schematic diagram of the structures of the holographic grating recorded on P40A37 thin film before and after annealing[12]
图13 (a)以光调控前后的偶氮苯LCBCP微相分离结构为模板制备图案化CaCO3纳米粒子的示意图[13];(b)以偶氮苯LCBCP为纳米模板制备的各向异性离子传导膜[28]
Fig.13 (a) Schematic diagrams of preparing patterned CaCO3 nanoparticles using the microphase-separated structures of azobenzene-based LCBCP before and after light regulation as the templates[13]; (b) Anisotropic ion-conducting membrane prepared with azobenzene-based LCBCP as a nanotemplate [28]
1 | BATES F S, FREDRICKSON G H. Block copolymer thermodynamics: theory and experiment[J]. 1990, 41(1): 525-557. |
2 | BATES F S. Polymer-polymer phase behavior[J]. Science, 1991, 251(4996): 898-905. |
3 | BATES F S, FREDRICKSON G H. Block copolymers\u2014 designer soft materials[J]. Phys Today, 1999, 52(2): 32-38. |
4 | LYU X, TANG Z, LI Y, et al. Tailored polymer particles with ordered network structures in emulsion droplets[J]. Langmuir, 2021, 37(1): 509-515. |
5 | XU Y, HU W. Formation of multicontinuous 3D network nanostructures with increased complexity in ABC-type block copolymers[J]. Langmuir, 2020, 36(38): 11324-11331. |
6 | KIM D H, SUH A, PARK G, et al. Nanoscratch-directed self-assembly of block copolymer thin films[J]. ACS Appl Mater Interfaces, 2021, 13(4): 5772-5781. |
7 | YU B, LI R, SEGALMAN R A. Tuning the double gyroid phase window in block copolymers via polymer chain conformation near the interface[J]. Macromolecules, 2021, 54(12): 5388-5396. |
8 | MARTIN J M, LI W, DELANEY K T, et al. SCFT study of diblock copolymer melts in electric fields: selective stabilization of orthorhombic fddd network phase[J]. Macromolecules, 2018, 51(9): 3369-3378. |
9 | WANG Q, GU K H, ZHANG Z, et al. Morphologies and photonic properties of an asymmetric brush block copolymer with polystyrene and polydimethylsiloxane side chains[J]. Polymer, 2018, 156: 169-178. |
10 | YANG Y, KIM H, XU J, et al. Responsive block copolymer photonic microspheres[J]. Adv Mater, 2018, 30(21): 1707344. |
11 | HÄCKEL M, KADOR L, KROPP D, et al. Holographic gratings in diblock copolymers with azobenzene and mesogenic side groups in the photoaddressable dispersed phase[J]. Adv Funct Mater, 2005, 15(10): 1722-1727. |
12 | YU H, OKANO K, SHISHIDO A, et al. Enhancement of surface-relief gratings recorded on amphiphilic liquid-crystalline diblock copolymer by nanoscale phase separation[J]. Adv Mater, 2005, 17(18): 2184-2188. |
13 | CAI F, CHEN Y X, WANG W Z, et al. Macroscopic regulation of hierarchical nanostructures in liquid-crystalline block copolymers towards functional materials[J]. Chinese J Polym Sci, 2021, 39(4): 397-416. |
14 | XIAO S, YANG X, EDWARDS E W, et al. Graphoepitaxy of cylinder-forming block copolymers for use as templates to pattern magnetic metal dot arrays[J]. Nanotechnology, 2005, 16(7): S324-S329. |
