
应用化学 ›› 2025, Vol. 42 ›› Issue (3): 396-405.DOI: 10.19894/j.issn.1000-0518.250029
收稿日期:
2015-01-15
接受日期:
2025-02-25
出版日期:
2025-03-01
发布日期:
2025-04-11
通讯作者:
张彩红
基金资助:
Xu WANG1, Jin-Yu LI2, Cai-Hong ZHANG2()
Received:
2015-01-15
Accepted:
2025-02-25
Published:
2025-03-01
Online:
2025-04-11
Contact:
Cai-Hong ZHANG
About author:
chzhang@sxu.edu.cnSupported by:
摘要:
氢键具有方向性,是管状、线状和网格状等立体结构聚合物形成的常见形式。 本文以1,3-交替-25,26,27,28-四正丙烷基杯[4]芳烃为原料,连接噻吩环加深空穴并增强其刚性结构,交替的两组手臂末端修饰不同基团(包括: —COOH、—CONH2和—COOCH3),形成1,3-交替杯[4]芳烃结构单元。 其中,1,3-交替杯[4]芳烃羧酸和酰胺衍生物会通过氢键聚合,扫描电子显微镜(SEM)观察到它们能形成一维管线状聚合物,并考察了位阻、溶剂环境及浓度对氢键聚合的影响。 聚合物形成后会影响其发光性能和热稳定性: 羧酸和酰胺衍生物溶液的红外光谱有明显的氢键聚合现象; 它们的固体荧光比酯衍生物明显红移(>25 nm)且量子产率高(>20%); 热稳定性好,高达370 ℃,比酯衍生物高约35 ℃。 本研究工作为1,3-交替杯[4]芳烃聚合物在光热材料的应用奠定了基础。
中图分类号:
王旭, 李晋雨, 张彩红. 1,3-交替杯[4]芳烃衍生物的制备及其氢键聚合[J]. 应用化学, 2025, 42(3): 396-405.
Xu WANG, Jin-Yu LI, Cai-Hong ZHANG. Preparation of 1,3-Alternate Calix[4]arene Derivatives and Their Hydrogen-Bonding Polymerization[J]. Chinese Journal of Applied Chemistry, 2025, 42(3): 396-405.
图1 1,3-交替杯[4]芳烃羧酸(1-1)、酰胺(1-2)和酯(1-3)衍生物的合成路线
Fig.1 Synthesis route for carboxylic acid(1-1), amide(1-2), and ester (1-3) derivatives of 1,3-alternating calix[4]arene
图3 1,3-交替杯[4]芳烃羧酸(A、D)、酰胺(B、E)和酯(C、F)衍生物在V(THF)∶V(正己烷)=1∶1溶液中的自组装The concentration of A, B and C was 6×10?4 mol/L, D, E and F was 6×10?5 mol/L
Fig.3 Self-assembly of carboxylic acid (A, D), amide (B, E) and ester (C, F) derivatives of 1,3-alternate calix[4]arene in V(THF)∶V(n-hexane)=1∶1 solution
图5 1,3-交替杯[4]芳烃羧酸衍生物的SEM图。A. Steric effect-The alkong chain is—OC10H21; B, C, D, Solvents effect-The solvent ratio are V(THF)∶V(n-hexane)=1∶2, 1∶1 and 2∶1 respectively; E, F, Effect of water in the Solvent-E is a commercially available common solvent without dehydration, while F has a water volume fraction of 5%
Fig.5 SEM images of 1,3-alternate calix[4]arene carboxylic acid derivatives
图6 1,3-交替杯[4]芳烃羧酸(A)、酰胺(B)和酯(C)衍生物在V(THF)∶V(正己烷)=1∶1溶液(6×10?? mol/L)中的FT-IR谱图
Fig.6 FT-IR spectra of 1,3-alternate calix[4]arene carboxylic acid (A), amide (B) and ester (C) derivatives in V(THF)∶V(n-hexane)=1∶1 solution (6×10?? mol/L)
Compound | Solvent | Absorption wavelength/nm | ε/(L·mol?1·cm?1) | Emission wavelength/nm | ? |
---|---|---|---|---|---|
1-1 | THF | 325 | 8.98×104 | 395 | 0.28 |
DMF | 323 | 6.89×104 | 411 | 0.31 | |
DMSO | 324 | 6.16×104 | 418 | 0.37 | |
Solid | 443 | 0.28 | |||
1-2 | THF | 321 | 5.55×104 | 390 | 0.23 |
DMF | 326 | 5.97×104 | 402 | 0.24 | |
DMSO | 328 | 9.05×104 | 407 | 0.27 | |
Solid | 446 | 0.20 | |||
1-3 | THF | 325 | 8.56×104 | 396 | 0.26 |
DMF | 329 | 8.33×104 | 418 | 0.34 | |
