[1] | Goodenough J B.Electrochemical Energy Storage in a Sustainable Modern Society[J]. Energy Environ Sci,2014,7(4):14-18. | [2] | Tarascon J M,Armand M.Issues and Challenges Facing Rechargeable Lithium Batteries[J]. Nature,2001,414(6861):359-367. | [3] | Tran T D,Feikert J H,Pekala R W.Rate Effect on Lithium-Ion Graphite Electrode Performance[J]. J Appl Electrochem,1996,26(11):1161-1167. | [4] | He M,Kravchyk K,Walter M,Kovalenko M V.Monodisperse Antimony Nanocrystals for High-Rate Li-Ion and Na-Ion Battery Anodes:Nano Versus Bulk[J]. Nano Lett,2014,14(3):1255-1262. | [5] | ZHAO Lingzhi,HU Shequn,TIAN Qin.Influence of Sputtering Power on Cyclic Performance of Sb Thin Films as Anodes of Lithium Ion Battery[J]. Chinese J Power Sources,2009,33(8):652-654(in Chinese). 赵灵智,胡社军,田琴. 溅射功率对Sb薄膜负极材料循环性能的影响[J]. 电源技术,2009,33(8):652-654. | [6] | LAI Xinfang,ZHAO Lingzhi,RU Qiang,et al. Influence of Sputtering Time on Cyclic Performance of Sb Thin Films as Anodes of Lithium Ion Battery[J]. Chinese J Power Sources,2010,34(4):379-381(in Chinese). 赖新方,赵灵智,汝强,等. 溅射时间对Sb薄膜负极材料循环性能的影响[J]. 电源技术,2010,34(4):379-381. | [7] | Kim H,Cho J.Template Synthesis of Hollow Sb Nanoparticles as a High-Performance Lithium Battery Anode Material[J]. Chem Mater,2008,20(5):1679-1681. | [8] | Hou H S,Jing M J,Ji X B,et al. Sodium/Lithium Storage Behavior of Antimony Hollow Nanospheres for Rechargeable Batteries[J]. ACS Appl Mater Interfaces,2014,6(18):16189-16196. | [9] | Ramireddy T,Rahman M M,Glushenkov A M,et al. Stable Anode Performance of an Sb-Carbon Nanocomposite in Lithium-Ion Batteries and the Effect of Ball Milling Mode in the Course of Its Preparation[J]. J Mater Chem A,2014,2(12):4282-4291. | [10] | Fan L,Zhu Y C,Qian Y T,et al. Electrochemical Performance of Rod-Like Sb-C Composite as Anodes for Li-Ion and Na-Ion Batteries[J]. J Mater Chem A,2015,3(7):3276-3280. | [11] | Liu J,Yu Y,Zhu M,et al. New Nanoconfined Galvanic Replacement Synthesis of Hollow Sb@C Yolk-Shell Spheres Constituting a Stable Anode for High-Rate Li/Na-Ion Batteries[J]. Nano Lett,2017,17(3):2034-2042. | [12] | Lv H L,Qiu S,Lu G X,et al. Nanostructured Antimony/Carbon Composite Fibers as Anode Material for Lithium-Ion Battery[J]. Electrochim Acta,2015,151:214-221. | [13] | He X M,Pu W H,Wang L,et al. Synthesis of Nano Sb-encapsulated Pyrolytic Polyacrylonitrile Composite for Anode Material in Lithium Secondary Batteries[J]. Electrochim Acta,2007,52(11):3651-3653. | [14] | Nuli Y,Yang J,Jiang M S,et al. Synthesis and Characterization of Sb/CNT and Bi/CNT Composites as Anode Materials for Lithium-Ion Batteries[J]. Mater Lett,2008,62(14):2092-2095. | [15] | Yi Z,Han Q G,Cheng Y,et al. A Novel Strategy to Prepare Sb Thin Film Sandwiched Between the Reduced Graphene Oxide and Ni Foam as Binder-Free Anode Material for Lithium-Ion Batteries[J]. Electrochim Acta,2016,190:804-810. | [16] | Yi Z,Han Q G,Ju S S,et al. Fabrication of One-Dimensional Sb@TiO2 Composites as Anode Materials for Lithium-Ion Batteries[J]. J Electrochem Soc,2016,163(13):A2641-A2646. | [17] | Sung J H,Park C M.Sb-based Nanostructured Composite with Embedded TiO2 for Li-Ion Battery Anodes[J]. Mater Lett,2013,98(5):15-18. | [18] | Allcorn E,Manthiram A.FeSb2-Al2O3-C Nanocomposite Anodes for Lithium-Ion Batteries[J]. ACS Appl Mater