15 | YU H, NAKA Y, SHISHIDO A, et al. Well-defined liquid-crystalline diblock copolymers with an azobenzene moiety: synthesis, photoinduced alignment and their holographic properties[J]. Macromolecules, 2008, 41(21): 7959-7966. |
16 | CHAI J, WANG D, FAN X, et al. Assembly of aligned linear metallic patterns on silicon[J]. Nat Nanotechnol, 2007, 2(8): 500-506. |
17 | CROSSLAND E J W, KAMPERMAN M, NEDELCU M, et al. A bicontinuous double gyroid hybrid solar cell[J]. Nano Lett, 2009, 9(8): 2807-2812. |
18 | CHEN A, KOMURA M, KAMATA K, et al. Highly ordered arrays of mesoporous silica nanorods with tunable aspect ratios from block copolymer thin films[J]. Adv Mater, 2008, 20(4): 763-767. |
19 | BARAD H N, KWON H, ALARCÓN-CORREA M, et al. Large area patterning of nanoparticles and nanostructures: current status and future prospects[J]. ACS Nano, 2021, 15(4): 5861-5875. |
20 | LUO L, LYU X, TANG Z, et al. Thin-film self-assembly of block copolymers containing an azobenzene-based liquid crystalline polymer and a poly(ionic liquid)[J]. Macromolecules, 2020, 53(21): 9619-9630. |
21 | ZHANG Y D, PING J, WU Q W, et al. Bulk self-assembly and ionic conductivity of a block copolymer containing an azobenzene-based liquid crystalline polymer and a poly(ionic liquid)[J]. Polym Chem, 2017, 8(10): 1689-1698. |
22 | KAMBE Y, ARGES C G, CZAPLEWSKI D A, et al. Role of defects in ion transport in block copolymer electrolytes[J]. Nano Lett, 2019, 19(7): 4684-4691. |
23 | ARGES C G, KAMBE Y, SUH H S, et al. Perpendicularly aligned, anion conducting nanochannels in block copolymer electrolyte films[J]. Chem Mater, 2016, 28(5): 1377-1389. |
24 | JIN C, OLSEN B C, LUBER E J, et al. Nanopatterning via solvent vapor annealing of block copolymer thin films[J]. Chem Mater, 2017, 29(1): 176-188. |
25 | SINTUREL C, VAYER M, MORRIS M, et al. Solvent vapor annealing of block polymer thin films[J]. Macromolecules, 2013, 46(14): 5399-5415. |
26 | BODYCOMB J, FUNAKI Y, KIMISHIMA K, et al. Single-grain lamellar microdomain from a diblock copolymer[J]. Macromolecules, 1999, 32(6): 2075-2077. |
27 | ASAOKA S, UEKUSA T, TOKIMORI H, et al. Normally oriented cylindrical nanostructures in amphiphilic PEO-LC diblock copolymers films[J]. Macromolecules, 2011, 44(19): 7645-7658. |
28 | LI J, KAMATA K, KOMURA M, et al. Anisotropic ion conductivity in liquid crystalline diblock copolymer membranes with perpendicularly oriented PEO cylindrical domains[J]. Macromolecules, 2007, 40(23): 8125-8128. |
29 | MAJEWSKI P W, GOPINADHAN M, JANG W S, et al. Anisotropic ionic conductivity in block copolymer membranes by magnetic field alignment[J]. J Am Chem Soc, 2010, 132(49): 17516-17522. |
30 | THURN-ALBRECHT T, DEROUCHEY J, RUSSELL T P, et al. Overcoming interfacial interactions with electric fields[J]. Macromolecules, 2000, 33(9): 3250-3253. |
31 | JO S, JEON S, KIM H, et al. Balanced interfacial interactions for fluoroacrylic block copolymer films and fast electric field directed assembly[J]. Chem Mater, 2020, 32(22): 9633-9641. |
