应用化学 ›› 2025, Vol. 42 ›› Issue (12): 1608-1618.DOI: 10.19894/j.issn.1000-0518.250345
王新宇1, 于洋1, 田龙1, 曾繁明2, SHELEG Valery-Konstantinovich3, KRAVCHUK Marina-Anatolyevna3, 宋术岩1(
), 冯婧1(
), 张洪杰1(
)
收稿日期:2025-09-04
接受日期:2025-09-24
出版日期:2025-12-01
发布日期:2025-12-30
通讯作者:
宋术岩,冯婧,张洪杰
作者简介:hongjie@ciac.ac.cn基金资助:
Xin-Yu WANG1, Yang YU1, Long TIAN1, Fan-Ming ZENG2, Valery-Konstantinovich SHELEG3, Marina-Anatolyevna KRAVCHUK3, Shu-Yan SONG1(
), Jing FENG1(
), Hong-Jie ZHANG1(
)
Received:2025-09-04
Accepted:2025-09-24
Published:2025-12-01
Online:2025-12-30
Contact:
Shu-Yan SONG,Jing FENG,Hong-Jie ZHANG
Supported by:摘要:
本文对超高纯氟化钇(YF3)的制备工艺开展了系统性研究,重点探讨原料预处理工艺并筛选最佳氟化剂。 通过改变Y2O3的球磨时间、转速及烧结温度等参数,结合X射线衍射(XRD)、热重分析(TGA)、粒度测试及Zeta电位等表征手段,确定了最优的预处理工艺条件。 将预处理后的Y2O3粉末分别与3种氟化剂(NH4HF2、HF气体及KF)进行氟化反应,通过XRD、X射线光电子能谱分析仪(XPS)、TGA、粒度、Zeta电位、扫描电子显微镜(SEM)、电感耦合等离子体-质谱(ICP-MS)及氧含量测定等多种表征手段系统对比了不同氟化剂制备的YF3性能。 结果表明,以HF气体为氟化剂时制备的YF3综合性能最优,其晶体结构完整,氟化程度充分。 Fe和Nd杂质质量分数分别为0.0021%和0.0002%,Cr质量分数为4.58×10-6%,氧质量分数仅为0.0052%,且颗粒分散性良好,无明显团聚现象。 本研究在实现原料节约、成本降低的同时,成功制备出可应用于高端技术领域中的超高纯YF3,为超高纯YF3的制备提供了研究思路。
中图分类号:
王新宇, 于洋, 田龙, 曾繁明, SHELEG Valery-Konstantinovich, KRAVCHUK Marina-Anatolyevna, 宋术岩, 冯婧, 张洪杰. 超高纯稀土氟化钇的制备工艺[J]. 应用化学, 2025, 42(12): 1608-1618.
Xin-Yu WANG, Yang YU, Long TIAN, Fan-Ming ZENG, Valery-Konstantinovich SHELEG, Marina-Anatolyevna KRAVCHUK, Shu-Yan SONG, Jing FENG, Hong-Jie ZHANG. Preparation Process of Ultra-High Purity Rare Earth Yttrium Fluoride[J]. Chinese Journal of Applied Chemistry, 2025, 42(12): 1608-1618.