DMSO | 331 | 8.30×104 | 425 | 0.31 | |
Solid | 438 | 0.14 |
表1 1,3-交替杯[4]芳烃羧酸、酰胺和酯衍生物的紫外吸收光谱和荧光光谱相关数据
Table 1 UV absorption and fluorescence spectroscopic data of 1,3-alternate calix[4]arene carboxylic acid, amide and ester derivatives
Compound | Solvent | Absorption wavelength/nm | ε/(L·mol?1·cm?1) | Emission wavelength/nm | ? |
---|---|---|---|---|---|
1-1 | THF | 325 | 8.98×104 | 395 | 0.28 |
DMF | 323 | 6.89×104 | 411 | 0.31 | |
DMSO | 324 | 6.16×104 | 418 | 0.37 | |
Solid | 443 | 0.28 | |||
1-2 | THF | 321 | 5.55×104 | 390 | 0.23 |
DMF | 326 | 5.97×104 | 402 | 0.24 | |
DMSO | 328 | 9.05×104 | 407 | 0.27 | |
Solid | 446 | 0.20 | |||
1-3 | THF | 325 | 8.56×104 | 396 | 0.26 |
DMF | 329 | 8.33×104 | 418 | 0.34 | |
DMSO | 331 | 8.30×104 | 425 | 0.31 | |
Solid | 438 | 0.14 |
图7 1,3-交替杯[4]芳烃羧酸(A)、酰胺(B)和酯(C)衍生物溶液的紫外吸收和归一化荧光光谱320~340 nm represents the absorption spectrum of the compounds, while 400~425 nm represents their flurescence spectrum
Fig.7 UV absorption and normalized fluorescence spectra for carboxylic acid (A), amide (B) and ester (C) derivatives of 1,3-alternate calix[4]arene
图8 1,3-交替杯[4]芳烃羧酸(A)、酰胺(B)和酯(C)衍生物的热重分析
Fig.8 Thermogravimetric analysis (TGA) for carboxylic acid (A), amide (B) and ester (C) derivatives of 1,3-alternate calix[4]arene
1 | KANG S, KIM G H, PARK S J. Conjugated block copolymers for functional nanostructures[J]. Acc Chem Res, 2022, 55(16): 2224-2234. |
2 | BUJOSA S, RUBERT L, ROTGER C, et al. Modulating self-assembly and polymorph transitions in bisdendronized squaramides[J]. Commun Chem, 2024, 7(1): 296. |
3 | 裴强, 丁爱祥, 吴晋晋. 基于分子内三中心氢键的超分子组装体系及其应用[J]. 有机化学, 2021, 41(1): 105. |
PEI Q, DING A X, WU J J. Supramolecular assembly system based on intramolecular hydrogen bonds and its application[J]. Chin J Org Chem, 2021, 41(1): 105. | |
4 | DATTA S, TAKAHASHI S, YAGAI S. Nanoengineering of curved supramolecular polymers: toward single-chain mesoscale materials[J]. Acc Mater Res, 2022, 3(2): 259-271. |
5 | 王秀凤, 张莉, 刘鸣华. 超分子凝胶: 结构多样性与超分子手性[J]. 物理化学学报, 2016, 32(1): 227-238. |
WANG X F, ZHANG L, LIU M H. Supramolecular gels: structural diversity and supramolecular chirality[J]. Acta Phys Chim Sin, 2016, 32(1): 227-238. | |
6 | ZHANG N, WANG L, WANG H, et al. Self-assembled one-dimensional porphyrin nanostructures with enhanced photocatalytic hydrogen generation[J]. Nano Lett, 2018, 18(1): 560-566. |
7 | DAI X J, LI C C, LI C J. Carbonyl umpolung as an organometallic reagent surrogate[J]. Chem Soc Rev, 2021, 50: 10733-10742. |
8 | CHO H H, KIM S H. A versatile protocol for the preparation of highly hindered aryl ketones using organozinc reagents[J]. Bull Korean Chem Soc, 2012, 33(9): 3083-3086. |
9 | PARK K M, LEE E, PARK C S, et al. Tube-type coordination polymers: two-and four-silver (Ⅰ)-mediated linear networking of calix [4] arene tetracarboxylates[J]. Inorg Chem, 2011, 50(23): 12085-12090. |
10 | KRAJANGSRI S, MUANGSIN N, PULPOKA B. Impact of binding positions of 1,3-alternate calix [4] arene tetrabenzoic acids on geometry of coordination polymers[J]. J Inclusion Phenom Macrocyclic Chem, 2021, 101(3): 195-204. |
11 | LEE E, JU H, LEE S S, et al. Tubular arrangement of 1, 3-alternate calix[4] arene with bipyridines: a platform for [2+2] photocyclization[J]. Cryst Growth Des, 2013, 13(3): 992-995. |
12 | WANG W, GONG S, CHEN Y, et al. Fibriform one-dimensional hydrogen-bonded network composed of 1,2-alt calix [4] arene tetra acetic acid[J]. New J Chem, 2005, 29(11): 1390-1392. |
13 | LAZAR A, DANYLYUK O, SUWINSKA K, et al. Assembly of a novel supramolecular synthon of calix [4] arene presenting four carboxylic acids[J]. Chem Commun, 2006 (8): 903-905. |
14 | 贾彦荣, 付宏宇, 夏敏. 具有力致变色性能的有机固体荧光分子的研究进展[J]. 浙江理工大学学报(自然科学版), 2020, 43(3): 401-412. |
JIA Y R, FU H Y, XIA M. Progress on organic solid fluorescent molecules with force chromochromic properties[J]. J Zhejiang Sci-Technol Univ (Nat Sci Ed), 2020, 43(3): 401-412. | |
15 | COMERON J F, FRECHET J. Photogeneration of organic-bases from ortho-nitrobenzyl-derived carbamates[J]. J Am Chem Soc, 1991, 113(11): 4303-4313. |
16 | ELEWA A M. Hydrogen-bonded organic frameworks (HOFs) from design to environmental application[J]. J Ind Eng Chem, 2025, 145: 169-190. |
17 | LEE J H, KIM Y, KIM G, et al. Synthesis of porphyrin derivatives bearing six carboxylic acids for the formation of three-dimensional hydrogen-bonded network structures[J]. Chem-Eur J, 2025: e202404280. |
18 | HAKOBYAN R M, SHAHKHATUNI A G, POLYNSKI M V, et al. The role of the nitro group on the formation of intramolecular hydrogen bond in the methyl esters of 1-vinyl-nitro-pyrazolecarboxylic acids[J]. J Mol Struct, 2025, 1322: 140350. |
19 | 陈凯锋, 刘赟, 沈志豪, 等. 空间位阻对氢键构筑的嵌段共聚物微相分离结构的影响[J]. 高分子学报, 2023, 54(11): 1681-1696. |
CHEN K F, LIU B, SHEN Z H, et al. Effect of steric hindrance on the microphase separation structure of block copolymers constructed by hydrogen bonds[J]. Acta Polym Sin, 2023, 54(11): 1681-1696. | |
20 | OVSYANNIKOV A S, LANG M N, FERLAY S, et al. Molecular tectonics: tetracarboxythiacalix [4] arene derivatives as tectons for the formation of hydrogen-bonded networks[J]. CrystEngComm, 2016, 18(44): 8622-8630. |
21 | 种丹丹, 张洁, 宛新华. 多酸-有机聚合物超分子自组装杂化材料[J]. 高分子学报, 2022, 27(8): 56-68. |