32 | KATHREIN C C, BAI W, CURRIVAN-INCORVIA J A, et al. Combining graphoepitaxy and electric fields toward uniaxial alignment of solvent-annealed polystyrene-b-poly(dimethylsiloxane) block copolymers[J]. Chem Mater, 2015, 27(19): 6890-6898. |
33 | HAN E, KANG H, LIU C C, et al. Graphoepitaxial assembly of symmetric block copolymers on weakly preferential substrates[J]. Adv Mater, 2010, 22(38): 4325-4329. |
34 | SHI L Y, LEE S, CHENG L C, et al. Thin film self-assembly of a silicon-containing rod-coil liquid crystalline block copolymer[J]. Macromolecules, 2019, 52(2): 679-689. |
35 | SHI L Y, LEE S, DU Q, et al. Bending behavior and directed self-assembly of rod-coil block copolymers[J]. ACS Appl Mater Interfaces, 2021, 13(8): 10437-10445. |
36 | YU H, IYODA T, IKEDA T. Photoinduced alignment of nanocylinders by supramolecular cooperative motions[J]. J Am Chem Soc, 2006, 128(34): 11010-11011. |
37 | YU H, KOBAYASHI T, HU G H. Photocontrolled microphase separation in a nematic liquid-crystalline diblock copolymer[J]. Polymer, 2011, 52(7): 1554-1561. |
38 | SANO M, NAKAMURA S, HARA M, et al. Pathways toward photoinduced alignment switching in liquid crystalline block copolymer films[J]. Macromolecules, 2014, 47(20): 7178-7186. |
39 | WANG T, LI X, DONG Z, et al. Vertical orientation of nanocylinders in liquid-crystalline block copolymers directed by light[J]. ACS Appl Mater Interfaces, 2017, 9(29): 24864-24872. |
40 | SANO M, SHAN F, HARA M, et al. Dynamic photoinduced realignment processes in photoresponsive block copolymer films: effects of the chain length and block copolymer architecture[J]. Soft Matter, 2015, 11(29): 5918-5925. |
41 | SANO M, HARA M, NAGANO S, et al. New aspects for the hierarchical cooperative motions in photoalignment process of liquid crystalline block copolymer films[J]. Macromolecules, 2015, 48(7): 2217-2223. |
42 | YU H, IKEDA T. Photocontrollable liquid-crystalline actuators[J]. Adv Mater, 2011, 23(19): 2149-2180. |
43 | YANG B, CAI F, HUANG S, et al. Athermal and soft multi-nanopatterning of azopolymers: phototunable mechanical properties[J]. Angew Chem Int Ed, 2020, 59(10): 4035-4042. |
44 | LIU J, WANG Y, WANG J, et al. Inkless rewritable photonic crystals paper enabled by a light-driven azobenzene mesogen switch[J]. ACS Appl Mater Interfaces, 2021, 13(10): 12383-12392. |
45 | WANG C, DONG W, LI P, et al. Reversible ion-conducting switch by azobenzene molecule with light-controlled sol-gel transitions of the pnipam ion gel[J]. ACS Appl Mater Interfaces, 2020, 12(37): 42202-42209. |
46 | ZHANG P, LAN Z, WEI J, et al. Photodeformable azobenzene-containing polyimide with flexible linkers and molecular alignment[J]. ACS Macro Lett, 2021, 10(4): 469-475. |
47 | ZHOU H, XUE C, WEIS P, et al. Photoswitching of glass transition temperatures of azobenzene-containing polymers induces reversible solid-to-liquid transitions[J]. Nat Chem, 2016, 9: 145. |