图1 不同烧结温度下Y2O3的XRD图(A)和28.5~30(°)范围的局部放大图(B)
Fig.1 XRD patterns of Y2O3 at different sintering temperatures (A) and a magnified view of 28.5~30(°) area (B)
图3 Y2O3在不同烧结温度下的粒度图(A)和Zeta电位图(B)
Fig.3 Particle size distribution diagram (A) and Zeta potential diagram (B) of Y2O3 at different sintering temperatures
图4 1300 ℃-Y2O3在不同球磨时间下的粒度图(A)和Zeta电位图(B); 1300 ℃-Y2O3在不同球磨转速下的粒度图(C)和Zeta电位图(D)
Fig.4 Particle size distribution diagram of Y2O3 at 1300 ℃ under different ball milling times (A) and Zeta potential diagram (B); Particle size distribution diagram of Y2O3 at 1300 ℃ under different rotational speeds (C) and Zeta potential diagram (D)
图6 以NH4HF2为氟化剂制备YF3的XPS谱图: Y3d(A)、F1s(B)和全谱(C); 以HF为氟化剂制备YF3的XPS谱图: Y3d(D)、F1s(E)和全谱(F)
Fig.6 XPS spectra of YF3 prepared with NH4HF2 as the fluorinating agent: Y3d (A), F1s (B) and survey (C); XPS spectra of YF3 prepared with HF as the fluorinating agent: Y3d (D), F1s (E) and survey (F)
图8 不同氟化剂制备YF3的粒度分布图(A)和Zeta电位图(B)
Fig.8 Particle size distribution diagram (A) and Zeta potential diagram (B) of YF3 prepared with different fluorinating agents
图9 不同氟化剂制备YF3的扫描电子显微镜图像: NH4HF2 (A)、HF (B)和KF (C)
Fig.9 Scanning electron microscope images of YF3 prepared with different fluorinating agents: NH4HF2 (A), HF (B) and KF (C)
| YF3 | w(Fe)/% | w(Nd)/% | w(Cr)/% | w(Co)/% | w(Ni)/% | w(Cu)/% | w(Cd)/% |
|---|---|---|---|---|---|---|---|
| Y2O3+NH4HF2 | 0.003 0 | 0.000 2 | 5.29×10-6 | 0 | 0 | 0 | 0 |
| Y2O3+HF | 0.002 1 | 0.000 2 | 4.58×10-6 | 0 | 0 | 0 | 0 |
| Y2O3+KF | 0.004 2 | 0.000 9 | 6.65×10-6 | 0 | 0 | 0 | 0 |
表1 YF3中过渡金属的质量分数
Table 1 Mass fraction of transition metals in YF3
| YF3 | w(Fe)/% | w(Nd)/% | w(Cr)/% | w(Co)/% | w(Ni)/% | w(Cu)/% | w(Cd)/% |
|---|---|---|---|---|---|---|---|
| Y2O3+NH4HF2 | 0.003 0 | 0.000 2 | 5.29×10-6 | 0 | 0 | 0 | 0 |
| Y2O3+HF | 0.002 1 | 0.000 2 | 4.58×10-6 | 0 | 0 | 0 | 0 |
| Y2O3+KF | 0.004 2 | 0.000 9 | 6.65×10-6 | 0 | 0 | 0 | 0 |
| Preparation of YF3 using different fluorinating agents | w(O)/% | Average/% | |||
|---|---|---|---|---|---|
| Y2O3+NH4HF2 | 0.007 1 | 0.005 5 | 0.008 6 | 0.006 | 0.006 8 |
| Y2O3+HF | 0.004 3 | 0.006 2 | 0.006 2 | 0.004 1 | 0.005 2 |
| Y2O3+KF | 0.018 2 | 0.013 4 | 0.015 4 | 0.010 4 | 0.014 4 |
表2 不同氟化剂制备YF3的氧含量分析
Table 2 Analysis of oxygen content in YF3 prepared with different fluorinating agents
| Preparation of YF3 using different fluorinating agents | w(O)/% | Average/% | |||
|---|---|---|---|---|---|
| Y2O3+NH4HF2 | 0.007 1 | 0.005 5 | 0.008 6 | 0.006 | 0.006 8 |
| Y2O3+HF | 0.004 3 | 0.006 2 | 0.006 2 | 0.004 1 | 0.005 2 |
| Y2O3+KF | 0.018 2 | 0.013 4 | 0.015 4 | 0.010 4 | 0.014 4 |
| [1] | 牛晓东, 孙伟, 邱鑫, 等. 熔盐电解法制备镁稀土合金的现状及展望[J]. 应用化学, 2018, 35(4): 381-393. |
