Please wait a minute...
应用化学
今天是
应用化学  2017, Vol. 34 Issue (8): 936-945    DOI: 10.11944/j.issn.1000-0518.2017.08.170019
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
C/Fe-Bi2WO6光催化氧化诺氟沙星废水的效能及其机理
陈世界a,汤晓君a,陈茜a,李英杰a*(),高立娣a,王鹏b
a齐齐哈尔大学化学与化学工程学院 黑龙江 齐齐哈尔 161006
b哈尔滨工业大学市政环境工程学院 哈尔滨 150090
Efficiency and Mechanism of Photocatalytic Oxidation of Norfloxacin in Wastewater by C/Fe-Bi2WO6
CHEN Shijiea,TANG Xiaojuna,CHEN Xia,LI Yingjiea*(),GAO Lidia,WANG Pengb
aCollege of Chemistry and Chemical Engineering,Qiqihar University Qiqihar,Heilongjiang 161006,China
bSchool of Municipal and Environmental Engineering,Harbin Institute of Technology,Harbin 150090,China
全文: PDF(759 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

采用树脂碳化和水热两步法制备C/Fe-Bi2WO6光催化剂,对不同光催化剂光催化降解诺氟沙星溶液的去除效果进行对比研究。 考察了条件因素对诺氟沙星(NOR)溶液在模拟太阳光下光催化氧化降解的影响规律。 结果表明,在实验条件下,NOR光催化氧化降解符合L-H拟一级反应动力学模型,在NOR溶液初始浓度10 mg/L、溶液pH=7.0、催化剂用量0.75 g/L、H2O2浓度为200 mg/L、500 W氙灯照射60 min条件下,NOR完全分解,表观速率常数Kapp为0.0751 min-1。 采用分子荧光光谱法,对C/Fe-Bi2WO6光催化氧化去除NOR体系中羟基自由基生成规律进行研究,并推测了反应机理。 结合LC-MS的分析结果,推测了NOR可能的降解路径和中间产物。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈世界
汤晓君
陈茜
李英杰
高立娣
王鹏
关键词 C/Fe-Bi2WO6光催化氧化诺氟沙星    
Abstract

The C/Fe-Bi2WO6 photocatalyst was prepared by a two-step method, involving resin carbonization and hydrothermal reaction process. Comparative research on photoactivities of different catalysts was carried out. Influence of condition factors on photocatalytic oxidation degradation of norfloxacin(NOR) solution under simulated sunlight irradiation was investigated. The degrading reaction fits the first-order kinetics well under experimental conditions. After irradiation under a 500 W Xenon lamp for 60 min, NOR completely decomposed with the first order reaction rate constant(Kapp) of 0.0751 min-1 under the conditions that the initial concentration of NOR is 10 mg/L, the C/Fe-Bi2WO6 loading is 0.75 g/L, and the concentration of H2O2 is 200 mg/L at pH 7.0. The OH formation in C/Fe-Bi2WO6 photocatalytic oxidation was studied via molecular fluorescence spectrum, and the possible photocatalytic oxidation mechnasim and the degradation paths and intermediate products of NOR were proposed.

Key wordsC/Fe-Bi2WO6    photocatalytic oxidation    norfloxacin
收稿日期: 2017-01-18           接受日期: 2017-05-02
基金资助:黑龙江省教育厅基本业务专项理工面上项目(135109209)
通讯作者: 李英杰     E-mail: lyj310@163.com
引用本文:   
陈世界, 汤晓君, 陈茜, 李英杰, 高立娣, 王鹏. C/Fe-Bi2WO6光催化氧化诺氟沙星废水的效能及其机理[J]. 应用化学, 2017, 34(8): 936-945.
CHEN Shijie, TANG Xiaojun, CHEN Xi, LI Yingjie, GAO Lidi, WANG Peng. Efficiency and Mechanism of Photocatalytic Oxidation of Norfloxacin in Wastewater by C/Fe-Bi2WO6. Chinese Journal of Applied Chemistry, 2017, 34(8): 936-945.
链接本文:  
http://yyhx.ciac.jl.cn/CN/10.11944/j.issn.1000-0518.2017.08.170019      或      http://yyhx.ciac.jl.cn/CN/Y2017/V34/I8/936
图1不同光催化剂光催化降解诺氟沙星溶液的去除效果(A)及拟合曲线(B)
Fig.1Photocatalytic removal efficieny(A) and fitting curves(B) of NOR aqueous solution on different photocatalysts
Catalyst 1st order eq k/min-1 R2
TiO2+H2O2 -ln (ct/c0)=0.0023t+0.0401 0.0023 0.8263
C/Fe-Bi2WO6 -ln (ct/c0)=0.0159t-0.0022 0.0159 0.9929
C/Fe-Bi2WO6+H2O2 -ln (ct/c0)=0.0751t-0.2152 0.0751 0.9968
表1不同光催化剂光催化降解诺氟沙星的动力学参数
Table 1Photocatalytic degradation kinetics of NOR over different photocatalysts
图2pH值对C/Fe-Bi2WO6光催化氧化去除NOR的影响
Fig.2Effect of pH on the removal efficiency of photocatalytic oxidation NOR(A) and fitting curves(B) over C/Fe-Bi2WO6 catalyst
图3C/Fe-Bi2WO6的Zeta 电位
Fig.3Zeta potential of C/Fe-Bi2WO6 as a function of solution pH
pH 1st order eq k/min-1 R2
3 -ln (ct/c0)=0.0165t-0.0256 0.0165 0.9981
5 -ln (ct/c0)=0.0501t-0.058 0.0501 0.9982
7 -ln (ct/c0)=0.0751t-0.2152 0.0751 0.9968
9 -ln (ct/c0)=0.059t-0.0691 0.059 0.9987
11 -ln (ct/c0)=0.019t-0.0283 0.019 0.9971
表2不同pH值下光催化氧化去除NOR的动力学参数
Table 2Photocatalytic rremoval kinetics of NOR over different pH values
图4催化剂用量对C/Fe-Bi2WO6光催化氧化去除NOR的影响
Fig.4Effect of C/Fe-Bi2WO6 concentration on the removal efficiency of photocatalytic oxidation NOR(A) and fitting curves(B) over C/Fe-Bi2WO6 catalyst

a.0.5 g/L; b.0.75 g/L; c.1.0 g/L; d.1.25 g/L; e.1.5 g/L

C/Fe-Bi2WO6 dosages/(g·L-1) 1st order eq k/min-1 R2
0.5 -ln (ct/c0)=0.0262t+0.0656 0.0262 0.9945
0.75 -ln (ct/c0)=0.0751t-0.2152 0.0751 0.9968
1.0 -ln (ct/c0)=0.0664t-0.1018 0.0664 0.9973
1.25 -ln (ct/c0)=0.0512t-0.0748 0.0512 0.9973
1.5 -ln (ct/c0)=0.0452t-0.061 0.0452 0.9982
表3不同催化剂浓度下光催化氧化去除NOR的动力学参数
Table 3Photocatalytic removal kinetics of NOR over different catalyst dose
图5H2O2质量浓度对C/Fe-Bi2WO6光催化氧化去除NOR的影响
Fig.5Effect of H2O2 concentration on the removal efficiency of photocatalytic oxidation NOR(A) and fitting curves(B) over C/Fe-Bi2WO6 catalyst

