应用化学 ›› 2022, Vol. 39 ›› Issue (12): 1818-1832.DOI: 10.19894/j.issn.1000-0518.220062
刘静婉1, 李琼1, 张涛2, 王恩鹏1, 王欢1, 陈雪1(), 陈长宝1()
收稿日期:
2022-03-08
接受日期:
2022-07-01
出版日期:
2022-12-01
发布日期:
2022-12-13
通讯作者:
陈雪,陈长宝
基金资助:
Jing-Wan LIU1, Qiong LI1, Tao ZHANG2, En-Peng WANG1, Huan WANG1, Xue CHEN1(), Chang-Bao CHEN1()
Received:
2022-03-08
Accepted:
2022-07-01
Published:
2022-12-01
Online:
2022-12-13
Contact:
Xue CHEN,Chang-Bao CHEN
About author:
wangzctougao2009@163.comSupported by:
摘要:
吉林省独有的土地资源和自然环境孕育了百草之王—人参。人参产业的发展在有力推动医药大健康产业进程的同时,也为参农带来了可观的经济收入。然而长期连作人参易使土壤物理、化学、生物性质发生劣变,土壤-微生物-植物间的不良循环最终导致人参连作障碍的形成。发掘连作障碍中恶变的土壤因子,揭示演变过程,提出改良策略,优化土地利用效率是人参研究工作现阶段的首要任务。本文综述了人参种植对土壤理化性质、养分、酶活性、微生态和生态毒性产生的显著影响,以及近10年利用化学和生物技术和方法改良人参土壤所取得的成果,以期为人参连作障碍的彻底解决提供参考。
中图分类号:
刘静婉, 李琼, 张涛, 王恩鹏, 王欢, 陈雪, 陈长宝. 从改良土壤角度探索人参连作障碍解决方法的研究进展[J]. 应用化学, 2022, 39(12): 1818-1832.
Jing-Wan LIU, Qiong LI, Tao ZHANG, En-Peng WANG, Huan WANG, Xue CHEN, Chang-Bao CHEN. Research Progress on the Continuous Cropping Obstacles of Ginseng from Soil Improvement[J]. Chinese Journal of Applied Chemistry, 2022, 39(12): 1818-1832.
图1 (A)新林土培育的人参植株; (B)老参地土培育的人参植株; (C)土壤-人参-微生物间的相互作用诱发连作障[2]
Fig.1 (A) Ginseng grown in the new forest soil; (B) Ginseng grown in the old ginseng soil; (C) Continuous cropping obstacle of ginseng induced by the interaction of soil-ginseng-microbial community[2]
养分 Nutrients | 含量 Content |
---|---|
有机质 Organic matter | 16~30 g/kg |
全氮 Total nitrogen | 1.6~2.8 g/kg |
速效氮 Available nitrogen | 10~150 mg/kg |
全磷 Total phosphorus | 0.1~0.7 g/kg |
速效磷 Available phosphorus | 20~50 mg/kg |
全钾 Total potassium | 5~12 g/kg |
速效钾 Available potassium | 200~300 mg/kg |
表1 适宜栽参土壤养分含量[11]
Table 1 Nutrient content of the soil suitable for ginseng[11]
养分 Nutrients | 含量 Content |
---|---|
有机质 Organic matter | 16~30 g/kg |
全氮 Total nitrogen | 1.6~2.8 g/kg |
速效氮 Available nitrogen | 10~150 mg/kg |
全磷 Total phosphorus | 0.1~0.7 g/kg |
速效磷 Available phosphorus | 20~50 mg/kg |
全钾 Total potassium | 5~12 g/kg |
速效钾 Available potassium | 200~300 mg/kg |
土壤酶 Soil enzyme | 功能 Function |
---|---|
多酚氧化酶 Polyphenol oxidase | 促进芳香族化合物养分转化 Promoting the nutrient transformation of aromatic compounds |
过氧化氢酶 Catalase | 分解有毒的过氧化氢,促进有机质的转化 Decomposing toxic hydrogen peroxide and promoting the transformation of organic matter |
脲酶 Urease | 促进尿素的水解,有利于植物获取氮元素 Promoting the hydrolysis of urea is beneficial for plants to obtain nitrogen. |
蔗糖酶 Sucrase | 促进蔗糖分解,有利于植物对碳源的利用 Promoting the decomposition of sucrose which is beneficial to the utilization of carbon sources by plants. |
脱氢酶 Dehydrogenase | 促进有机质的转化,反应微生物降解性能 Promoting the transformation of organic matter and reflecting the degradability of microorganisms |
磷酸酶 Phosphatase | 促进有机磷酯转化为无机磷酸 Promoting the conversion of organophosphorus esters to inorganic phosphoric acid |
纤维素酶 Cellulase | 分解纤维素 Decomposing cellulose |
β?葡萄糖苷酶 β?Glucosidase | 分解糖苷键 Decomposing glycosidic bond |
表2 人参土壤中常见的活性酶[17]
Table 2 Common active enzymes in the soil of ginseng[17]
土壤酶 Soil enzyme | 功能 Function |
---|---|
多酚氧化酶 Polyphenol oxidase | 促进芳香族化合物养分转化 Promoting the nutrient transformation of aromatic compounds |
过氧化氢酶 Catalase | 分解有毒的过氧化氢,促进有机质的转化 Decomposing toxic hydrogen peroxide and promoting the transformation of organic matter |
脲酶 Urease | 促进尿素的水解,有利于植物获取氮元素 Promoting the hydrolysis of urea is beneficial for plants to obtain nitrogen. |
蔗糖酶 Sucrase | 促进蔗糖分解,有利于植物对碳源的利用 Promoting the decomposition of sucrose which is beneficial to the utilization of carbon sources by plants. |
脱氢酶 Dehydrogenase | 促进有机质的转化,反应微生物降解性能 Promoting the transformation of organic matter and reflecting the degradability of microorganisms |
磷酸酶 Phosphatase | 促进有机磷酯转化为无机磷酸 Promoting the conversion of organophosphorus esters to inorganic phosphoric acid |
纤维素酶 Cellulase | 分解纤维素 Decomposing cellulose |
β?葡萄糖苷酶 β?Glucosidase | 分解糖苷键 Decomposing glycosidic bond |
图2 参地土壤的物理性质随种植年限的变化 (A)比重; (B)容重; (C)孔隙度; (D)含水量; (E)气相体积分数。图中,组1为新土; 组2为种植人参1年的土壤; 组3为种植人参2年的土壤; 组4为种植人参3年的土壤; 组5为种植人参7年的土壤; 组6为多年连作人参土壤[18]