| NIU X D, SUN W, QIU X, et al. Advances and future developments in preparation of Mg-RE alloys by molten salt electrochemical process[J]. Chin J Appl Chem, 2018, 35(4): 381-393. | |
| [2] | 戴斌, 彭琳, 朱雪宁, 等. 稀土发光材料在免疫分析中的应用研究进展[J]. 应用化学, 2025, 42(8): 1057-1069. |
| DAI B, PENG L, ZHU X N, et al. Research progress on the application of rare earth luminescent materials in lmmunoassay[J]. Chin J Appl Chem, 2025, 42(8): 1057-1069. | |
| [3] | TIAN X H, ZHAO L, LUAN Z H, et al. First-principles study on electronic and magnetic and optical properties of rare-earth metals (RE=La, Ce, Nd) doped phosphorene[J]. Ferroelectrics, 2018, 529(1): 80-89. |
| [4] | ZHANG S, SAJI S E, YIN Z Y, et al. Rare-earth incorporated alloy catalysts: synthesis, properties, and applications[J]. Adv Mater, 2021, 33(16): 2005988. |
| [5] | 张梅伦, 凌红冉, 孙在春, 等. 氟化镁钡粉体制备方法研究进展[J]. 应用化学, 2022, 39(6): 900-911. |
| ZHANG M L, LING H R, SUN Z C, et al. Research progress on the preparation methods of BaMgF4 powders[J] Chin J Appl Chem, 2022, 39(6): 900-911. | |
| [6] | GRUDININ I S, MATSKO A B, MALEKI L. Brillouin lasing with a CaF2 whispering gallery mode resonator[J]. Phys Rev Lett, 2009, 102(4): 043902. |
| [7] | LUO H Y, WANG B, ZHOU S Y, et al. Aim at high-power-3.9 μm lasing: design of a lightly-Ho3+-doped InF3 fiber laser via cascaded pumping and transitions[J]. J Lightwave Technol, 2024, 42(8): 2978-2984. |
| [8] | JIANG X, JOLY N Y, FINGER M A, et al. Deep-ultraviolet to mid-infrared supercontinuum generated in solid-core ZBLAN photonic crystal fiber[J]. Nat Photonics, 2015, 9(2): 133-139. |
| [9] | LAIA A S, FELIX N J, BRANDÃO-SILVA A C, et al. Obtaining the spectroscopic quality factor through the luminescent thermometry in 50Li2O·45B2O3·5Al2O3 glasses doped with Nd3+ and fluorides[J]. Appl Opt, 2023, 62(8): C21-C29. |
| [10] | 李豪, 范存政, 肖翔鹏, 等. 散射增强微结构光纤及其分布式传感技术研究进展[J]. 光学学报, 2024, 44(1): 173-187. |
| LI H, FAN C Z, XIAO X P, et al. Research progress in scattering enhanced microstructured fiber and its distributed sensing technology[J]. Acta Opt Sin, 2024, 44(1): 173-187. | |
| [11] | SUN J, ZHANG W L, YI K, et al. High-reflectance coatings at 193 nm[J]. Adv Mater Res, 2013, 631: 110-115. |
| [12] | ORLOVSKII Y V, BASIEV T T, OSIKO V V, et al. Fluorescence line narrowing (FLN) and site-selective fluorescence decay of Nd3+ centers in CaF2[J]. J Lumin, 1999, 82(3): 251-258. |
| [13] | ZHONG H X, HONG J M, CAO X F, et al. Ionic-liquid-assisted synthesis of YF3 with different crystalline phases and morphologies[J]. Mater Res Bull, 2009, 44(3): 623-628. |
| [14] | SO J, KIM M, KWON H, et al. Investigation of contamination particles generation and surface chemical reactions on Al2O3, Y2O3, and YF3 coatings in F-based plasma[J]. Appl Surf Sci, 2023, 629: 157367. |
