应用化学 ›› 2026, Vol. 43 ›› Issue (1): 96-107.DOI: 10.19894/j.issn.1000-0518.240278
收稿日期:2024-08-28
接受日期:2025-01-20
出版日期:2026-01-01
发布日期:2026-01-26
通讯作者:
刘水林
基金资助:
Xiao-Peng DENG, Shui-Lin LIU(
), Yuan-Peng LI, Shan-Tong ZHANG
Received:2024-08-28
Accepted:2025-01-20
Published:2026-01-01
Online:2026-01-26
Contact:
Shui-Lin LIU
About author:shuilin89@126.comSupported by:摘要:
以钛酸四丁酯和磷酸为原料,采用液相水解法制备了高效的P-TiO2/SBA-15催化剂,通过X射线光电子能谱(XPS)、傅里叶变换红外光谱仪(FT-IR)、透射电子显微镜(TEM)、X射线衍射仪(XRD)和N2吸附-脱附比表面仪(BET)表征技术对催化剂的物化性质进行了表征,考察了其在环己胺无溶剂氧化制备环己酮肟反应中的催化性能,并对温度和压力等反应条件进行了系统优化,探讨了环己胺催化氧化双路径机制。结果表明,表面修饰的P-TiO2纳米颗粒在SBA-15上能实现高分散度的负载,有利于提高其催化效率,且当P-TiO2负载量为10%时催化效果最佳。在等活性组分负载量的前提下,10%P-TiO2/SBA-15复合物展现出显著的催化性能优势。相较于未负载的P-TiO2,其环己胺催化转化效率提升3.2倍至68.3%,目标产物环己酮肟的选择性同步增长15.3%。在标准化反应条件(90 ℃,1.0 MPa,4 h)下,使用0.3 g复合催化剂即可实现上述高效转化,印证了有序介孔载体对活性组分的分散强化效应,且P-TiO2/SBA-15表面的钛羟基是催化氧化环己胺的活性中心。该研究为环己酮肟的高效制备提供了一种新颖且绿色的路线,有一定的工业应用前景。
中图分类号:
邓骁鹏, 刘水林, 李元鹏, 张善童. 磷改性TiO2/SBA-15高效催化环己胺无溶剂氧化制备环己酮肟[J]. 应用化学, 2026, 43(1): 96-107.
Xiao-Peng DENG, Shui-Lin LIU, Yuan-Peng LI, Shan-Tong ZHANG. Facile Synthesis of Cyclohexanone Oxime via Solvent-Free Catalytic Oxidation of Cyclohexylamine Using Phosphorus-Modified TiO2/SBA-15[J]. Chinese Journal of Applied Chemistry, 2026, 43(1): 96-107.
| Sample | Surface area/(m2·g-1) | Pore volume/(cm3·g-1) | Pore diameter/nm |
|---|---|---|---|
| P-TiO2 | 348.6 | 0.5 | 5.8 |
| SBA-15 | 526.6 | 1.2 | 10.0 |
| 5% P-TiO2/SBA-15 | 494.6 | 1.2 | 10.1 |
| 10% P-TiO2/SBA-15 | 467.6 | 1.1 | 10.4 |
| 20% P-TiO2/SBA-15 | 433.5 | 1.1 | 10.2 |
表1 P-TiO2/SBA-15的结构参数
Table 1 Structural parameters of P-TiO2/SBA-15
| Sample | Surface area/(m2·g-1) | Pore volume/(cm3·g-1) | Pore diameter/nm |
|---|---|---|---|
| P-TiO2 | 348.6 | 0.5 | 5.8 |
| SBA-15 | 526.6 | 1.2 | 10.0 |
| 5% P-TiO2/SBA-15 | 494.6 | 1.2 | 10.1 |
| 10% P-TiO2/SBA-15 | 467.6 | 1.1 | 10.4 |
| 20% P-TiO2/SBA-15 | 433.5 | 1.1 | 10.2 |
| Catalyst | Conversion/% | Selectivity/% | ||||
|---|---|---|---|---|---|---|
| CHO | CH | NCH | CCA | Others b | ||
| None | 5.3 | 24.2 | 2.1 | 0.6 | 61.9 | 11.2 |
| SBA-15 | 22.9 | 72.1 | 3.2 | 1.2 | 17.5 | 6.0 |
| P-TiO2 (n(Ti)∶n(P)=1∶1) | 38.3 | 78.9 | 1.6 | 3.9 | 11.3 | 4.3 |
| P-TiO2 (n(Ti)∶n(P)=2∶1) | 45.0 | 80.6 | 3.0 | 5.9 | 4.8 | 5.7 |
| P-TiO2 (n(Ti)∶n(P)=3∶1) | 45.8 | 79.4 | 2.9 | 6.8 | 5.1 | 5.8 |
| P-TiO2 (n(Ti)∶n(P)=2∶1) c | 21.2 | 71.3 | 4.1 | 1.1 | 18.4 | 5.1 |
| 10%P2O5/SBA-15 | 24.1 | 74.5 | 3.3 | 2.4 | 15.3 | 4.5 |
| 10%TiO2/SBA-15 | 49.8 | 81.4 | 1.8 | 4.6 | 7.0 | 5.2 |
| 5% P-TiO2/SBA-15 | 38.4 | 79.5 | 1.7 | 3.7 | 11.5 | 3.6 |
| 10% P-TiO2/SBA-15 | 68.3 | 86.6 | 2.1 | 6.8 | 2.4 | 2.1 |
| 20% P-TiO2/SBA-15 | 61.9 | 85.4 | 2.7 | 6.5 | 2.8 | 2.6 |
| 10% P-TiO2/SBA-15 d | 7.2 | 51.2 | 2.4 | 0.8 | 37.8 | 7.8 |