Fig.2 Physical properties changes of ginseng soil with planting years (A) specific weight; (B) volumetric weight; (C) porosity; (D) water content; (E) air volume fraction. In this graph, the sample was uncultivated soil in group 1; the sample was cultivate ginseng soil for 1 year in group 2; the sample was cultivate ginseng soil for 2 year in group 3; the sample was cultivate ginseng soil for 3 year in group 4; the sample was cultivate ginseng soil for 7 year in group 5; the sample was continuous cropping soil of ginseng in group 6 [18]
农药 Pesticide | 名称 Name |
---|---|
有机磷类 Organophosphorus type | 百菌清、三唑磷、毒死稗、甲基嘧啶磷、香豆磷、马拉硫磷、甲拌磷、磷虫威、喹唑啉、四苯基膦酸二甲酯、磷酸二甲酯、二嗪农、甲基对硫磷、硫线磷、甲基立枯磷、乐果、马拉硫磷、乙硫磷 Chlorothalonil, Triazophos, Chlorypyrifos, Pirimiphos, Coumaphos, Malathion, Phorate, Phosphocarb, Quinazoline, Dimethyl (4?methylsulfanylphenyl) phosphate, Dimethyl phosphate, Diazinon, Parathion?methyl, Tolclofos?methyl, Cadusafos, Dimethoate, Malathion, Ethion |
有机氯类 Organochlorine type | α?六氯环己烷、 β?六氯环己烷、 γ?六氯环己烷、 δ?六氯环己烷、 p, p'?DDE、 p, p'?DDD、 o, p'?DDT、 p, p'?DDT、四氯杀螨砜、六氯苯、五氯苯胺、五氯硝基苯、七氯、氧氯丹、腐霉利、杀扑磷 α?Hexachlorocyclohexane, β?Hexachlorocyclohexane, γ?Hexachlorocyclohexane, δ?Hexachlorocyclohexane, p, p'?DDE, p, p'?DDD, o, p'?DDT, p,p'?DDT, Tetradifon, Hexachlorobenzene, Pentachloroaniline, Quintozene, Heptachlor, Oxy?chlordane, Procymidone, Methidathion |
拟除虫菊酯型 Pyrethroid type | 联苯菊酯、甲氰菊酯、溴氰菊酯、三氟氯氰菊酯、苄氯菊酯、七氟菊酯、联苯菊酯 Bifenthrin, Fenpropathrin, Deltamethrin, Cyhalothrin, Permethrin, Tefluthrin, Bifenthrin |
甾醇类 Sterol type | 三唑酮 Triademefon |
氨基甲酸酯 Carbamate type | 克百威 Carbofuran |
甲氧基丙烯酸类 Methoxyacrylate type | 嘧菌酯、肟菌酯、醚菌酯 Azoxystrobin, Trifloxystrobin, Kresoxim?methyl |
硝基苯类 Nitrobenzene type | 硝基苯 Nitrobenzene |
嘧啶类 Pyrimidine type | 甲基嘧啶、磺胺嘧啶、嘧霉胺、嘧菌环胺 Methylpyrimidine, Sulphadiazine, Pyrimethanil, Cyprodinil |
酰胺类 Amide type | 丁草胺、乙草胺、甲草胺 Butachlor, Acetachlor, Alachlor |
三唑类 Triazole type | 戊菌唑、丙环唑、戊唑醇 Penconazole, Propiconazole, Tebuconazole |
其它类 Other type | 二甲酮、咯菌腈 Triademefon, Fludioxonil |
表3 老参地土壤中检测到的农药残留[24-26]
Table 3 Pesticide residues detected in old ginseng soil[24-26]
农药 Pesticide | 名称 Name |
---|---|
有机磷类 Organophosphorus type | 百菌清、三唑磷、毒死稗、甲基嘧啶磷、香豆磷、马拉硫磷、甲拌磷、磷虫威、喹唑啉、四苯基膦酸二甲酯、磷酸二甲酯、二嗪农、甲基对硫磷、硫线磷、甲基立枯磷、乐果、马拉硫磷、乙硫磷 Chlorothalonil, Triazophos, Chlorypyrifos, Pirimiphos, Coumaphos, Malathion, Phorate, Phosphocarb, Quinazoline, Dimethyl (4?methylsulfanylphenyl) phosphate, Dimethyl phosphate, Diazinon, Parathion?methyl, Tolclofos?methyl, Cadusafos, Dimethoate, Malathion, Ethion |
有机氯类 Organochlorine type | α?六氯环己烷、 β?六氯环己烷、 γ?六氯环己烷、 δ?六氯环己烷、 p, p'?DDE、 p, p'?DDD、 o, p'?DDT、 p, p'?DDT、四氯杀螨砜、六氯苯、五氯苯胺、五氯硝基苯、七氯、氧氯丹、腐霉利、杀扑磷 α?Hexachlorocyclohexane, β?Hexachlorocyclohexane, γ?Hexachlorocyclohexane, δ?Hexachlorocyclohexane, p, p'?DDE, p, p'?DDD, o, p'?DDT, p,p'?DDT, Tetradifon, Hexachlorobenzene, Pentachloroaniline, Quintozene, Heptachlor, Oxy?chlordane, Procymidone, Methidathion |
拟除虫菊酯型 Pyrethroid type | 联苯菊酯、甲氰菊酯、溴氰菊酯、三氟氯氰菊酯、苄氯菊酯、七氟菊酯、联苯菊酯 Bifenthrin, Fenpropathrin, Deltamethrin, Cyhalothrin, Permethrin, Tefluthrin, Bifenthrin |
甾醇类 Sterol type | 三唑酮 Triademefon |
氨基甲酸酯 Carbamate type | 克百威 Carbofuran |
甲氧基丙烯酸类 Methoxyacrylate type | 嘧菌酯、肟菌酯、醚菌酯 Azoxystrobin, Trifloxystrobin, Kresoxim?methyl |
硝基苯类 Nitrobenzene type | 硝基苯 Nitrobenzene |
嘧啶类 Pyrimidine type | 甲基嘧啶、磺胺嘧啶、嘧霉胺、嘧菌环胺 Methylpyrimidine, Sulphadiazine, Pyrimethanil, Cyprodinil |
酰胺类 Amide type | 丁草胺、乙草胺、甲草胺 Butachlor, Acetachlor, Alachlor |
三唑类 Triazole type | 戊菌唑、丙环唑、戊唑醇 Penconazole, Propiconazole, Tebuconazole |
其它类 Other type | 二甲酮、咯菌腈 Triademefon, Fludioxonil |
病害 Disease | 病原菌 Pathogen | 化学灭菌剂 Chemical agent | 生物灭菌剂 Biology agent |
---|---|---|---|
炭疽病 Anthracnose | 人参炭疽病菌, 线列炭疽菌 Colletotrichum panacicolaUyeda et Takim, C.lineola | 唑醚+戊唑醇 Pyrazolimate + Tebuconazole | 解淀粉芽孢杆菌菌株F56 Bacillus amyloliquefaciens strain F56 |
黑色斑点 Black spot | 人参黑斑病菌,链格孢菌 Alternaria panax Whetz,Alternaria alternata | 嘧菌酯,苯醚甲环唑,多抗霉素、异菌脲、代森锰、丙环唑、苯醚甲环唑、醚菌酯 Azoxystrobin, Difenoconazole, Polyoxin, Iprodione, Mancozeb, Propiconazol, Difenoconazole, Kresoxim methyl | 解淀粉芽孢杆菌分泌物,细菌Xc1、Xd5和Xc4, CNU114001,内生菌柠檬酸木霉菌,放线菌Fd2和Fw1,木霉菌Zh1,伯克霍氏菌,芽孢杆菌,球毛壳菌,地芽孢杆菌,枯草芽孢杆菌 Bacillus amylolyticus secrete bacteriostatic substances, Bacterium Xc1, Xd5 and Xc4, CNU114001, Endophytic trichoderma citrinoviride, Actinomyces Fd2 and Fw1, Trichoderma spp. Zh1, Burkholderia pyrrocinia, Bacillus, Chaetomiumglobosum, Brevundimonas terrae, Acillus subtilis |