Interfaces,2014,6(14):10886-10891. | [19] | Leibowitz J,Allcorn E,Manthiram A.SnSb-TiC-C Nanocomposite Alloy Anodes for Lithium-Ion Batteries[J]. J Power Sources,2015,279:549-554. | [20] | Park C M,Sohn H J.Electrochemical Characteristics of TiSb2 and Sb/TiC/C Nanocomposites as Anodes for Rechargeable Li-Ion Batteries[J]. J Electrochem Soc,2010,157(1):A46-A49. | [21] | Park M G,Song J H,Sohn J S,et al. Co-Sb Intermetallic Compounds and Their Disproportionated Nanocomposites as High-Performance Anodes for Rechargeable Li-Ion Batteries[J]. J Mater Chem A,2014,2(29):11391-11399. | [22] | Zhu J X,Sun T,Chen J S,et al. Controlled Synthesis of Sb Nanostructures and Their Conversion to CoSb3 Nanoparticle Chains for Li-Ion Battery Electrodes[J]. Chem Mater,2010,22(18):5333-5339. | [23] | Yang Y W,Chen Y B,Liu F,et al. Template-based Fabrication and Electrochemical Performance of CoSb Nanowire Arrays[J]. Electrochim Acta,2011,56(18):6420-6425. | [24] | Allcorn E,Kim S O,Manthiram A.Thermal Stability of Active/Inactive Nanocomposite Anodes Based on Cu2Sb in Lithium-Ion Batteries[J]. J Power Sources,2015,299:501-508. | [25] | Morcrette M,Larcher D,Tarascon J M,et al. Influence of Electrode Microstructure on the Reactivity of Cu2Sb with Lithium[J]. Electrochim Acta,2007,52:5339-5345. | [26] | Villevieille C,Bousquet C M I,Fraisse B,et al. Comparative Study of NiSb2 and FeSb2 as Negative Electrodes for Li-Ion Batteries[J]. Solid State Ionics,2011,192(1):351-355. | [27] | Liu J,Yang Z Z,Wang J Q,et al. Three-dimensionally Interconnected Nickel-Antimony Intermetallic Hollow Nanospheres as Anode Material for High-Rate Sodium-Ion Batteries[J]. Nano Energy,2015,16:389-398. | [28] | Hou H S,Cao X Y,Yang Y C,et al. NiSb Alloy Hollow Nanospheres as Anode Materials for Rechargeable Lithium Ion Batteries[J]. Chem Commun,2014,50(60):8201-8203. | [29] | Allcorn E,Manthiram A.FeSb2-Al2O3-C Nanocomposite Anodes for Lithium-Ion Batteries[J]. ACS Appl Mater Interfaces,2014,6(14):10886-10891. | [30] | Baggetto L,Allcorn E,Unocic R R,et al. Mo3Sb7 as a Very Fast Anode Material for Lithium-Ion and Sodium-Ion Batteries[J]. J Mater Chem A,2013,1(37):11163-11169. | [31] | Applestone D,Yoon S,Manthiram A.Mo3Sb7-C Composite Anodes for Lithium-Ion Batteries[J]. J Phys Chem C,2011,115(38):18909-18915. | [32] | Xu J J,Wu H Y,Wang F,et al. Zn4Sb3 Nanotubes as Lithium Ion Battery Anodes with High Capacity and Cycling Stability[J]. Adv Energy Mater,2013,3(3):286-289. | [33] | Shiva K,Rajendra H B,Bhattacharyya A J.Electrospun SnSb Crystalline Nanoparticles Inside Porous Carbon Fibers as a High Stability and Rate Capability Anode for Rechargeable Batteries[J]. ChemPlusChem,2015,80(3):516-521. | [34] | Hassoun J,Derrien G,Panero S,et al. A SnSb-C Nanocomposite as High Performance Electrode for Lithium Ion Batteries[J]. Electrochim Acta,2009,54(19):4441-4444. | [35] | Fan L,Zhang J J,Zhu Y C,et al. Comparison Between SnSb-C and Sn-C Composites as Anode Materials for Lithium-Ion Batteries[J]. RSC Adv,2014,4(107):62301-62307. | [36] | Hewitt K C,Beaulieu L Y,Dahn J R.Electrochemistry of InSb as a Li Insertion Host Problems and Prospects[J]. J Electrochem Soc,2001,148(5):A402-A410. | [37] | Honda H,Sakaguchi H,Fukuda Y,et al. Anode Behaviors of Aluminum Antimony Synthesized by Mechanical Alloying for Lithium Secondary