| [15] | NIU B B, LI J L, LIU Y Y, et al. Re-understanding the function mechanism of surface coating: modified Li-rich layered Li1.2Mn0.54Ni0.13Co0.13O2 cathodes with YF3 for high performance lithium-ions batteries[J]. Ceram Int, 2019, 45(9): 12484-12494. |
| [16] | CHEN G Y, QIU H L, FAN R W, et al. Lanthanide-doped ultrasmall yttrium fluoride nanoparticles with enhanced multicolor upconversion photoluminescence[J]. J Mater Chem, 2012, 22(38): 20190-20196. |
| [17] | ABBASALIZADEH A, MALFLIET A, SEETHARAMAN S, et al. Electrochemical extraction of rare earth metals in molten fluorides: conversion of rare earth oxides into rare earth fluorides using fluoride additives[J]. J Sust Metall, 2017, 3(3): 627-637. |
| [18] | 丁士华, 彭勇, 王红妮, 等. 掺杂氧位Bi1.5ZnNb1.5O7陶瓷结晶化学与介电性能[J]. 西华大学学报(自然科学版), 2014, 33(3): 23-28. |
| DING S H, PENG Y, WANG H N, et al. Phase structure, crystal chemistry and dielectric property of oxygen-site doped Bi1.5ZnNb1.5O7 ceramics[J]. J Xihua Univ (Nat Sci), 2014, 33(3): 23-28. | |
| [19] | 邝国春. 高品质氟化镝的制备[J]. 江西有色金属, 2001, 15(3): 30-32, 38. |
| KUANG G C. A research on determining chlorine of RE oxide quickly[J]. Jiangxi Nonferrous Met, 2001, 15(3): 30-32, 38. | |
| [20] | KE Z H, QIU X Y, GUO A, et al. Study on the influencing factors for the preparation of neodymium fluoride from rare earth chloride solutions[J]. Min Metall Explor, 2025, 42: 1241-1249. |
| [21] | MIAO R Y, LU W L, CHEN D H, et al. Insight into thermodynamic process and dry preparation of lanthanum fluoride[J]. J Therm Anal Calorim, 2022, 147(20): 11433-11443. |
| [22] | 苏雪琼, 王丽, 陈江博, 等. 烧结温度对制备Zn0.9Co0.1O材料的影响[J]. 中国激光, 2009, 36(2): 355-359. |
| SU X Q, WANG L, CHEN J B, et al. The influence of sintering temperature on the preparation of Zn0.9Co0.1O materials[J]. Chin J Lasers, 2009, 36(2): 355-359. | |
| [23] | LI S S, LIU B L, LI J, et al. Synthesis of yttria nano-powders by the precipitation method: the influence of ammonium hydrogen carbonate to metal ions molar ratio and ammonium sulfate addition[J]. J Alloys Compd, 2016, 678: 258-266. |
| [24] | GUO Q Y, WANG Z Q, XU Q J, et al. Suspended state heteroaggregation kinetics of kaolinite and fullerene (nC60) in the presence of tannic acid: effect of π-π interactions[J]. Sci Total Environ, 2020, 713: 136559. |
| [25] | DOUSTI B, MOJAVER R, SHAHVERDI H R, et al. Microstructural evolution and chemical redistribution in Fe-Cr-W-Ti-Y2O3 nanostructured powders prepared by ball milling[J]. J Alloys Compd, 2013, 577: 409-416. |
| [26] | 李斌栋, 吕春绪. 离子液体中卤素交换氟化合成七氟醚[J]. 应用化学, 2009, 26(9): 1126-1128. |
| LI B D, LV C X. Synthesis of sevoflurane in ionic liquids by halogen-exchange fluorination[J]. Chin J Appl Chem, 2009, 26(9): 1126-1128. | |