表2 P-TiO2和P-TiO2/SBA-15对无溶剂肟化反应的催化活性 a
Table 2 Catalytic activity of P-TiO2 and P-TiO2/SBA-15 on the solvent-free oxime synthesis a
| Catalyst | Conversion/% | Selectivity/% | ||||
|---|---|---|---|---|---|---|
| CHO | CH | NCH | CCA | Others b | ||
| None | 5.3 | 24.2 | 2.1 | 0.6 | 61.9 | 11.2 |
| SBA-15 | 22.9 | 72.1 | 3.2 | 1.2 | 17.5 | 6.0 |
| P-TiO2 (n(Ti)∶n(P)=1∶1) | 38.3 | 78.9 | 1.6 | 3.9 | 11.3 | 4.3 |
| P-TiO2 (n(Ti)∶n(P)=2∶1) | 45.0 | 80.6 | 3.0 | 5.9 | 4.8 | 5.7 |
| P-TiO2 (n(Ti)∶n(P)=3∶1) | 45.8 | 79.4 | 2.9 | 6.8 | 5.1 | 5.8 |
| P-TiO2 (n(Ti)∶n(P)=2∶1) c | 21.2 | 71.3 | 4.1 | 1.1 | 18.4 | 5.1 |
| 10%P2O5/SBA-15 | 24.1 | 74.5 | 3.3 | 2.4 | 15.3 | 4.5 |
| 10%TiO2/SBA-15 | 49.8 | 81.4 | 1.8 | 4.6 | 7.0 | 5.2 |
| 5% P-TiO2/SBA-15 | 38.4 | 79.5 | 1.7 | 3.7 | 11.5 | 3.6 |
| 10% P-TiO2/SBA-15 | 68.3 | 86.6 | 2.1 | 6.8 | 2.4 | 2.1 |
| 20% P-TiO2/SBA-15 | 61.9 | 85.4 | 2.7 | 6.5 | 2.8 | 2.6 |
| 10% P-TiO2/SBA-15 d | 7.2 | 51.2 | 2.4 | 0.8 | 37.8 | 7.8 |
图7 10% P-TiO2/SBA-15循环使用考察Reaction conditions: m(CHA)=10.0 g, temperature=90 ℃, time=4 h, P(O2)=0.1 MPa and m(catalyst)=0.3 g
Fig.7 Results of recycle test of 10% P-TiO2/SBA-15
| [1] | HAMMOND C, SCHUMPERLI M T, HERMANS I. Developments in the aerobic oxidation of amines[J]. ACS Catal, 2012, 2: 1108-1117. |
| [2] | XU Y Y, YANG Q S, LI Z H, et al. Ammoximation of cyclohexanone to cyclohexanone oxime using ammonium chloride as nitrogen source[J]. Chem Eng Sci, 2016, 152: 717-723. |
| [3] | YOU K Y, WU B H, MAO L Q,et al.A novel route to one-step formation of ɛ-caprolactam from cyclohexane and nitrosyl sulfuric acid catalyzed by VPO composites[J].Catal Lett, 2007, 118: 129-133. |
| [4] | YIP A C K, HU X J. Formulation of reaction kinetics for cyclohexanone ammoximation catalyzed by a clay-based titanium silicalite-1 composite in a semibatch process[J]. Ind Eng Chem Res, 2011, 50(24): 13703-13710. |
| [5] | 薛晓璐, 高鹏飞, 张磊, 等.微波法合成氟改性TS-1及其催化环己酮氨肟化性能)[J].分子催化(中英文),2019,33(1:27-40 |
| XUE X L, GAO P F, ZHANG L, et al. Fluorinated TS-1 prepared by microwave irradiation and its catalytic performance on ammoximation of cyclohexanone[J]. J Mol Catal (China Engl), 2019, 33(1): 27-40. | |
| [6] | PIEPER J H, WILMINGTON D, Process for the production of oximes: US, 2718528U.S.[P].1955-09-20. |
| [7] | 张美华, 钟齐锋, 陈梦婷, 等.环己胺合成研究进展[J].石油化工, 2023, 52(10): 1452-1460. |
| ZHANG M H, ZHONG Q F, CHEN M T, et al.Research progress in synthesis of cyclohexylamine[J]. Petrochem Technol, 2023, 52(10): 1452-1460. | |
| [8] | WEI Y N, YOU K Y, LI W T, et al. Highly-dispersed Ni3Fe alloy nanoparticles anchored on MgAl-LDO for efficient catalytic amination of KA-oil to cyclohexylamine[J]. J Catal, 2024, 430: 115315. |
| [9] | CAVANI F, BALLARINI N, LUCIANI S, Catalysis for society: towards improved process efficiency in catalytic selective oxidations[J]. Top Catal, 2009, 52: 935-947. |
| [10] | KIDWAI M, BHARDWAJ S. Transformation of amines to oximes using heterogeneous nanocrystalline titanium (Ⅳ) oxide as a green catalyst[J]. Synth Commun, 2011, 41(18): 2655-2662. |
| [11] | ZHAO F F, YI L, DENG R J, et al. Supported WO3/γ-Al2O3 as bifunctional catalyst for liquid-phase highly selective oxidation of cyclohexylamine to cyclohexanone oxime under solvent-free conditions[J]. Mol Catal, 2019, 475: 110494. |
| [12] | LIU S L, LIU N, LI A Y, et al. Supported TiO2/silica gel as an efficient and inexpensive catalyst for nonsolvent liquid-phase oxidation of cyclohexylamine to cyclohexanone oxime[J].Can J Chem Eng, 2023, 101: 2810-2820. |
| [13] | HORVATH B, KASZONYI A, RAKOTTYAY K, et al. Towards the mechanism of the oxidation of cyclohexylamine by molecular oxygen over alumina-based catalysts[J].React Kinet Mech Cat, 2015, 115(1): 231-250. |
| [14] | NI W J, YOU K Y, CHAO C, et al. Novel functional TiPO/SiO2 catalyst enriched surface hydroxyl groups for highly selective catalytic oxidation of cyclohexylamine to cyclohexanone oxime[J]. Appl Surf Sci, 2023, 631: 157575. |
| [15] | NI W J, LIU X, YANG Q, et al. Construction of dual active-site NH2-MIL-125(Ti) for efficient selective oxidation of cyclohexylamine to cyclohexanone oxime[J].Langmuir, 2025, 41(8): 5323-5334. |
| [16] | 钟哲浩, 张聪, 陈青, 等.磷对TiO2/MCM-41催化环己胺无溶剂氧化制备环己酮肟的调变作用[J]. 分子催化(中英文), 2024, 38(4): 352-365. |
| ZHONG Z H, ZHANG C, CHEN Q, et al. Phosphorus modulation effect on the solvent-free oxidation of cyclohexylamine to cyclohexanone oxime catalyzed by TiO2/MCM-41[J]. J Mol Catal (China Engl), 2024, 38(4): 352-365. | |
| [17] | RAKOTTYAY K, KASZONYI A. Oxidation of cyclohexylamine over modified alumina by molecular oxygen[J]. Appl Catal A: Gen, 2009, 367(1): 32-38. |
| [18] | RAKOTTYAY K, KASZONYI A, VAJÍČEK S. Oxidation of amines over alumina based catalysts[J]. Appl Catal A: Gen, 2010, 378(1): 33-41. |
| [19] | ZHONG W Z, MAO L Q, YI W J, et al. New non-metallic mesoporous SBA-15 catalyst with high selectivity for the gas-phase oxidation of cyclohexylamine to cyclohexanone oxime[J]. Catal Commun, 2014, 56: 148-152. |
| [20] | LIU S L, YOU K Y, JIAN J, et al. Highly selective preparation of cyclohexanone oxime from vapor phase catalytic oxidation of cyclohexylamine with air over silica gel[J]. J Catal, 2016, 338: 239-249. |
| [21] | KLITGAARD S K, EGEBLAD K, MENTZEL U V, et al. Oxidations of amines with molecular oxygen using bifunctional gold-titania catalysts[J]. Green Chem, 2008, 10(4): 419-423. |
| [22] | SUZUKI K, WATANABE T, MURAHASHI S I. Aerobic oxidation of primary amines to oximes catalyzed by DPPH and WO3/Al2O3[J]. Angew Chem Int Ed, 2008, 47(11): 2079-2081. |