Battery[J]. Mater Res Bull,2003,38(4):647-656. | [38] | Zhou J,Zheng C H,Wang H,et al. 3D Nest-shaped Sb2O3/RGO Composite Based High-Performance Lithium-Ion Batteries[J]. Nanoscale,2016,8(39):17131-17135. | [39] | Ansari Y,Guo B K,Cho J H,et al. Low-cost, Dendrite-Blocking Polymer-Sb2O3 Separators for Lithium and Sodium Batteries[J]. J Electrochem Soc,2014,161(10):A1655-A1661. | [40] | Bryngelsson H,Eskhult J,Nyholm L,et al. Electrodeposited Sb and Sb/Sb2O3 Nanoparticle Coatings as Anode Materials for Li-Ion Batteries[J]. Chem Mater,2007,19(5):1170-1180. | [41] | Zhou X Z,Zhang Z F,Wang J W,et al. Sb2O4/reduced Graphene Oxide Composite as High-Performance Anode Material for Lithium Ion Batteries[J]. J Alloy Compd,2017,699:611-618. | [42] | Yi Z,Han Q G,Li X,et al. Two-Step Oxidation of Bulk Sb to One-dimensional Sb2O4 Submicron-Tubes as Advanced Anode Materials for Lithium-Ion and Sodium-Ion Batteries[J]. Chem Eng J,2017,315:101-107 | [43] | LV Chengxue,CHU Jiayi,ZHAI Yuchun,et al. Researches on the Antimony-based Composite Oxide as Anode Materials for Lithium Ion Battery[J]. J Harbin Inst Technol,2004,36(10):1307-1309(in Chinese). 吕成学,褚嘉宜,翟玉春,等. 锂离子电池锑基复合氧化物负极材料的研究[J]. 哈尔滨工业大学学报,2004,36(10):1307-1309. | [44] | Li J M,Du K,Lai Y Q,et al. ZnSb2O6:An Advanced Anode Material for Li-ion Batteries[J]. J Mater Chem A,2017,5(22):10843-10848. | [45] | Yan C S,Chen G,Chen D H,et al. Double Surfactant-directed Controllable Synthesis of Sb2S3 Crystals with Comparable Electrochemical Performances[J]. CrystEngComm,2014,16(33):7753-7760. | [46] | Hong J L,Wei H,Xia D G,et al. High-Performance Sb2S3/Sb Anode Materials for Li-Ion Batteries[J]. Mater Lett,2016,179:114-117. | [47] | Zhou X Z,Bai L H,Yan J,et al. Solvothermal Synthesis of Sb2S3/C Composite Nanorods with Excellent Li-Storage Performance[J]. Electrochim Acta,2013,108(10):17-21. | [48] | Yi Z,Han Q G,Cheng Y,et al. Facile Synthesis of Symmetric Bundle-like Sb2S3 Micron-Structures and Their Application in Lithium-Ion Battery Anodes[J]. ChemComm,2016,52(49):7691-7694. | [49] | Zhu Y Y,Nie P,Shen L F,et al. High Rate Capability and Superior Cycle Stability of a Flower-like Sb2S3 Anode for High-Capacity Sodium Ion Batteries[J]. Nanoscale,2015,7(7):3309-3315. | [50] | Park C M,Hwa Y,Sung N E,et al. Stibnite(Sb2S3) and Its Amorphous Composite as Dual Electrodes for Rechargeable Lithium Batteries[J]. J Mater Chem,2010,20(6):1097-1102. | [51] | Prikhodchenko P V,Gun J,Sladkevich,et al. Conversion of Hydroperoxoantimonate Coated Graphenes to Sb2S3@Graphene for a Superior Lithium Battery Anode[J]. Chem Mater,2012,24(24):4750-4757. | [52] | Luo W,Calas A,Tang C J,et al. Ultralong Sb2Se3 Nanowire-based Free-Standing Membrane Anode for Lithium/Sodium Ion Batteries[J]. ACS Appl Mater Interfaces,2016,8(51):35219-35226. | [53] | Ma J M,Wang Y P,Wang Y J,et al. One-dimensional Sb2Se3 Nanostructures: Solvothermal Synthesis, Growth Mechanism, Optical and Electrochemical Properties[J]. CrystEngComm,2011,13(7):2369-2374. | [54] | Xue M Z,Fu Z W.Pulsed Laser Deposited Sb2Se3 Anode for Lithium-Ion Batteries[J]. J Alloy Compd,2008,458(1):351-356. | [55] | Yu L,Chen J,Fu Z W.Pulsed Laser Deposited Heterogeneous Mixture of Li2Se-Sb2Se3 Nanocomposite as a New Storage Lithium Material[J]. Electrochim Acta,2010,55(3):1258-1264. |
|