a.100 mg/L; b.150 mg/L; c.200 mg/L; d.250 mg/L; e.300 mg/L

H2O2 concentration/(mg·L-1) 1st order eq k/min-1 R2
100 -ln (ρt0)=0.0416t-0.0036 0.0416 0.9992
150 -ln (ρt0)=0.0489t-0.0402 0.0489 0.9988
200 -ln (ρt0)=0.0751t-0.2152 0.0751 0.9968
250 -ln (ρt0)=0.0523t-0.0068 0.0523 0.9993
300 -ln (ρt0)=0.038t-0.0077 0.038 0.9991
表4不同过氧化氢质量浓度下光催化氧化去除NOR的动力学参数
Table 4Photocatalytic rremoval kinetics of NOR over different H2O2 mass concnetration
图6C/Fe-Bi2WO6和Bi2WO6的PL光谱
Fig.6PL emission spectra of C/Fe-Bi2WO6 and Bi2WO6
图7不同活性氧物种对诺氟沙星光催化氧化降解的贡献
Fig.7Different reactive oxygen species contribution to norfloxacin photocatalytic oxidation degradation
图8C/Fe-Bi2WO6光催化氧化诺氟沙星过程示意图
Fig.8Schematic diagram for photocatalytic oxidation of NOR over C/Fe-Bi2WO6
Material m/z Molecular formula Chemical structure
Norfloxacin 320 C16H18FN3O3
Product 1 294 C14H16FN3O3
Product 2 279 C14H15FN2O3
Product 3 206 C11H11FN2O
Product 4 318 C16H19N3O4
Product 5 247 C12H12N2O4
Product 6 336 C16H18FN3O4
表5NOR的光催化氧化降解中间产物
Table 5Decomposed products of norfloxacin by photocatalytic oxidation degradation
图9NOR的光催化氧化降解路径
Fig.9Degradation paths in the photocatalytic oxidation degradation of NOR
[1] Duong H A,Pham N H,Nguyen H T,et al.Occurrence, Fate and Antibiotic Resistance of Fluoroquinolone Antibacterials in Hospital Wastewaters in Hanoi, Vietnam[J]. Chemosphere,2008,72(6):968-973.
[2] Seifrtov M,Pena A,Lino C M,et al.Determination of Fluoroquinolone Antibiotics in Hospital and Municipal Waste-waters in Coimbra by Liquid Chromatography with Amonolithic Column and Fluorescence Detection[J]. Anal Bioanal Chem,2008,391(3):799-805.
[3] Golet E M,Alder A C,Giger W. Environmental Exposure and Risk Asesssment of Fluoroquinolone Antibacterial Agents in Wastewater and Fiver Water of the Glatt Valley Watershed, Switzerland[J]. Environ Sci Technol,2002,36(17):3645-3651.
[4] Wang C Y,Zhang H,Li F,et al.Degradation and Mineralization of Bisphenol A by Mesoporous Bi2WO6 under Simulated Solar Light Irradiation[J]. Environ Sci Technol,2010,44(17):6843-6848.
[5] Navarro S,Fenoll J,Vela N,et al.Removal of Ten Pesticides from Leaching Water at Pilot Plant Scale by Photo-Fenton Treatment[J]. Chem Eng J,2011,167(1):42-49.
[6] Sun J H,Song M K,Feng J L,et al.Highly Efficient Degradation of Ofloxacin by UV/Oxone/Co2+ Oxidation Process[J]. Environ Sci Pollut Res,2012,19(5):1536-1543.
[7] WEI Hong,LI Juan,LI Kebin,et al.Degradation of Levofloxacin by Sonolysis-assisted H2O2 in Aqueous Solution[J]. China Environ Sci,2013,33(2):257-262(in Chinese). 魏红,李娟,李克斌,等. 左氧氟沙星的超声/H2O2联合降解研究[J]. 中国环境科学,2013,33(2):257-262.
[8] Niu H Y,Zhang D,Zhang S X,et al.Humic Acid Coated Fe3O4 Magnetic Nanoparticles as Highly Efficient Fenton-like Catalyst for Complete Mineralization of Sulfathiazole[J]. J Hazard Mater,2011,190(1/2/3):559-565.
[9] Murcia-López S,Hidalgo M C,Navío J A. Photocatalytic Activity of Single and Mmixed Nanosheet-like Bi2WO6 and TiO2 for Rhodamine B Degradation under Sunlike and Visible Illumination[J]. Appl Catal A-Gen,2012,423/424(1):34-41.
[10] Liu S W,Yu J G. Cooperative Self-Construction and Enhanced Optical Absorption of Nanoplates-assembled Hierarchical Bi2WO6 Flowers[J]. J Solid State Chem,2008,181(5):1048-1055.