| [23] | SUZUKI K, WATANABE T, MURAHASHI S I. Oxidation of primary amines to oximes with molecular oxygen using 1,1-diphenyl-2-picrylhydrazyl and WO3/Al2O3 as catalysts[J]. J Org Chem, 2013, 78(6): 2301-2310. |
| [24] | LIU S L, YOU K Y, SONG J Y, et al.Supported TiO2/MCM-41 as an efficient and eco-friendly catalyst for highly selective preparation of cyclohexanone oxime from solvent-free liquid phase oxidation of cyclohexylamine with molecular oxygen[J].Appl Catal A: Gen, 2018, 568: 76-85. |
| [25] | DING W, PENG H Y, ZHONG W Z, et al. Site-specific catalytic activities to facilitate solvent-free aerobic oxidation of cyclohexylamine to cyclohexanone oxime over highly efficient Nb-modified SBA-15 catalysts[J]. Catal Sci Technol, 2020, 10: 3409-3422. |
| [26] | NI W J, YOU K Y, YI L, et al. Highly selective preparation of cyclohexanone oxime from liquid-phase catalytic oxidation of cyclohexylamine with molecular oxygen over glucose-modified TiO2 under solvent-free conditions[J]. Ind Eng Chem Res, 2021, 60: 3907-3913. |
| [27] | NI W J, YAN D J, FU S J, et al. Dominant anatase TiO2 (001) with rich surface hydroxyls as catalytic active sites for selective catalytic oxidation of cyclohexylamine to cyclohexanone oxime[J]. Chem Eng J, 2023, 465: 142905. |
| [28] | HASANNIA S, KAZEMEINI M, SEIF A, et al. Selective oxidative conversion of cyclohexylamine to cyclohexanone oxime using an efficient Co-WO3 catalyst: experimental and theoretical investigations[J]. Chem Eng Sci, 2023, 282: 119215. |
| [29] | CHU Y Y, ZHANG X Y, CHEN W X, et al. Plasma assisted-synthesis of magnetic TiO2/SiO2/Fe3O4-polyacrylic acid microsphere and its application for lead removal from water[J]. Sci Total Environ, 2019, 681: 124-132. |
| [30] | ZENG T Y, SHI D J, CHENG Q R, et al. Construction of novel phosphonate-based MOF/P-TiO2 heterojunction photocatalysts: enhanced photocatalytic performance and mechanistic insight[J]. Environ Sci Nano, 2020, 7: 861-879. |
| [31] | ZHANG J J, WEI Z, HUANG T, et al. Carbon coated TiO2-SiO2 nanocomposites with high grain boundary density as anode materials for lithium-ion batteries[J]. J Mater Chem A, 2013, 1: 7360-7369. |
| [32] | CHEN X, SUN H, ZHANG J, et al. Cationic S-doped TiO2/SiO2 visible-light photocatalyst synthesized by co-hydrolysis method and its application for organic degradation[J]. J Mol Liq, 2019, 273: 50-57. |
| [33] | WU X Q, SHAO Z D, LIU Q, et al. Flexible and porous TiO2/SiO2/carbon composite electrospun nanofiber mat with enhanced interfacial charge separation for photocatalytic degradation of organic pollutants in water[J].J Colloid Interf Sci, 2019, 553: 156-166. |
| [34] | VISWANADHAM B, SRIKANTH A, KUMAR V P, et al. Vapor phase dehydration of glycerol to acrolein over SBA-15 supported vanadium substituted phosphomolybdic acid catalyst[J]. J Nanosci Nanotechno, 2015, 15(7): 5391-5402. |
| [35] | PASHKOVA V, WLOCH E, MIKOLAJCZYK A, et al. Composite SBA-15/MFI type materials: preparation, characterization and catalytic performance[J]. Catal Lett, 2008, 128(1):64-71. |
| [36] | LIU C, SHAO J Z, WANG Y W, et al. Enhancing catalytic performance of TiO2/P-doped C3N4 composite via preferentially bonded P-O-Ti[J].J Alloy Compd, 2024, 970: 172460. |
| [37] | XIE W, FAN M. Biodiesel production by transesterification using tetraalkylammonium hydroxides immobilized onto SBA-15 as a solid catalyst[J]. Chem Eng J, 2014, 239: 60-67. |
| [38] | ZHANG F M, LIU B S, ZHANG Y, et al. Highly stable and regenerable Mn-based/SBA-15 sorbents for desulfurization of hot coal gas[J]. J Hazard Mater, 2012, 233: 219-227. |
| [39] | 罗和安, 游奎一, 刘水林, 等. 一种环己酮肟的制备方法: 中国, 201710519215.8[P]. 2019-05-14. |
| LUO H A, YOU K Y, LIU S L, et al. A preparation method of cyclohexanone oxime: CN, 201710519215.8[P]. 2019-05-14. | |
| [40] | 罗和安, 游奎一, 傅尚军, 等. 一种环己酮肟的制备方法: 中国, 202010103112.5[P]. 2022-11-01. |
| LUO H A, YOU K Y, FU S J, et al. A preparation method of cyclohexanone oxime: CN, 202010103112.5[P]. 2022-11-01. |
| [1] | 解晓明, 刘佳和, 马泽浩, 江玉莲, 顼兴宇, 马致远, 李文. 基于苯丙氨酸的无溶剂黏合剂的制备与表征[J]. 应用化学, 2025, 42(11): 1489-1499. |
| [2] | 杨玉雯, 齐婧瑶, 李林, 楚国宁, 王赛, 张钰, 张爽. 磁性NiFe2O4负载Ru催化5-羟甲基糠醛选择性氧化合成2,5-呋喃二甲酸[J]. 应用化学, 2023, 40(6): 879-887. |
| [3] | 周友三, 张毅城, 吴思宇, 查飞, 陈德军, 常玥. 铜掺杂钙铝水滑石催化氧化异丙苯制备异丙苯过氧化氢[J]. 应用化学, 2022, 39(6): 941-948. |
| [4] | 吴之强, 韩新宁, 刘阳, 王刚, 詹海鹃, 刘万毅. 水相或无溶剂绿色催化合成双吲哚基甲烷研究进展[J]. 应用化学, 2021, 38(8): 881-896. |
| [5] | 王玉婷, 张晓腾, 李先俊, 夏良树. Mn(Ⅱ)催化硝酸氧化草酸反应动力学及机理[J]. 应用化学, 2021, 38(6): 685-692. |
| [6] | 张宝华, 史兰香. 一锅法合成芳(杂环)胺亚甲基双膦酸四乙酯[J]. 应用化学, 2020, 37(8): 877-882. |
| [7] | 刘世伟, 梁亮, 李晨阳, 刘长鹏, 邢巍, 董献堆. 高温质子交换膜燃料电池的复合催化层电极[J]. 应用化学, 2019, 36(9): 1085-1090. |
| [8] | 孙莉萍, 夏然. 无溶剂、无催化剂条件下α-腺嘌呤阿拉伯糖苷的合成[J]. 应用化学, 2019, 36(3): 300-305. |
| [9] | 杨志. 负载催化剂SmMn2O5/γ-Al2O3负载量对NO氧化的影响[J]. 应用化学, 2019, 36(2): 195-202. |
| [10] | 徐坤仑,曹祖宾,乔海燕,韩冬云,石薇薇. CuI/2,2'-联吡啶/2,2,6,6-四甲基哌啶氧化物催化氧化醇生成腈的工艺[J]. 应用化学, 2018, 35(11): 1335-1341. |
| [11] | 陈世界, 汤晓君, 陈茜, 李英杰, 高立娣, 王鹏. C/Fe-Bi2WO6光催化氧化诺氟沙星废水的效能及其机理[J]. 应用化学, 2017, 34(8): 936-945. |
| [12] | 唐小华, 潘姣, 康晓晓, 査飞, 周友三, 牛克彦. Amberlyst-15催化丁酮氧化制备过氧化甲乙酮[J]. 应用化学, 2017, 34(4): 408-413. |
| [13] | 黄火娣,张晓凤,张艺,乐丽娟,林深. 铂/{还原氧化石墨烯/硅钨酸盐}n复合物的制备及其电催化性能[J]. 应用化学, 2017, 34(10): 1209-1220. |
| [14] | 董婷婷, 毕丛丛, 高保娇. 交联聚苯乙烯微球固载2,2,6,6-四甲基哌啶氮氧自由基的催化氧化性能与机理[J]. 应用化学, 2016, 33(9): 1017-1025. |
| [15] | 程振华, 崔娜, 宋兆阳, 江胜娟, 朱丽君, 夏道宏. 磺化酞菁金属的聚集及对催化氧化硫醇性能影响[J]. 应用化学, 2016, 33(2): 155-160. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||