枯萎病 Blight | 恶疫霉 Phytophthora cactorum | 氟啶胺,烯酰吗啉,霜脲氰+代森锰,双炔酰菌胺,霜脲氰+氰霜唑,氟菌+霜霉威 Fluazinam, Dimethomorph, Cymoxanil + mancozeb, Mandipropamid, Cymoxanil + Cyazofamid, Fluropyram + Propamocarb hydrochloride | 融合蛋白GST?pgLTP,内生木霉菌 Fusion protein GST?pgLTP, Endophytic trichoderma citrinoviride |
灰霉病 Gray mold | 天竺葵葡萄孢,葡萄孢菌,拟青霉属BCP Botrytis pelargonii., Botrytis cinerea, S. lamellicola BCP | 嘧菌环,嘧霉胺 Cyclamide, Pyrimethanil | 柠檬酸木霉菌PG87,解淀粉芽孢杆菌分泌物,内生柠檬酸木霉菌,解淀粉芽孢杆菌SW?34 Trichoderma citrinoviride PG87, Bacillus amylolyticus secrete bacteriostatic substances, Endophytic trichoderma citrinoviride, Bacillus amyloliquefaciens SW?34 |
红皮病 Red skin root | 念珠镰孢菌,丛枝菌根真菌,叶斑菌,黑斑菌,褐斑病菌,根腐病菌,锐顶镰刀菌 Rhexocercosporidium panacis sp., F. Torulosum, Rhizophagus irregularis, D. hordeicola,F. avenaceum, Marssonina brunnea, Dactylonectria sp., F. acuminatum | 代森锰锌,抗坏血酸,生石灰 Mancozeb, Ascorbic acid, Quicklime | |
根腐病 Root rot | 尖镰孢,假单胞杆菌,锈腐病菌,腐皮镰孢霉菌 Fusarium acuminatum P.qessardii, Ilyonectria mors?panacis, Fusarium solani | 恶霉灵,氟啶胺+异菌脲,醚菌酯 Hymexazol, Shirlan + Iprodione, Kresoxim methyl | 色素杆菌属JH7,内生桔绿木霉菌,木霉菌T740, T892, T936, T886和T706, Paraburkholderia panacisolisp.nov.,拟康宁木霉、类LCI蛋白APC2、铜绿假单胞菌D4、平流层芽孢杆菌FW3、帕氏副芽孢杆菌DCY115T、人参内生产黄杆菌DCY112T、枯草芽孢杆菌50?1、解淀粉芽孢杆菌分泌物、融合蛋白GST?pgLTP、人参内生菌B69 Chromobacterium sp.JH7, Endophytic Trichoderma citrinoviride, Trichoderma T740, T892, T936, T886, and T706, Paraburkholderia panacisolisp. nov., Trichoderma koningiopsis, LCI?like protein APC2, Pseudomonas aeruginosa D4, Bacillus stratosphericus FW3, Paraburkholderia Panacihumi DCY115T, Rhodanobacter ginsengiterrae sp nov.DCY112T, Bacillus subtilis 50?1, Bacillus amylolyticus secrete bacteriostatic substances, Fusion protein GST?pgLTP,B69 endophytic bacteria from Panax ginseng |
锈腐病 Root rusty | 柱盘孢菌/土赤壳属菌 Cylindrocarpon destructans/Ilyonectria radicicola | 多菌灵 Carbendazim | 解淀粉芽孢杆菌、细菌F1、韦腊链霉菌F3、链霉菌MS32、稳定伯克霍氏菌EB159、解淀粉芽孢杆菌分泌物、融合蛋白GST?pgLTP Bacillus amyloliquefaciens, Bacteria F1, Streptomyces werraensis F3, Streptomycete MS32, Burkholderia stabilis EB159, Bacillus amylolyticus secrete bacteriostatic substances, Fusion protein GST?pgLTP |
立枯病 Standing blight | 立枯丝核菌 Rhizoctonia solani Kuhn | 咯菌腈 Fludioxonil | 融合蛋白GST?pgLTP, 哈茨木霉菌,枯草芽孢杆菌, 内生木霉菌 Fusion protein GST?pgLTP,Harzianum, Acillus subtilis, Endophytic trichoderma citrinoviride |
表4 人参病原菌及灭菌剂[28-32]
Table 4 Pathogenic bacteria and fungicides of Panax ginseng [28-32]
病害 Disease | 病原菌 Pathogen | 化学灭菌剂 Chemical agent | 生物灭菌剂 Biology agent |
---|---|---|---|
炭疽病 Anthracnose | 人参炭疽病菌, 线列炭疽菌 Colletotrichum panacicolaUyeda et Takim, C.lineola | 唑醚+戊唑醇 Pyrazolimate + Tebuconazole | 解淀粉芽孢杆菌菌株F56 Bacillus amyloliquefaciens strain F56 |
黑色斑点 Black spot | 人参黑斑病菌,链格孢菌 Alternaria panax Whetz,Alternaria alternata | 嘧菌酯,苯醚甲环唑,多抗霉素、异菌脲、代森锰、丙环唑、苯醚甲环唑、醚菌酯 Azoxystrobin, Difenoconazole, Polyoxin, Iprodione, Mancozeb, Propiconazol, Difenoconazole, Kresoxim methyl | 解淀粉芽孢杆菌分泌物,细菌Xc1、Xd5和Xc4, CNU114001,内生菌柠檬酸木霉菌,放线菌Fd2和Fw1,木霉菌Zh1,伯克霍氏菌,芽孢杆菌,球毛壳菌,地芽孢杆菌,枯草芽孢杆菌 Bacillus amylolyticus secrete bacteriostatic substances, Bacterium Xc1, Xd5 and Xc4, CNU114001, Endophytic trichoderma citrinoviride, Actinomyces Fd2 and Fw1, Trichoderma spp. Zh1, Burkholderia pyrrocinia, Bacillus, Chaetomiumglobosum, Brevundimonas terrae, Acillus subtilis |
枯萎病 Blight | 恶疫霉 Phytophthora cactorum | 氟啶胺,烯酰吗啉,霜脲氰+代森锰,双炔酰菌胺,霜脲氰+氰霜唑,氟菌+霜霉威 Fluazinam, Dimethomorph, Cymoxanil + mancozeb, Mandipropamid, Cymoxanil + Cyazofamid, Fluropyram + Propamocarb hydrochloride | 融合蛋白GST?pgLTP,内生木霉菌 Fusion protein GST?pgLTP, Endophytic trichoderma citrinoviride |
灰霉病 Gray mold | 天竺葵葡萄孢,葡萄孢菌,拟青霉属BCP Botrytis pelargonii., Botrytis cinerea, S. lamellicola BCP | 嘧菌环,嘧霉胺 Cyclamide, Pyrimethanil | 柠檬酸木霉菌PG87,解淀粉芽孢杆菌分泌物,内生柠檬酸木霉菌,解淀粉芽孢杆菌SW?34 Trichoderma citrinoviride PG87, Bacillus amylolyticus secrete bacteriostatic substances, Endophytic trichoderma citrinoviride, Bacillus amyloliquefaciens SW?34 |
红皮病 Red skin root | 念珠镰孢菌,丛枝菌根真菌,叶斑菌,黑斑菌,褐斑病菌,根腐病菌,锐顶镰刀菌 Rhexocercosporidium panacis sp., F. Torulosum, Rhizophagus irregularis, D. hordeicola,F. avenaceum, Marssonina brunnea, Dactylonectria sp., F. acuminatum | 代森锰锌,抗坏血酸,生石灰 Mancozeb, Ascorbic acid, Quicklime | |
根腐病 Root rot | 尖镰孢,假单胞杆菌,锈腐病菌,腐皮镰孢霉菌 Fusarium acuminatum P.qessardii, Ilyonectria mors?panacis, Fusarium solani | 恶霉灵,氟啶胺+异菌脲,醚菌酯 Hymexazol, Shirlan + Iprodione, Kresoxim methyl | 色素杆菌属JH7,内生桔绿木霉菌,木霉菌T740, T892, T936, T886和T706, Paraburkholderia panacisolisp.nov.,拟康宁木霉、类LCI蛋白APC2、铜绿假单胞菌D4、平流层芽孢杆菌FW3、帕氏副芽孢杆菌DCY115T、人参内生产黄杆菌DCY112T、枯草芽孢杆菌50?1、解淀粉芽孢杆菌分泌物、融合蛋白GST?pgLTP、人参内生菌B69 Chromobacterium sp.JH7, Endophytic Trichoderma citrinoviride, Trichoderma T740, T892, T936, T886, and T706, Paraburkholderia panacisolisp. nov., Trichoderma koningiopsis, LCI?like protein APC2, Pseudomonas aeruginosa D4, Bacillus stratosphericus FW3, Paraburkholderia Panacihumi DCY115T, Rhodanobacter ginsengiterrae sp nov.DCY112T, Bacillus subtilis 50?1, Bacillus amylolyticus secrete bacteriostatic substances, Fusion protein GST?pgLTP,B69 endophytic bacteria from Panax ginseng |
锈腐病 Root rusty | 柱盘孢菌/土赤壳属菌 Cylindrocarpon destructans/Ilyonectria radicicola | 多菌灵 Carbendazim | 解淀粉芽孢杆菌、细菌F1、韦腊链霉菌F3、链霉菌MS32、稳定伯克霍氏菌EB159、解淀粉芽孢杆菌分泌物、融合蛋白GST?pgLTP Bacillus amyloliquefaciens, Bacteria F1, Streptomyces werraensis F3, Streptomycete MS32, Burkholderia stabilis EB159, Bacillus amylolyticus secrete bacteriostatic substances, Fusion protein GST?pgLTP |
立枯病 Standing blight | 立枯丝核菌 Rhizoctonia solani Kuhn | 咯菌腈 Fludioxonil | 融合蛋白GST?pgLTP, 哈茨木霉菌,枯草芽孢杆菌, 内生木霉菌 Fusion protein GST?pgLTP,Harzianum, Acillus subtilis, Endophytic trichoderma citrinoviride |
图3 熏蒸剂对参地土壤微量元素含量的影响:(A)开花期; (B)收获期[39]
Fig.3 Effect of fumigant on the content of trace elements in ginseng soil: (A) Flowering stage; (B) Harvest time[39]
1 | 张连学, 陈长宝, 王英平, 等. 人参忌连作研究及其解决途径[J]. 吉林农业大学学报, 2008, 30(4): 481-485, 491. |
ZHANG L X, CHEN C B, WANG Y P, et al. Study on discontinuous cultivating of Panax ginseng and its workable solution[J]. J Jilin Agric Univ, 2008, 30(4): 481-485, 491. | |
2 | 张爱华, 雷锋杰, 张连学. 人参西洋参化感作用研究[M]. 北京: 化学工业出版社, 2017: 8-19. |
ZHANG A H, LEI F J, ZHANG L X. Allelopathy of Panax ginseng and Panax quinquefolium[M]. Beijing: Chemical Industry Press, 2017: 8-19. | |
3 | 李建鸽, 刘涛, 杨振兴, 等. 不同生长年限人参的农艺性状品质及土壤理化分析[J]. 中国现代中药, 2021, 23(1): 99-105. |
LI J G, LIU T, YANG Z X, et al. Comparative study on agronomic traits, quality and cultivated soil of Panax ginseng with different growth years[J]. Modern Chinese Med, 2021, 23(1): 99-105. | |
4 | 于俐, 张桐毓, 李琪, 等. 不同病害诱导下土壤性质变化及其对人参皂苷积累的影响[J]. 吉林农业大学学报, 2021, 网络首发. DOI: 10.13327/j.jjlau.2021.1262. |
YU L, ZHANG T Y, LI Q, et al. Changes of soil properties induced by different soil borne diseases and their effects on ginseng quality[J]. J Jilin Agric Univ, 2021, in press. DOI: 10.13327/j.jjlau.2021.1262. | |
5 | 刘莹, 孙文松, 李玲, 等. 人参连作障碍及防治措施研究进展[J]. 园艺与种苗, 2020, 40(7): 26-29. |
LIU Y, SUN W S, LI L, et al. Research progress on consecutive monoculture problems and control measures of Panax ginseng[J]. Horticulture Seed, 2020, 40(7): 26-29. | |
6 | 王天佑, 丁万隆, 尹春梅, 等. 不同栽培年限人参根区土壤养分酶活性及微生物量的变化[J]. 中国现代中药, 2021, 23(11): 1927-1933. |
WANG T Y, DING W L, YIN C M, et al. Dynamics of soil nutrients, enzyme activity, and microbial biomass in rhizosphere of Panax ginseng of different growing years[J]. Modern Chinese Med, 2021, 23(11): 1927-1933. | |
7 | LU X H, ZHANG X M, JIAO X L, et al. Taxonomy of fungal complex causing red-skin root of Panax ginseng in China[J]. J Ginseng Res, 2020, 44(3): 506-518. |
8 | 马月, 徐怀友, 宋明海, 等. 人参根腐病与根际土壤主要化学性质和酶活性的关联性分析[J]. 吉林农业大学学报, 2021, 网络首发. DOI: 10.13327/j.jjlau.2021.1246. |
MA Y, XU H Y, SONG M H, et al. Relationship analysis between ginseng root rot diseases and main chemical properties, enzyme activities of rhizosphere soil[J]. J Jilin Agric Univ, 2021, in press. DOI: 10.13327/j.jjlau. 2021.1246. | |
9 | 何宛晟. 不同年限人参根际土壤理化性质及酶活性研究[D]. 长春: 吉林农业大学, 2014. |
HE W S. Study on physicochemical properties and enzyme activity of rhizosphere soil of Panax ginseng in different years[D]. Changchun: Jilin Agricultural University, 2014. | |
10 | WANG Q, XU C, SUN H, et al. Analysis of the relationship between rusty root incidences and soil properties in Panax ginseng[C]. IOP Conference Series: Earth and Environmental Science, 2016, 41: 012001. |
11 | 吴艾轩, 王鑫, 吕云, 等. 农田栽参土壤养分研究进展[J]. 北方园艺, 2018, 22: 177-186. |
WU A X, WANG X, LU Y, et al. Progress of soil nutrients of cultivation of Panax ginseng in farmland[J]. Northern Horticult, 2018, 22: 177-186. | |
12 | 张宇婷. 农田参根际土壤线虫群落组成及多样性特征研究[D]. 长春: 吉林农业大学, 2019. |
ZHANG Y T. The composition and diversity of soil nematode communities in the rhizosphere region of ginseng farmland[D]. Changchun: Jilin Agricultural University, 2019. | |
13 | HE C, WANG R, DING W, et al. Effects of cultivation soils and ages on microbiome in the rhizosphere soil of Panax ginseng[J]. Appl Soil Ecol, 2022, 174: 104397. |
14 | TONG A Z, LIU W, LIU Q, et al. Diversity and composition of the Panax ginseng rhizosphere microbiome in various cultivation modesand ages[J]. BMC Microbiol, 2021, 21(1): 18. |
15 | BIAN X, XIAO S, ZHAO Y, et al. Comparative analysis of rhizosphere soil physiochemical characteristics and microbial communities between rusty and healthy ginseng root[J]. Sci Rep-Uk, 2020, 10(1): 15756. |
16 | 何宛晟, 赵权. 农田栽参落叶期土壤养分及酶活分析[J]. 花卉, 2017, 24: 216. |
HE W S, ZHAO Q. Analysis of soil nutrients and enzyme activities at deciduous stage of cultivated ginseng in farmland[J]. Flowers, 2017, 24: 216. | |
17 | 殷陶刚, 李玉泽. 土壤酶活性影响因素及测定方法的研究进展[J]. 矿产勘查, 2019, 10(6): 1523-1528. |
YIN T G, LI Y Z. Research progress of influencing factors and determination methods of soil enzyme activity[J]. Mineral Exploration, 2019, 10(6): 1523-1528. | |
18 | 王韵秋, 郝绍卿, 于得荣, 等. 老参地土壤理化性状的变化[J]. 特产科学实验, 1979, 3: 1-9. |
WANG Y Q, HAO S Q, YU D R, et al. Changes of soil physical and chemical properties in old ginseng land[J]. Specialty Sci Experim, 1979, 3: 1-9. | |
19 | 陈长宝, 张瑞, 王恩鹏, 等. 人参化感作用及其研究进展[J]. 特产研究, 2018, 40(1): 54-58. |
CHEN C B, ZHANG R, WANG E P, et al. Overview of Panax ginseng allelopathy[J]. Specialty Res, 2018, 40(1): 54-58. | |
20 | 战宇, 张连学, 孟祥茹, 等. 不同盆栽人参土壤酚酸含量及酶活性变化研究[J]. 吉林农业大学学报, 2020, 网络首发. DOI:10.13327/j.jjlau.2020.5987. |
ZHAN Y, ZHANG L X, MENG X R, et al. Changes of phenolic acid content and enzyme activity in soil of different pot ginseng[J]. J Jilin Agric Univ, 2020, in press. DOI:10.13327/j.jjlau.2020.5987. | |
21 | 李琼. 人参皂苷对连作土壤锈腐病趋重发生的作用及其机理[D]. 长春: 吉林农业大学, 2020. |
LI Q. Effect of ginsenosides on the occurrence of soil rust rot in continuous cropping and its mechanism[D]. Changchun: Jilin Agricultural University, 2020. | |
22 | 方楠. 氟吡呋喃酮在人参中的残留特性及其环境行为研究[D]. 长春: 吉林农业大学, 2021. |
FANG N. Residual characteristics of flupyradifurone in Panax ginseng and its environmental behavior[D]. Changchun: Jilin Agricultural University, 2021. | |
23 | 宋雨桐. 宁南霉素在人参上残留限量标准制定与膳食风险评估[D]. 长春: 吉林农业大学, 2021. |
SONG Y T. Establishment of residue limit standard and dietary risk assessment of ningnanmycin in ginseng[D]. Changchun: Jilin Agricultural University, 2021. | |
24 | 姚蕴恒, 吴信子, 白龙律, 等. 固相萃取-气相色谱/质谱法测定人参种植土壤中48种农药残留[J]. 分析科学学报, 2020, 36(2): 280-286. |
YAO Y H, WU X Z, BAI L L, et al. Determination of 48 pesticide residues in ginseng soil by gas chromatography-mass spectrometry coupled with solid-phase extraction[J]. J Anal Sci, 2020, 36(2): 280-286. | |
25 | 吕金朋, 张文丽, 张晔, 等. 人参连作障碍土壤改良技术的重金属及农残评价研究(续)[J].吉林中医药, 2020, 40(10): 1357-1359. |
LU J P, ZHANG W L, ZHANG Y, et al. Study on the evaluation of heavy metals and agricultural residues in soil improvement technique for continuous cropping of ginseng (continued)[J]. Jilin J Tradit Chinese Med, 2020, 40(10): 1357-1359. | |
26 | 黄小兰, 周祥德, 何旭峰, 等. QuEChERS结合气相色谱-三重四极杆串联质谱法快速测定地参中63种农药残留[J]. 中国酿造, 2021, 40(3): 170-176. |
HUANG X L, ZHOU X D, HE X F, et al. Determination of 63 kinds of pesticide residues in Lycopus lucidus by QuEChERS-GC-MS/MS[J]. China Brew, 2021, 40(3): 170-176. | |
27 | 王中康,张兴,张礼生, 等. 现代生物农药100问[M]. 北京: 中国农业科学技术出版社, 2014: 35-48. |
WANG Z K, ZHANG X, ZHANG L S, et al. 100 questions of modern biological pesticides[M]. Beijing: China Agricultural Science and Technology Press, 2014: 35-48. | |
28 | FARH M E A, KIM Y J, KIM Y J, et al. Cylindrocarpon destructans/Ilyonectria radicicola-species complex: causative agent of ginseng root-rot disease and rusty symptoms[J]. J Ginseng Res, 2018, 42(1): 9-15. |
29 | ZHANG A, ZHANG X, LEI F, et al. First report of bacterial soft rot of ginseng caused by Pseudomonas qessardii in Jilin province of China[J]. Plant Dis, 2018, 102(2): 437-437. |
30 | FARH M E A, KIM Y J, SINGH P, et al. Cross interaction between Ilyonectria mors⁃panacis isolates infecting Korean ginseng and ginseng saponins in correlation with their pathogenicity[J]. Phytopathology, 2017, 107(5): 561-569. |
31 | 王瑞, 董林林, 徐江, 等. 基于病虫害综合防治的人参连作障碍消减策略[J]. 中国中药杂志, 2016, 41(21): 3890-3896. |
WANG R, DONGLL, XU J, et al. Progress in improvement of continuous monoculture cropping problem in Panax ginseng by controlling soil-borne disease management[J]. China J Chinese Materia Medica, 2016, 41(21): 3890-3896. | |
32 | 佟爱仔, 刘强, 王敏, 等. 人参锈腐病相关研究进展[J]. 人参研究, 2018, 30(1): 39-43. |
TONG A Z, LIU Q, WANG M, et al. Review of related research on ginseng rust rot[J]. Ginseng Res, 2018, 30(1): 39-43. | |
33 | 赵英, 何忠梅, 杨世海, 等. 人参需肥规律与测土配方施肥技术研究[J]. 人参研究, 2016, 28(5): 2-6. |
ZHAO Y, HE Z M, YANG S H, et al. Study on the fertilizer requirement regularity of ginseng and the technology of testing soil for the formulated fertilization application[J]. Ginseng Res, 2016, 28(5): 2-6. | |
34 | 程金康, 杜立财, 程林, 等. 不同水分条件施用硫酸锌对人参产量和质量的影响[J]. 分子植物育种, 2021, 网络首发. http://kns.cnki.net/kcms/detail/46.1068.S.20210618.0955.004.html |
CHENG J K, DU L C, CHENG L, et al. The Effect of applying zinc sulfate in different water conditions on the yield and quality of ginseng[J]. Molecular Plant Breeding, 2021, in press. http://kns.cnki.net/kcms/detail/46.1068.S.20210618.0955.004.html | |
35 | 靳晓山, 解林昊, 王雪, 等. 98%棉隆微粒剂对人参田杂草的防除效果及安全性[J]. 农药, 2018, 57(9): 682-686. |
JIN X S, XIE L H, WANG X, et al. Control effect and safety of Dazomet 98% MG against weeds in ginseng field[J]. Agrochemicals, 2018, 57(9): 682-686. | |
36 | 王星懿, 孙振天, 王雪, 等. 35%威百亩水剂对人参田杂草的防除效果及安全性[J]. 农药, 2019, 58(4): 307-310. |
WANG X Y, SUN Z T, WANG X, et al. Control and safety of metham-sodium 35% AS against weeds in ginseng field[J]. Agrochemicals, 2019, 58(4): 307-310. | |
37 | 韩润亭, 张金花, 任金平, 等. 氯化苦液剂防治人参锈腐病田间药效试验[J]. 吉林农业科学, 2008, 4: 32-33, 42. |
HAN R T, ZHANG J H, REN J P, et al. Test on control effect of liquid chloropicrin on ginseng rust[J]. J Jilin Agric Sci, 2008, 4: 32-33, 42. | |
38 | 黄瑞贤, 孙春华, 任大年, 等. 甲基溴(溴甲烷)熏蒸消毒老参地再栽参实验初报[J]. 人参研究, 2001(S1): 37-41. |
HUANG R X, SUN C H, REN D N, et al. Preliminary report of methyl bromide fumigation and replanting of old ginseng[J]. Ginseng Res, 2001(S1): 37-41. | |
39 | 高成林. 农田栽参土壤微生态环境及其对人参皂苷等有效成分的影响研究[D]. 长春: 吉林农业大学, 2020. |
GAO C L. Study on the micro-ecological environment of farmland ginseng soil and its effect on ginsenoside and other active ingredients[D]. Changchun: Jilin Agricultural University, 2020. | |
40 | 王秋霞, 颜冬冬, 王献礼, 等. 土壤熏蒸剂研究进展[J]. 植物保护学报, 2017, 44(4): 529-543. |
WANG Q X, YAN D D, WANG X L, et al. Research progress of soil fumigants[J]. J Plant Prot, 2017, 44(4): 529-543. | |
41 | 张海英. 人参中污染物残留的来源分析及修复技术[J]. 科技资讯, 2016, 14(25): 63-64. |
ZHANG H Y. Source analysis and remediation technology of pollutant residues in ginseng[J]. Sci Technol Inf, 2016, 14(25): 63-64. | |
42 | SUN Z, YANG L M, HAN M, et al. Biological control ginseng grey mold and plant colonization by antagonistic bacteria isolated from rhizospheric soil of Panax ginseng Meyer[J]. Biol Control, 2019, 138: 104048. |
43 | PARK Y H, MISHRA R C, YOON S, et al. Endophytic trichoderma citrinoviride isolated from mountain-cultivated ginseng (Panax ginseng) has great potential as a biocontrol agent against ginseng pathogens[J]. J Ginseng Res, 2019, 43(3): 408-420. |