[11] Fu H B,Zhang L W,Yao W Q,et al.Photocatalytic Properties of Nanosized Bi2WO6 Catalysts Synthesized via a Hydrothermal Process[J]. Appl Catal B:Environ,2006,66(1/2):100-110.
[12] Guo Y D,Zhang G K,Gan H H. Synthesis, Characterization and Visible Light Photocatalytic Properties of Bi2WO6/Rectorite Composites[J]. J Colloid Interface Sci,2012,369(1):323-329.
[13] Chen M J,Chu W. Efficient Degradation of an Antibiotic Norfloxacin in Aqueous Solution via a Simulated Solar-Light-Mediated Bi2WO6 Process[J]. Ind Eng Chem Res,2012,51(13):4887-4893.
[14] Shang M,Wang W Z,Sun S M,et al.Efficient Visible Light-Induced Photocatalytic Degradation of Contaminant by Spindle-Like PANI/BiVO4[J]. J Phys Chem C,2009,113(47):20228-20233.
[15] Gumy D,Morais C,Bowen P,et al.Catalytic Activity of Commercial of TiO2 Powders for the Abatement of the Bacteria(E.coli) under Solar Simulated Light:Influence of the Isoelectric Point[J]. Appl Catal B:Environ,2006,63(1/2):76-84.
[16] Cho I H,Zoh K D. Photocatalytic Degradation of Azo Dye(Reactive Red 120) in TiO2/UV System:Optimization and Modeling Using a Response Surface Methodology(RSM) Based on the Central Composite Design[J]. Dyes Pigm,2007,75(3):533-543.
[17] Su M H,He C,Sharma V K,et al. Mesoporous Zinc Ferrite:Synthesis, Characterization, and Photocatalytic Activity with H2O2/Visible Light[J]. J Hazard Mater,2012,211/212(1):95-103.
[18] Mao Y,Schoneich C,Asmus K D. Identification of Organic Acids and Other Intermediates in Oxidative Degradation of Chlorinated Ethanes on TiO2 Surfaces En Route to Mineralization. A Combined Photocatalytic and Radiation Chemical Study[J]. J Phys Chem,1991,95(24):10080-10089.
[19] Chen S J,Li Y J,Lv R J,et al.Preparation, Characterization of C/Fe-Bi2WO6 Nanosheet Composite and Degradation Application of Norfloxacin in Water[J]. J Nanosci Nanotechnol,2013,13(8):5624-5630.
[20] Wang D J,Xue G L,Zhen Y Z,et al.Monodispersed Ag Nanoparticles Loaded on the Surface of Spherical Bi2WO6 Nanoarchitectures with Enhanced Photocatalytic Activities[J]. J Mater Chem,2012,22(11):4751-4758.
[21] An T C,Yang H,Song W H,et al.Mechanistic Considerations for the Advanced Oxidation Treatment of Fluoroquinolone Pharmaceutical Compounds using TiO2 Heterogeneous Catalysis[J]. J Phys Chem A,2010,114(7):2569-2575.
[22] Paul T,Miller P L,Strathmann T J. Visible-Light-Mediated TiO2 Photocatalysis of Fluoroquinolone Antibacterial Agents[J]. Environ Sci Technol,2007,41(13):4720-4727.
[1] 文雯, 高晓亚, 张爱平, 宋志英, 孙彦平. 纳米TiO2光催化氧化对胃癌细胞周期的影响[J]. 应用化学, 2012, 29(06): 663-667.
[2] 彭淑鸽, IZUMI Yasuo, 刘晓飞, 张军. 硫掺杂钛酸(盐)纳米管的表征与可见光光催化活性[J]. 应用化学, 2012, 29(03): 285-290.
[3] 刘彦平, 杨志远. 改性纳米TiO2降解水中微量次甲基蓝的动力学研究[J]. 应用化学, 2006, 23(9): 1019-1022.
[4] 路平, 吴峰, 邓南圣. β-环糊精对TiO2光催化氧化还原效率的作用[J]. 应用化学, 2004, 21(4): 348-351.
[5] 张贵彬, 孙晓冬, 史峰山, 赵秀峰. 金属组分对TiO2光催化氧化NO-2反应的影响[J]. 应用化学, 2004, 21(3): 296-300.
[6] 张爱平, 孙彦平, 樊彩梅. 纳米TiO2对胃癌细胞的光催化氧化杀伤效应[J]. 应用化学, 2004, 21(11): 1109-1112.
[7] 杨康林, 李新生, 张玲, 陈义朗, 邓瑞红. 几种新型锗修饰药物衍生物的合成及其抗癌活性[J]. 应用化学, 2004, 21(1): 101-103.
[8] 王九思, 赵红花. 负载型纳米TiO2光催化降解活性艳红X-3B染料[J]. 应用化学, 2002, 19(8): 792-794.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
 Chinese Journal of Applied Chemistry
地址:长春市人民大街5625号 邮编:130022
电话:0431-85262016 85262330 传真:0431-85685653 E-mail: yyhx@ciac.ac.cn