48 | ITO S, YAMASHITA A, AKIYAMA H, et al. Azobenzene-based (meth) acrylates: controlled radical polymerization, photoresponsive solid⁃liquid phase transition behavior, and application to reworkable adhesives[J]. Macromolecules, 2018, 51(9): 3243-3253. |
49 | WANG C, LI P, ZHANG S, et al. Azobenzene molecular trigger controlling phase transitions of pnipam in ionic liquids and light-controlled adhesiveness[J]. Macromolecules, 2020, 53(12): 4901-4907. |
50 | MA S, LI X, HUANG S, et al. A light-activated polymer composite enables on-demand photocontrolled motion: transportation at the liquid/air interface[J]. Angew Chem Int Ed, 2019, 58(9): 2655-2659. |
51 | YAGER K G, TANCHAK O M, GODBOUT C, et al. Photomechanical effects in azo-polymers studied by neutron reflectometry[J]. Macromolecules, 2006, 39(26): 9311-9319. |
52 | BUSHUYEV O S, AIZAWA M, SHISHIDO A, et al. Shape-shifting azo dye polymers: towards sunlight-driven molecular devices[J]. Macromol Rapid Comm, 2018, 39(1): 1700253. |
53 | CHENG Z, WANG T, LI X, et al. NIR-Vis-UV light-responsive actuator films of polymer-dispersed liquid crystal/graphene oxide nanocomposites[J]. ACS Appl Mater Interfaces, 2015, 7(49): 27494-27501. |
54 | NASROLLAHI A, KUMAR V, LEE M H, et al. Polyimide-free planar alignment of nematic liquid crystals: sequential interfacial modifications through dual-wavelength in situ photoalignment[J]. ACS Appl Mater Interfaces, 2019, 11(16): 15141-15151. |
55 | KUMAR V, YE Z, JIANG H, et al. Highly stable, pretilted homeotropic alignment of liquid crystals enabled by in situ self-assembled, dual-wavelength photoalignment[J]. ACS Appl Electron Mater, 2020, 2(7): 2017-2025. |
56 | MORIKAWA Y, KONDO T, NAGANO S, et al. Photoinduced 3D ordering and patterning of microphase-separated nanostructure in polystyrene-based block copolymer[J]. Chem Mater, 2007, 19(7): 1540-1542. |
57 | YU H. Photoresponsive liquid crystalline block copolymers: from photonics to nanotechnology[J]. Prog Polym Sci, 2014, 39(4): 781-815. |
58 | 朱煜, 王晓工. 偶氮液晶嵌段共聚物自组装和光响应性研究进展[J]. 高分子学报, 2013(8): 962-970. |
ZHU Y, WANG X G. Recent developments in liquid crystalline azo block copolymers: self-assembly and photoresponsive properties[J]. Acta Polym Sin, 2013(8): 962-970. | |
59 | 王添洁, 于海峰. 光响应性液晶嵌段聚合物基功能材料的研究[J]. 液晶与显示, 2015, 30(4): 543-552. |
WANG T J, YU H F. Progress in photoresponsive liquid-crystalline block copolymer[J]. Chinese J Liquid Cryst Dis, 2015, 30(4): 543-552. | |
60 | OKANO K. Anisotropic excluded volume effect and alignment of nematic liquid crystal in a sandwich cell[J]. Jpn J Appl Phys, 1983, 22(2): L343-L344. |
61 | NAGANO S. Random planar orientation in liquid-crystalline block copolymers with azobenzene side chains by surface segregation[J]. Langmuir, 2019, 35(17): 5673-5683. |
62 | GRELET E, BOCK H. Control of the orientation of thin open supported columnar liquid crystal films by the kinetics of growth[J]. Europhys Lett (EPL), 2006, 73(5): 712-718. |
63 | KIMURA H, NAKANO H. Statistical theory of surface tension and molecular orientations at the free surface in nematic liquid crystals[J]. J Phys Soc Jpn, 1985, 54(5): 1730-1736. |
64 | TANAKA D, MIZUNO T, HARA M, et al. Evaluations of mesogen orientation in thin films of polyacrylate with cyanobiphenyl side chain[J]. Langmuir, 2016, 32(15): 3737-3745. |
65 | LUO L, TANG Z, YANG W, et al. Thickness-dependent photo-aligned thin-film morphologies of a block copolymer containing an azobenzene-based liquid crystalline polymer and a poly(ionic liquid)[J]. Langmuir, 2021, 37(32): 9774-9784. |
66 | BHATIA Q S, PAN D H, KOBERSTEIN J T. Preferential surface adsorption in miscible blends of polystyrene and poly(vinyl methyl ether)[J]. Macromolecules, 1988, 21(7): 2166-2175. |
67 | HUANG E, RUSSELL T P, HARRISON C, et al. Using surface active random copolymers to control the domain orientation in diblock copolymer thin films[J]. Macromolecules, 1998, 31(22): 7641-7650. |
68 | YOKOYAMA H, TANAKA K, TAKAHARA A, et al. Surface structure of asymmetric fluorinated block copolymers[J]. Macromolecules, 2004, 37(3): 939-945. |
69 | YOKOYAMA H, MIYAMAE T, HAN S, et al. Spontaneously formed hydrophilic surfaces by segregation of block copolymers with water-soluble blocks[J]. Macromolecules, 2005, 38(12): 5180-5189. |
70 | FUKUHARA K, FUJII Y, NAGASHIMA Y, et al. Liquid-crystalline polymer and block copolymer domain alignment controlled by free-surface segregation[J]. Angew Chem Int Ed, 2013, 52(23): 5988-5991. |
71 | FUKUHARA K, HARA M, NAGANO S, et al. Free surface-induced planar orientation in liquid crystalline block copolymer films: on the design of additive surface active polymer layer[J]. Mol Cryst Liq Cryst, 2014, 601(1): 11-19. |
72 | FUKUHARA K, NAGANO S, HARA M, et al. Free-surface molecular command systems for photoalignment of liquid crystalline materials[J]. Nat Commun, 2014, 5(1): 3320. |
73 | NAGANO S. Inducing planar orientation in side-chain liquid-crystalline polymer systems via interfacial control[J]. Chem Rec, 2016, 16(1): 378-392. |
74 | MAO G, OBER C K. Block copolymers containing liquid crystalline segments[J]. Acta Polym, 1997, 48(10): 405-422. |
75 | TOKITA M, ADACHI M A, MASUYAMA S, et al. Characteristic shear-flow orientation in LC block copolymer resulting from compromise between orientations of microcylinder and LC mesogen[J]. Macromolecules, 2007, 40(20): 7276-7282. |
76 | TIAN Y, WATANABE K, KONG X, et al. Synthesis, nanostructures, and functionality of amphiphilic liquid crystalline block copolymers with azobenzene moieties[J]. Macromolecules, 2002, 35(9): 3739-3747. |
77 | MOTONORI K, KAZUHITO W, TOMOKAZU I, et al. Laboratory-GISAXS measurements of block copolymer films with highly ordered and normally oriented nanocylinders[J]. Chem Lett, 2009, 38(5): 408-409. |
78 | NAGANO S, KOIZUKA Y, MURASE T, et al. Synergy effect on morphology switching: real-time observation of photo-orientation of microphase separation in a block copolymer[J]. Angew Chem Int Ed, 2012, 51(24): 5884-5888. |