ZHONG D D, ZHANG J, WAN X H. Polyacid-organic polymer supramolecular self-assembly of hybrid materials[J]. Acta Polym Sin, 2022, 27(8): 56-68. | |
22 | 孔翔飞, 李俊, 俞建文, 等. 氢键组装的超分子液晶的研究进展[J]. 液晶与显示, 2019, 34(11): 1037-1054. |
KONG X F, LI J, YU J W, et al. Progress on supramolecular liquid crystals assembled by hydrogen bonds [J]. Chin J Liq Cryst Disp, 2019, 34(11): 1037-1054. | |
23 | GU Q, XIA Y, CHEN S, et al. Infrared spectroscopy of gas phase alpha hydroxy carboxylic acid homo and hetero dimers[J]. Phys Chem Chem Phys, 2018, 20(47): 29601-29609. |
24 | XIAO Z, YANG W, YAN F, et al. Assembly of calix [4] arene carboxylic acid derivatives by hydrogen bonding[J]. CrystEngComm, 2019, 21(3): 439-448. |
25 | MOURER M, BOUIZI Y, LECLERC S, et al. Synthesis of a tube-like tetra-bipyridyl, tetra-ethylacetato-calix [4] arene in 1,3-alternate conformation and the unexpected crystal structure of its [bpy(CoCl2)]3-[bpy (CoCl2)(H2O)] complex[J]. New J Chem, 2024, 48(35): 15577-15589. |
26 | 吴唯, 陈玉洁, 王佳伟, 等. 多重氢键网络结构超分子聚合物的合成与性能[J]. 功能高分子学报, 2011, 24(4): 411-415. |
WU W, CHEN Y J, WANG J W, et al. Synthesis and properties of structured supramolecular polymers of multiple hydrogen-bond networks [J]. J Funct Polym, 2011, 24(4): 411-415. | |
27 | ÖZKINALI S. Spectroscopic and thermal properties of newly mixed azocalix [4] arene ester derivatives[J]. Dyes Pigm, 2014, 107: 81-89. |
28 | PODYACHEV S N, GIMAZETDINOVA G S, GUBAIDULLIN A T, et al. Synthesis, structure and coordination properties of novel bifunctional carboxylic derivatives of 1,3-alternate tetrathiacalix [4] arene[J]. RSC Adv, 2016, 6(23): 19531-19544. |
29 | LOTFI B, TARLANI A, AKBARI-MOGHADDAM P, et al. Multivalent calix [4] arene-based fluorescent sensor for detecting silver ions in aqueous media and physiological environment[J]. Biosens Bioelectron, 2017, 90: 290-297. |
30 | AL-HAZMY S M, AL-HARBY J, HASSAN M, et al. A study of the electronic absorption and emission spectra of DBDMA dye: solvent effect, energy transfer, and fluorescence quenching[J]. J Spectrosc, 2023, 2023(1): 7802548. |
31 | TANG F, HUANG Z, XUE J, et al. D-A-D′-type fluorescence dyes with DSE and AIE properties and their sensing applications[J]. J Mol Struct, 2025, 1329(5): 141432-141441. |
32 | XIAO Z, YANG W, LUO J, et al. Weak intermolecular interaction directed assembly of calix [4] arene derivatives[J]. Cryst Eng Comm, 2019, 21(46): 7114-7122. |
33 | 张璐璐, 王媛媛, 朱贵楠, 等. 含不同烷基链四苯基丁二烯衍生物的聚集诱导发光及力致变色性能[J]. 化学学报, 2022, 80(3): 282. |
ZHANG L L, WANG Y Y, ZHU G N, et al. Aggregation-induced luminescence and enchromochromic properties of tetraphenylbutadiene derivatives containing different alkyl chains[J]. Acta Chim, 2022, 80(3): 282. | |
34 | BOUTAR M, DESROCHES C, MATTOUSSI N, et al. Coordination polymers of zinc (Ⅱ) and manganese (Ⅱ) made by complexation of calix [4] arene functionalized with carboxylates afford alveolar materials[J]. Inorg Chim Acta, 2019, 486: 562-567. |
35 | 张照明, 赵骏, 颜徐州. 协同的共价-超分子聚合物[J]. 高分子学报, 2023, 53(7): 691-706. |
ZHANG Z M, ZHAO J, YAN X Z. Cooperative production of covalent-supramolecular polymers[J]. Acta Polym Sin, 2023, 53(7): 691-706. | |
36 | ÖZKINALI S, KOCAOKUT H. Synthesis, spectral characterisation and thermal behaviours of some new p-tert-butylcalix [4] arene and calix [4] arene-esters containing acryloyl groups[J]. J Mol Struct, 2013, 1031: 70-78. |
37 | LAKOURAJ M M, TASHAKKORIAN H. Synthesis and investigation of transition metal removing of novel thermally stable polyamides bearing calix [4] arene in their backbones[J]. J Macromol Sci Part A, 2012, 49(10): 806-813. |
38 | SAYIN S, YILMAZ M. Preparation and uranyl ion extraction studies of calix [4] arene-based magnetite nanoparticles[J]. Desalination, 2011, 276(1/2/3): 328-335. |
[1] | 张傲天, 史俊杰, 陈前火, 李红周. 氮磷阻燃剂的合成及其在环氧树脂中的阻燃应用[J]. 应用化学, 2025, 42(2): 212-221. |
[2] | 刘炳芹, 王艳华. 温控相转移催化新体系中α,β-不饱和酮的常压加氢反应[J]. 应用化学, 2024, 41(9): 1350-1356. |
[3] | 徐海祥, 夏举佩. 改性聚乙烯醇协同硅酸盐水泥制高强防水石膏[J]. 应用化学, 2024, 41(8): 1131-1145. |
[4] | 杨雪艳, 史俊杰, 周勇军, 戴玉梅, 李红周. 磷系阻燃剂插层镁铝水滑石增强环氧树脂的阻燃性能[J]. 应用化学, 2024, 41(8): 1154-1167. |
[5] | 胡彪, 王会, 张振迎, 薛道荣, 刘抢. NH4Al(SO4)2·12H2O脱水过程及其热力学与动力学性能[J]. 应用化学, 2024, 41(5): 668-676. |
[6] | 商宗玲, 张弨, 赵凤玉. 稀土修饰对Cu/Al2O3催化乙酰丙酸乙酯加氢性能的影响[J]. 应用化学, 2024, 41(3): 340-348. |
[7] | 祝梦春, 李齐齐, 田洪瑞, 毕研峰. SBA-15负载磷钼钒酸构筑高效室温光热氧化脱硫催化剂[J]. 应用化学, 2024, 41(10): 1469-1480. |
[8] | 徐昕, 李烨, 王敏, 傅章程, 齐国敏, 卢春华. 基于microRNA‑21响应的Zn2+/DNA自组装体用于肿瘤的检测和氧化应激治疗[J]. 应用化学, 2024, 41(1): 164-174. |
[9] | 史俊杰, 史哲航, 李红周. 磷系阻燃剂插层镁铝型水滑石复合物的制备及其在热塑性聚氨酯中的阻燃应用[J]. 应用化学, 2023, 40(9): 1288-1301. |
[10] | 陈淑敏, 吕子全, 邹旋, 桂水清, 卢雪梅. 新冠常态下功能性口罩研究进展[J]. 应用化学, 2023, 40(11): 1504-1517. |
[11] | 李谋翠, 董洋铭, 任莹辉, 马海霞, 齐乐. 含1,2,4-三唑双席夫碱衍生物的合成、抗菌活性及分子对接[J]. 应用化学, 2023, 40(1): 116-125. |
[12] | 成燕琴, 黎卓熹, 王有娣, 徐娟娟, 卞证. 结构简单的4-羟基脯氨酰胺高效催化醛和硝基烯不对称迈克尔加成反应[J]. 应用化学, 2023, 40(1): 146-154. |
[13] | 杨雪贤, 张健, 谷志刚. 表面配位金属-有机框架薄膜HKUST-1在光电应用中的研究进展[J]. 应用化学, 2022, 39(7): 1013-1025. |
[14] | 温景惠, 赵冰, 阚伟, 王丽艳, 孙立, 宋天舒, 宋波. 可区别铁离子荧光探针异构体的合成及其水样分析[J]. 应用化学, 2022, 39(5): 787-796. |
[15] | 徐众, 李军, 吴恩辉, 蒋燕. 添加提钒尾渣对膨胀石墨/石蜡复合相变材料稳定性和导电性的影响[J]. 应用化学, 2022, 39(3): 461-469. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 43
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 81
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||