44 | KIM H, RIM S O, BAE H. Antimicrobial potential of metabolites extracted from ginseng bacterial endophyte burkholderia stabilis against ginseng pathogens[J]. Biol Control, 2019, 128: 24-30. |
45 | 吕云, 魏帛轩, 闫非凡, 等. 解淀粉芽孢杆菌的分离、鉴定及对4种人参病害防治效果的初步研究[J]. 延边大学农学学报, 2020, 42(3): 32-38, 46. |
LV Y, WEI B X, YAN F F, et al. Isolation and identification of Bacillus amyloliquefaciens and their prevention and control effects on four kinds of ginseng diseases[J]. J Agric Sci Yanbian Univ, 2020, 42(3): 32-38, 46. | |
46 | CAI K, WANG J, WANG M, et al. Molecular cloning, recombinant expression, and antifungal functional characterization of the lipid transfer protein from Panax ginseng[J]. Biotechnol Lett, 2016, 38(7): 1229-1235. |
47 | 卢宝慧, 高成林, 赵玥, 等. 运用高通量测序技术分析人参不同栽培模式根际土壤微生物多样性[J]. 东北林业大学学报, 2021, 49(3): 113-119. |
LU B H, GAO C L, ZHAO Y, et al. Panax ginseng rhizosphere microorganism diversity in different cultivation modes by high-throughput sequen-cing technology[J]. J Northeast Forestry Univ, 2021, 49(3): 113-119. | |
48 | 李翟, 姜大成, 肖春萍, 等. 木霉菌的分离、鉴定及对人参根系分泌物的趋化性响应[J]. 中药材, 2022(1): 32-36. |
LI Z, JIANG D C, XIAO C P, et al. Isolation and identification of trichoderma and its chemotactic response to ginseng root exudates[J]. Tradition Chinese Med, 2022(1): 32-36. | |
49 | 谭海军. 中国生物农药的概述与展望[J]. 世界农药, 2022, 44(4): 16-27, 54. |
TAN H J. Review and prospect of biological pesticides in China[J]. World Pestic, 2022, 44(4): 16-27, 54. | |
50 | 徐鸿雁, 卫佳丽, 王洪伟, 等. 大黄和肉桂乙醇提取液对人参病原菌抑菌活性研究[J]. 人参研究, 2022, 34(2): 19-20. |
XU H Y, WEI J L, WANG H W, et al. Study on the antibacterial activity of rhubarb and cinnamon ethanol extract against ginseng pathogen[J]. Ginseng Res, 2022, 34(2): 19-20. | |
51 | JIN Q, ZHANG Y, WANG Q, et al. Effects of potassium fulvic acid and potassium humate on microbial biodiversity in bulk soil and rhizosphere soil of Panax ginseng[J]. Microbiol Res, 2022, 254: 126914. |
52 | 刘清玮, 宋宇鹏. 有机肥对三年生农田栽培人参根际微生态及产量的影响[J]. 吉林农业大学学报, 2020, 42(4): 409-414. |
LIU Q W, SONG Y P. Effects of organic fertilizers on rhizosphere microecology and yield of ginseng cultivated in farmland for three-years[J]. J Jilin Agric Univ, 2020, 42(4): 409-414. | |
53 | 杨莉, 刘宇航, 郝佳, 等. 生物质炭对人参连作土壤微生物组成及功能的影响[J]. 华南农业大学学报, 2022, 43(1): 28-36. |
YANG L, LIU Y H, HAO J, et al. Effect of biochar on microbial composition and function in continuous cropping ginseng soil[J]. J South China Agric Univ, 2022, 43(1): 28-36. | |
54 | 刘晨阳, 高成林, 赵玥, 等. 农田栽参土壤改良中肥料对土壤元素及酶活性的影响[J]. 生态科学, 2021, 40(2): 40-47. |
LIU C Y, GAO C L, ZHAO Y, et al. Effects of fertilizer on soil elements and enzyme activities in improvement soil of Panax ginseng planted in farmland[J]. Ecol Sci, 2021, 40(2): 40-47. | |
55 | SEONG B J, HAN S H, KIM S I, et al. Growth characteristics and ginsenoside contents of Korean ginseng (Panax ginseng C.A. Meyer) by green manure crops[J]. KJCS, 2014: 364-368. |
56 | 梁从莲, 沈亮, 胡鑫, 等. 农田栽参土壤改良过程中绿肥作物筛选的研究[J]. 中华中医药杂志, 2020, 35(5): 2282-2287. |
LIANG C L, SHEN L, HU X, et al. Study on selection of green fertilizer crops in the process of soil improvement in farmland ginseng[J]. Chinese J Tradition Chinese Med, 2020, 35(5): 2282-2287. | |
57 | 安娜, 高纪超, 韩雅棋, 等. 施粪肥对人参栽培土壤理化性质和真菌群落结构的影响[J]. 吉林农业大学学报, 2019, 41(6): 695-706. |
AN N, GAO J C, HAN Y Q, et al. Effects of manure application on soil physicochemical properties and fungal community structure in ginseng planted soil[J]. J Jilin Agric Univ, 2019, 41(6): 695-706. | |
58 | 房雪. 菌渣和有机肥混施对农田栽参效果的研究[D]. 延吉: 延边大学, 2021. |
FANG X. Effect of mixed application of mushroom residue and organic fertilizer on ginseng planting in farmland[D]. Yanji: Yanbian University, 2021. | |
59 | 朴承熙, 赵晓龙, 陈丽, 等. 大豆粉发酵肥在人参栽培上的应用试验[J]. 人参研究, 2020, 32(6): 47-48. |
PIAO C X, ZHAO X L, CHEN L, et al. Application of soybean powder fermented fertilizer in ginseng cultivation[J]. Ginseng Res, 2020, 32(6): 47-48. | |
60 | 唐铭浩. 三种基质对农田参土壤养分及人参产质的影响[D]. 延吉: 延边大学, 2018. |
TANG M H. Effect of three kinds of substrate on soil nutrients and ginseng yield and quality in farmland[D]. Yanji: Yanbian University, 2018. | |
61 | 狄平, 孙卓, 张阳, 等. 利用玉米秸秆制备人参生物有机肥[J]. 吉林农业大学学报, 2021, 43(4): 439-446. |
DI P, SUN Z, ZHANG Y, et al. Ginseng bio-organic fertilizer with corn straw[J]. J Jilin Agric Univ, 2021, 43(4): 439-446. | |
62 | 刘清玮, 宋宇鹏, 高华. 不同生物菌剂对二年生人参生长生理及产量品质的影响[J]. 人参研究, 2019, 31(3): 25-29. |
LIU Q W, SONG Y P, GAO H. Effects of different biological agents on growth physiology, yield and quality of biennial ginseng[J]. Ginseng Res, 2019, 31(3): 25-29. | |
63 | QI Y, LIU H, WANG J, et al. Effects of different straw biochar combined with microbial inoculants on soil environment in pot experiment[J]. Sci Rep-Uk, 2021, 11(1): 1-13. |
64 | 葛长明. 不同生物有机肥处理对农田栽参土壤理化性状及人参产量的影响[D]. 延边: 延边大学, 2018. |
GE C M. Effects of different bio-organic fertilizer treatments on soil physical and chemical properties and ginseng yield of cultivated ginseng in farmland[D]. Yanbian: Yanbian University, 2018. | |
65 | XU Y, LIU C, BAO J, et al. Microbial diversity and physicochemical properties in farmland soils amended by effective microorganisms and fulvic acid for cropping Asian ginseng[J]. Not Bot Horti Agrobo, 2022, 50(1): 12563. |
66 | LEE D Y, CHOI G H, BAE Y S, et al. Fate of endosulfan in ginseng farm and effect of granular biochar treatment on endosulfan accumulation in ginseng[J]. Environ Geochem Health, 2021: 1-13. |
67 | 宋胜男, 郜玉钢, 张雪, 等. 人参内生多粘类芽孢杆菌对5种农药降解的影响[J]. 农药, 2018, 57(7): 520-523, 546. |
SONG S N, SUO Y G, ZHANG X, et al. Degradation of five pesticides by paenibacillus polymyxa in ginseng[J]. Agrochemicals, 2018, 57(7): 520-523, 546. | |
68 | 任一猛. 农田栽参改土培肥作用机理及对人参生长发育的影响[D]. 长春: 吉林农业大学, 2007. |
REN Y M. The mechanism of farmland soil improvement and effect on growth and development of Panax ginseng[D]. Changchun: Jilin Agricultural University, 2007. | |
69 | LEE S W, LEE S H, SEO M W, et al. Effect of soil fumigation and maize cultivation on reduction of replant failure in ginseng[J]. KJCS, 2018, 26(3): 248-253. |
70 | 董林林, 徐江, 牛玮浩, 等. 改良措施对农田土壤微生态及人参存苗率的影响[J]. 中国中药杂志, 2016, 41(23): 4334-4339. |
DONG L L, XU J, NIU W H, et al. Effects of improving measures on soil micro-ecology and survival rate of ginseng in farmlands[J]. China J Chinese Materia Med, 2016, 41(23): 4334-4339. | |
71 | ZHAN Y, YAN N, MIAO X, et al. Different responses of soil environmental factors, soil bacterial community, and root performance to reductive soil disinfestation and soil fumigant chloropicrin[J]. Front Microbiol, 2021, 12: 796191. |
72 | 闫宁, 战宇, 谢昊臻, 等. 不同改土方式对连作人参生长发育的影响[J]. 江苏农业科学, 2022, 50(6): 120-125. |
YAN N, ZHAN Y, XIE H Z, et al. Effects of different soil improvement methods on growth and development of continuous cropping ginseng[J]. Jiangsu Agric Sci, 2022, 50(6): 120-125. |
[1] | 徐维茵, 许天阳, 邵思梦, 谢兆阳, 杨洪梅, 于澎. 人参活性成分在防治神经退行性疾病中应用的研究进展[J]. 应用化学, 2023, 40(4): 486-499. |
[2] | 王瑞, 孟祥茹, 李琼, 王恩鹏, 黄鑫, 陈长宝. 人参属中药腐解化感作用研究进展[J]. 应用化学, 2023, 40(1): 1-8. |
[3] | 沈彦龙, 程立业, 孟祥茹, 李琼, 杜连云, 王恩鹏, 陈长宝. 人参连作土壤对不同生育期人参生长发育及抗氧化系统的影响[J]. 应用化学, 2023, 40(1): 109-115. |
[4] | 张竣杰, 申云蛟, 马丽颖, 王鹏辉, 王磊, 戴雨霖, 赵雷. 液质联用技术分析西洋参花化学成分及H9c2心肌细胞损伤保护作用[J]. 应用化学, 2023, 40(1): 126-133. |
[5] | 刘静婉, 李琼, 王恩鹏, 张涛, 王欢, 张哲, 陈雪, 陈长宝. 人参栽培研究进展[J]. 应用化学, 2022, 39(11): 1641-1651. |
[6] | 张娜, 李乐乐, 黄鑫, 刘淑莹. 超高效液相色谱-三重四极杆质谱联用结合固相甲基化技术测定不同生长环境人参中寡糖分布[J]. 应用化学, 2021, 38(3): 247-255. |
[7] | 王恩鹏, 杜连云, 姜涛, 李光, 魏琨, 朱爽, 越皓, 陈长宝. 洗参水美白与抗氧化活性及其皂苷类成分分析[J]. 应用化学, 2021, 38(3): 289-297. |
[8] | 越皓, 周东月, 张美玉, 张琰, 戴雨霖, 郑飞, 朱英豪. 红参中原人参三醇型皂苷组在肠道菌群中体外转化及对肠道菌群的作用[J]. 应用化学, 2021, 38(3): 323-330. |
[9] | 张慧娥, 侯剑峰, 王经元, 朱爽, 杜连云, 叶萍, 魏琨, 陈长宝, 李光, 王恩鹏. 人参不同部位提取物体外抗氧化活性及成分差异[J]. 应用化学, 2021, 38(11): 1531-1540. |
[10] | 郑飞, 王微, 于珊珊, 戴雨霖, 刘尚, 文连奎, 越皓. 高效液相色谱-飞行时间质谱联用法分析人参及人参皂苷与山楂配伍过程中的水解行为[J]. 应用化学, 2017, 34(6): 723-728. |
[11] | 张乐, 宋凤瑞, 王琦, 刘志强, 刘淑莹. 人参中稀有皂苷临界二氧化碳超提取[J]. 应用化学, 2010, 27(12): 1483-1485. |
[12] | 杜芹芹, 张旭, 宋凤瑞, 刘志强, 刘淑莹. 液质联用技术研究人参与干姜或赤芍配伍前后人参皂苷及其抗氧化活性的变化[J]. 应用化学, 2010, 27(10): 1209-1214. |
[13] | 张语迟, 宋凤瑞, 刘志强, 王淑敏, 侯一兵, 吴策. 等离子体光辐射-磁场综合作用处理种子对人参中皂苷含量的影响[J]. 应用化学, 2009, 26(3): 311-315. |
[14] | 向东山, 翟琨. 分光光度法测定竹节人参甲醇提取物中皂甙含量[J]. 应用化学, 2009, 26(3): 358-360. |
[15] | 陈丹, 初丽伟, 侯志广, 尚梅, 范志先, 李月茹. 固相萃取-毛细管气相色谱法测定人参制品中19种有机氯农药的残留量[J]. 应用化学, 2007, 24(2): 210-214. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||