79 | MORIKAWA Y, NAGANO S, WATANABE K, et al. Optical alignment and patterning of nanoscale microdomains in a block copolymer thin film[J]. Adv Mater, 2006, 18(7): 883-886. |
80 | HUANG S, PANG L, CHEN Y, et al. Hydrogen bond induces hierarchical self-assembly in liquid-crystalline block copolymers[J]. Macromol Rapid Commun, 2018, 39(6): 1700783. |
81 | CHEN Y, HUANG S, WANG T, et al. Enhanced ordering and efficient photoalignment of nanostructures in block copolymers enabled by halogen bond[J]. Macromolecules, 2020, 53(4): 1486-1493. |
82 | 李玉洁, 罗龙飞, 沈志豪, 等. 非偏振光诱导含聚二甲基硅氧烷的偶氮苯液晶嵌段共聚物薄膜微相分离结构的垂直取向[J]. 高分子学报, 2021, DOI: 10.11777/j.issn1000-3304.2021.21158. |
LI Y J, LUO L F, SHEN Z H, et al. Perpendicular orientation of polydimethylsiloxane nanocylinders in thin film of a liquid crystalline block copolymer induced by unpolarized light[J]. Acta Polym Sin, 2021, DOI: 10.11777/j.issn1000-3304.2021.21158. | |
83 | CHEN Q, BAE S C, GRANICK S. Directed self-assembly of a colloidal kagome lattice[J]. Nature, 2011, 469(7330): 381-384. |
84 | CARLSON A, BOWEN A M, HUANG Y, et al. Transfer printing techniques for materials assembly and micro/nanodevice fabrication[J]. Adv Mater, 2012, 24(39): 5284-5318. |
85 | QIAO W, HUANG W, LIU Y, et al. Toward scalable flexible nanomanufacturing for photonic structures and devices[J]. Adv Mater, 2016, 28(47): 10353-10380. |
86 | CHEN Y, HUANG S, WANG T, et al. Confined self-assembly enables stabilization and patterning of nanostructures in liquid-crystalline block copolymers[J]. Macromolecules, 2019, 52(4): 1892-1898. |
[1] | 胡晓华, 熊诗圣. 先进光刻技术:导向自组装[J]. 应用化学, 2021, 38(9): 1029-1078. |
[2] | 田昕, 赖翰文, 刘亚栋, 季生象. 基于卷积运算的嵌段共聚物自组装图像缺陷分析统计方法[J]. 应用化学, 2021, 38(9): 1199-1208. |
[3] | 陈爱华, 张承鋆, 邓子超, 孙亚兰. 液晶嵌段共聚物液相自组装体的结构调控[J]. 应用化学, 2021, 38(10): 1255-1267. |
[4] | 张昭永, 李谦, 王大霖, 方江邻, 谌东中. 含侧链盘状苯并菲和棒状偶氮苯的二嵌段液晶共聚物的可控合成及其光物理性质[J]. 应用化学, 2021, 38(10): 1340-1352. |
[5] | 张昭永, 李谦, 王大霖, 方江邻, 谌东中. 含侧链盘状苯并菲和棒状偶氮苯的二嵌段液晶共聚物的可控合成及其光物理性质[J]. 应用化学, 2021, 38(10): 0-0. |
[6] | 张艳慧, 王琳, 阿孜古丽·木尔赛力木, 兰海蝶. 聚苯乙烯-b-聚丙烯酸模板剂成核段长度对聚苯胺尺寸及性能的影响[J]. 应用化学, 2020, 37(7): 764-771. |
[7] | 李茂盛, 陈金龙, 陶友华. 氨基酸功能化环辛烯单体的区域及立体选择性开环易位聚合[J]. 应用化学, 2020, 37(3): 280-292. |
[8] | 张潇飒, 季生象. 柱状相聚苯乙烯-b-聚乳酸的合成及引导组装[J]. 应用化学, 2018, 35(12): 1420-1426. |
[9] | 许裕忠,童永芬,谈利承,陈义旺. 锂电池用嵌段共聚物电解质的研究进展[J]. 应用化学, 2017, 34(3): 245-261. |
[10] | 郑超, 黄海瑛, 何天白. 梯度共聚物研究进展[J]. 应用化学, 2014, 31(11): 1237-1247. |
[11] | 齐印, 袁金芳, 高青雨. 嵌段共聚物聚(异丙基丙烯酰胺)-b-聚(双丙酮丙烯酰胺)制备及其对叶酸的载负和释放[J]. 应用化学, 2014, 31(06): 642-648. |
[12] | 周俊晖, 吴起, 刘和文. 含1,2,3-三氮唑官能团嵌段共聚物的制备及其蛋白质的吸附[J]. 应用化学, 2012, 29(05): 515-519. |
[13] | 柳建新, 周薇, 刘义刚, 郭拥军, 冯茹森, 舒炼. 疏水缔合聚合物在石英砂表面的吸附——疏水基含量和微嵌段长度对吸附的影响[J]. 应用化学, 2011, 28(07): 785-790. |
[14] | 陈炜, 李昊, 张炎, 许戈文, 黄毅萍. 端羟基聚丙烯酸酯改性水性聚氨酯[J]. 应用化学, 2010, 27(08): 875-881. |
[15] | 张普玉, 钟雪丽, 刘洋. PVP-b-PMAA对CaCO3结晶形态的影响[J]. 应用化学, 2008, 25(9): 1052-1056. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||