| [27] | SILVA S L, VALLE M S, PLIEGO J R. Nucleophilic fluorination with KF catalyzed by 18-crown-6 and bulky diols: a theoretical and experimental study[J]. J Org Chem, 2020, 85(23): 15457-15465. |
| [28] | KIM D M, LEE S H, ALEXANDER W B, et al. X-ray photoelectron spectroscopy study on the interaction of yttrium-aluminum oxide with fluorine-based plasma[J]. J Am Ceram Soc, 2011, 94(10): 3455-3459. |
| [29] | SONG J B, CHOI E, OH S G, et al. Contamination particle behavior of aerosol deposited Y2O3 and YF3 coatings under NF3 plasma[J]. Coatings, 2019, 9(5): 310. |
| [30] | WANG D M, JIANG X L, LENG Z, et al. Near-infrared luminescence investigation of Cr4+ ions doped Li2TiGeO5[J]. J Mater Sci, 2021, 32(14): 18544-18550. |
| [31] | YU H, SHEN Y M, CUI Y, et al. Characterization of LaF3 coatings prepared at different temperatures and rates[J]. Appl Surf Sci, 2008, 254(6): 1783-1788. |
| [32] | NEBOGIN S A, BRYUKVINA L I, IVANOV N A, et al. Effect of oxygen impurity on the efficiency of the formation of complexes with H-bond and aggregation of color centers in lithium fluoride[J]. Phys Solid State, 2017, 59(6): 1139-1145. |
| [33] | LU WL, PAN B, MIAO R Y, et al. Dependence of structural and optical performance of lanthanum fluoride antireflective films on O impurities[J]. Coatings, 2022, 12(8): 1184. |
| [34] | LI Z, ZHAN C W, YU H, et al. Study on the fluorination process of Sc2O3 by NH4HF2[J]. Materials, 2023, 16(17): 5984. |
| [1] | 吴小峰, 王珊, 袁龙, 侯长民. 科教融合科研训练实验设计:晶体场理论下的钇铁石榴石热致变色[J]. 应用化学, 2025, 42(11): 1550-1558. |
| [2] | 邰玲, 赵志超, 景新华, 丛吉祥, 畅福善, 张晓斌. 三元硫化物增强g-C3N4光催化还原六价铬性能[J]. 应用化学, 2025, 42(8): 1125-1134. |
| [3] | 熊亮, 高秉阳, 刘聪, 尹东明, 张振华, 韩直亚, 丁南, 程勇, 王立民. 镁基储氢材料纳米化研究进展[J]. 应用化学, 2025, 42(3): 293-312. |
| [4] | 杜意恩, 郭少华, 张爱华. 五水硫酸铜晶体的制备及表征实验方法的优化[J]. 应用化学, 2025, 42(3): 416-428. |
| [5] | 高长江, 黄鑫, 田亚洋, 余海峰, 王小波. 一种近红外快速响应型硫化氢荧光探针的合成及细胞成像[J]. 应用化学, 2025, 42(2): 192-200. |
| [6] | 洪乐, 董伟男, 武振楠, 王林. 金属纳米团簇的光响应行为在生物诊疗中的应用[J]. 应用化学, 2024, 41(9): 1238-1247. |
| [7] | 钟永辉, 欧晓倩, 黄岳卿, 郑佩莎, 黄慧琳, 郑嘉琪, 史蕾, 张召. 羟基镓咔咯光动力抗肝癌的体内外活性[J]. 应用化学, 2024, 41(8): 1184-1192. |
| [8] | 戴欣. 基于问题学习教学模式在无机化学教学中的应用[J]. 应用化学, 2024, 41(5): 739-744. |
| [9] | 王静, 李喜兰, 郭秀芬. 五氧化二铌光催化剂的制备及其光催化性能[J]. 应用化学, 2024, 41(3): 415-421. |
| [10] | 张彦君, 杨禹, 侯立安. MoS2及其改性膜去除水中重金属及核素研究进展[J]. 应用化学, 2024, 41(2): 230-242. |
| [11] | 任权兵, 钟鸣, 郑波, 冯兰, 丁南, 尹东明, 程勇, 王立民. 稀土元素改性钒基固溶体储氢合金研究进展[J]. 应用化学, 2023, 40(12): 1601-1612. |
| [12] | 安正策, 王丽萍, 周博. Er3+/Tm3+共掺镱基纳米晶上转换白光调控及应用[J]. 应用化学, 2023, 40(12): 1623-1629. |
| [13] | 邢思阳, 于飞, 马杰. 电容去离子过渡金属基电极设计及应用研究进展[J]. 应用化学, 2023, 40(9): 1215-1232. |
| [14] | 郭颖华, 周顺发, 李静, 蔡卫卫. 过渡金属磷酸盐电解水催化剂调控策略研究进展[J]. 应用化学, 2023, 40(8): 1094-1108. |
| [15] | 郑建华, 管振萍, 刘国煜, 曹向禹, 郑顺姬, 关美艳. 过硫酸盐增强花状MnCo2O4可见光降解性能[J]. 应用化学, 2023, 40(7): 1034-1043. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||