应用化学 ›› 2022, Vol. 39 ›› Issue (12): 1803-1817.DOI: 10.19894/j.issn.1000-0518.220053

• 综合评述 • 上一篇    下一篇

小分子凝胶的分子动力学模拟和汉森溶解度参数研究进展

张万年1, 于芳2,3, 赵杉林1,3, 张志强1(), 何宇鹏1,2,3()   

  1. 1.辽宁科技大学化学工程学院,功能材料重点实验室,鞍山 114051
    2.大连理工大学宁波研究院,精细化工国家重点实验室,宁波 315016
    3.辽宁石油化工大学石油化工与催化重点实验室,抚顺 113001
  • 收稿日期:2022-03-01 接受日期:2022-08-03 出版日期:2022-12-01 发布日期:2022-12-13
  • 通讯作者: 张志强,何宇鹏
  • 基金资助:
    国家自然科学基金面上项目(21978124);辽宁省重点研发项目(2019JH2/10100005)

Progress in Molecular Dynamics and Hansen Solubility Parameters of Low Molecular Weight Gels

Wan-Nian ZHANG1, Fang YU2,3, Shan-Lin ZHAO1,3, Zhi-Qiang ZHANG1(), Yu-Peng HE1,2,3()   

  1. 1.Key Laboratory for Functional Material,Educational Department of Liaoning Province,School of Chemical Engineering,University of Science and Technology Liaoning,Anshan 114051,China
    2.State Key Laboratory of Fine Chemicals,Ningbo Institute of Dalian University of Technology,Ningbo 315016,China
    3.Key Laboratory of Petrochemical Catalytic Science and Technology,Liaoning Petrochemical University,Fushun 113001,China
  • Received:2022-03-01 Accepted:2022-08-03 Published:2022-12-01 Online:2022-12-13
  • Contact: Zhi-Qiang ZHANG,Yu-Peng HE
  • About author:heyp_nbi@dlut.edu.cn
    azzq@ustl.edu.cn
  • Supported by:
    the National Natural Science Foundation of China(21978124);the Key R&D Projects in Liaoning Province(2019JH2/10100005)

摘要:

近年来,使用分子动力学(Molecular Dynamics, MD)模拟和汉森溶解度参数等计算方法,研究小分子凝胶行为备受关注。分子动力学模拟是一种基于经典力学的计算方法,用于理解小分子凝胶过程的首选技术之一,通过分子动力学模拟可以更精准地分析小分子凝胶的凝胶化趋势或组装行为,动态图形化地展现凝胶组装过程,有效揭示小分子凝胶因子结构与凝胶行为之间的关系,定量分析凝胶组装中的氢键、π-π堆积、范德华作用、离子键作用和疏溶剂作用等非共价键作用。通过对已知的凝胶/非凝胶分子进行分子动力学模拟,提取模拟数据中与凝胶行为相关的参数,并通过拟合Pearson相关系数衡量线性相关关系,最终实现预测某一类小分子是否可以凝胶化的目的。另一方面,根据汉森溶解度参数(Hansen Solubility Parameters, HSPs)发展形成的经验模型最具有代表性,该模型由分子之间的色散作用能量(δd)、极性作用能量(δp)和氢键能量(δh)确定三维空间(即汉森空间)的坐标点,根据该坐标点所在的范围可以确定有机小分子在特定的溶剂是否能形成凝胶。本文就近几年有机小分子凝胶领域分子动力学模拟和汉森溶解度参数中的一些工作进行综述,对凝胶的组装行为、非共价键作用对凝胶能力的调控和预测等方面作出评论。

关键词: 小分子凝胶, 分子动力学模拟, 汉森溶解度, 非共价键作用, 组装行为, 计算化学

Abstract:

Recently, the use of computational methods such as Molecular Dynamics (MD) simulations and Hansen Solubility Parameters (HSPs) to study the behavior of small molecule gelators has attracted much attention. MD simulation is a computational method based on classical mechanics and is one of the preferred techniques for understanding the process of small molecule gelators. The MD simulation can more accurately analyze the gelation trend or assembly behavior of small molecule gelators, dynamically and graphically display the self-assembly process, effectively reveal the relationship between the structure of small molecule gelators and related gelation behavior, and quantitatively analyze non-covalent bond interactions such as hydrogen bonds, π-π stacking, van der Waals interactions, ionic bonding and solvophobic interactions. By performing molecular dynamics simulations on known gelators/non-gelators, parameters related to gelation behavior in the simulated data are extracted, and the linear correlation is measured by fitting the Pearson correlation coefficient to finally predict the gelation behavior of a certain class of small molecules. On the other hand, the empirical model developed according to the HSPs is the most representative, which consists of the energy of dispersion interaction (δd), the energy of polar interaction (δp) and H-bonding energy (δh) between molecules. These three parts determine the coordinate point of the three-dimensional space (Hansen space). According to the range of the point, it can be determined whether the organic small molecule can form a gel in a specific solvent. In this paper, representative works published recently in the field of organic small molecule gels by using MD simulations and empirical models are reviewed. Some comments on the assembly behavior of gelators, the regulation and prediction of non-covalent bond interactions on gelation ability are made.

Key words: Low molecular mass gels, Molecular dynamics simulations, Hansen solubility, Non-covalent interactions, Assembly behavior, Computational chemistry

中图分类号: