Chinese Journal of Applied Chemistry ›› 2024, Vol. 41 ›› Issue (4): 568-576.DOI: 10.19894/j.issn.1000-0518.230291
• Full Papers • Previous Articles Next Articles
Sheng CHEN2, Zu-Fei HU2, Hong-Mei CAO3, Zhen-Hua ZHAO1, Yu-Dong ZHANG1()
Received:
2023-09-23
Accepted:
2024-02-02
Published:
2024-04-01
Online:
2024-04-28
Contact:
Yu-Dong ZHANG
About author:
yudongzhang@just.edu.cnSupported by:
CLC Number:
Sheng CHEN, Zu-Fei HU, Hong-Mei CAO, Zhen-Hua ZHAO, Yu-Dong ZHANG. Synthesis and Properties of Mg‑Doped Ni‑Rich Ternary Cathode Material LiNi0.90Co0.05Mn0.05O2[J]. Chinese Journal of Applied Chemistry, 2024, 41(4): 568-576.
Add to citation manager EndNote|Ris|BibTeX
URL: http://yyhx.ciac.jl.cn/EN/10.19894/j.issn.1000-0518.230291
Sample | a/nm | c/nm | V/nm3 | c/a | I(003)/I(104) |
---|---|---|---|---|---|
NCMMg?0 | 0.287 705 | 1.420 487 | 0.101 827 | 4.937 3 | 1.885 |
NCMMg?1 | 0.287 832 | 1.420 928 | 0.101 949 | 4.936 6 | 1.745 |
NCMMg?3 | 0.287 965 | 1.421 538 | 0.102 087 | 4.936 5 | 1.771 |
NCMMg?5 | 0.287 921 | 1.421 426 | 0.102 047 | 4.936 8 | 1.667 |
NCMMg?7 | 0.288 038 | 1.421 963 | 0.102 169 | 4.936 7 | 1.567 |
Table 1 The cell parameters of each cathode material obtained by refinement
Sample | a/nm | c/nm | V/nm3 | c/a | I(003)/I(104) |
---|---|---|---|---|---|
NCMMg?0 | 0.287 705 | 1.420 487 | 0.101 827 | 4.937 3 | 1.885 |
NCMMg?1 | 0.287 832 | 1.420 928 | 0.101 949 | 4.936 6 | 1.745 |
NCMMg?3 | 0.287 965 | 1.421 538 | 0.102 087 | 4.936 5 | 1.771 |
NCMMg?5 | 0.287 921 | 1.421 426 | 0.102 047 | 4.936 8 | 1.667 |
NCMMg?7 | 0.288 038 | 1.421 963 | 0.102 169 | 4.936 7 | 1.567 |
Fig.3 SEM images of (A) Ni0.90Co0.05Mn0.05(OH)2 precursor and cathode materials (B) NCAMMg-0, (C) NCAMMg-1, (D) NCAMMg-3, (E) NCAMMg-5, (F) NCAMMg-7, and (G) EDS spectra of NCAMMg-3
Sample | x(Ni)/% | x(Co)/% | x(Mn)/% | x(Mg)/% |
---|---|---|---|---|
NCMMg?0 | 90.26 | 4.75 | 4.99 | 0 |
NCMMg?1 | 89.53 | 4.54 | 4.87 | 1.06 |
NCMMg?3 | 87.51 | 4.53 | 4.93 | 3.03 |
NCMMg?5 | 86.20 | 4.46 | 4.50 | 4.84 |
NCMMg?7 | 84.24 | 4.51 | 4.64 | 6.61 |
Table 2 The proportion of Ni, Co, Mn and Mg elements in each sample obtained by ICP test
Sample | x(Ni)/% | x(Co)/% | x(Mn)/% | x(Mg)/% |
---|---|---|---|---|
NCMMg?0 | 90.26 | 4.75 | 4.99 | 0 |
NCMMg?1 | 89.53 | 4.54 | 4.87 | 1.06 |
NCMMg?3 | 87.51 | 4.53 | 4.93 | 3.03 |
NCMMg?5 | 86.20 | 4.46 | 4.50 | 4.84 |
NCMMg?7 | 84.24 | 4.51 | 4.64 | 6.61 |
Fig.4 (A) The initial charge and discharge curves of NCMMg-0, NCMMg-1, NCMMg-3, NCMMg-5 and NCMMg-7 samples at 2.8~4.3 V and 0.1 C; (B) Cycle performance of NCMMg-0 and NCMMg-3 at 1 C; (C) Rate performance of NCMMg-0 and NCMMg-3; (D) Lithium ion diffusion coefficient curve of NCMMg-0 and NCMMg-3 sample during charge and discharge
Sample | Rsf after 10 cycles/Ω | Rct after 10 cycles/Ω | Rsf after 100 cycles/Ω | Rct after 100 cycles/Ω |
---|---|---|---|---|
NCMMg?0 | 21.8 | 153.9 | 61.5 | 374.7 |
NCMMg?3 | 18.1 | 43.8 | 52.4 | 85.4 |
Table 3 Fitting data for EIS
Sample | Rsf after 10 cycles/Ω | Rct after 10 cycles/Ω | Rsf after 100 cycles/Ω | Rct after 100 cycles/Ω |
---|---|---|---|---|
NCMMg?0 | 21.8 | 153.9 | 61.5 | 374.7 |
NCMMg?3 | 18.1 | 43.8 | 52.4 | 85.4 |
Fig.10 (A) Low resolution TEM image and (B) high resolution TEM image of NCMMg-0 sample particles after cycling, high resolution TEM image of (C) fresh NCMMg-3 and (D) cycled NCMMg-3
1 | MANTHIRAM A. A reflection on lithium-ion battery cathode chemistry[J]. Nat Commun, 2020, 11(1): 1550. |
2 | JUNG C H, SHIM H, EUM D, et al. Challenges and recent progress in LiNixCoyMn1- x- yO2 (NCM) cathodes for lithium ion batteries[J]. J Korean Ceram Soc, 2021, 58(1): 1-27. |
3 | LU Y, ZHANG Z D, ZHANG Q, et al. Recent advances in Ni-rich layered oxide particle materials for lithium-ion batteries[J]. Particuology, 2020, 53: 1-11. |
4 | QIAN H M, REN H Q, ZHANG Y, et al. Surface doping vs. bulk doping of cathode materials for lithium-ion batteries: a review[J]. Electrochem Energy Rev, 2022, 5(4): 2. |
5 | CUI Z Z, LI X, BAI X Y, et al. A comprehensive review of foreign-ion doping and recent achievements for nickel-rich cathode materials[J]. Energy Storage Mater, 2023, 57: 14-43. |
6 | 王恩通, 杨林芳. 高比容量锂离子电池正极材料LiNi0.6Co0.2Mn0.2O2的制备及性能[J]. 应用化学, 2022, 39(8): 1209-1215. |
WANG E T, YANG L F. Preparation and properties of LiNi0.6Co0.2Mn0.2O2 cathode material for high specific capacity lithium ion battery[J]. Chin J Appl Chem, 2022, 39(8): 1209-1215. | |
7 | ZHAO W G, ZOU L F, JIA H P, et al. Optimized Al doping improves both interphase stability and bulk structural integrity of Ni-rich NMC cathode materials[J]. ACS Appl Energy Mater, 2020, 3(4): 3369-3377. |
8 | GOMEZ-MARTIN A, REISSIG F, FRANKENSTEIN L, et al. Magnesium substitution in Ni-rich NMC layered cathodes for high-energy lithium ion batteries[J]. Adv Energy Mater, 2022, 12(8): 2103045. |
9 | LI H, ZHOU P F, LIU F M, et al. Stabilizing nickel-rich layered oxide cathodes by magnesium doping for rechargeable lithium-ion batteries[J]. Chem Sci, 2019, 10(5): 1374-1379. |
10 | DO S J, SANTHOSHKUMAR P, KANG S H, et al. Al-doped Li[Ni0.78Co0.1Mn0.1Al0.02]O2 for high performance of lithium ion batteries[J]. Ceram Int, 2019, 45(6): 6972-6977. |
11 | GAO H, CAI J Y, XU G L, et al. Surface modification for suppressing interfacial parasitic reactions of a nickel-rich lithium-ion cathode[J]. Chem Mater, 2019, 31(8): 2723-2730. |
12 | ZHANG Y D, LI H, LIU J X, et al. LiNi0.90Co0.07Mg0.03O2 cathode materials with Mg-concentration gradient for rechargeable lithium-ion batteries[J]. J Mater Chem A, 2019, 7(36): 20958-20964. |
13 | LV Y T, CHENG X, QIANG W J, et al. Improved electrochemical performances of Ni-rich LiNi0.83Co0.12Mn0.5O2 by Mg-doping[J]. J Power Sources, 2020, 450(29): 227718. |
14 | NAM G W, PARK N Y, PARK K J, et al. Capacity fading of Ni-rich NCA cathodes: effect of microcracking extent[J]. ACS Energy Lett, 2019, 4(12): 2995-3001. |
15 | JAMIL S, FASEHULLAH M, JABAR B, et al. Significantly fastened redox kinetics in single crystal layered oxide cathode by gradient doping[J]. Nano Energy, 2022, 94: 106961. |
[1] | Wen-Jun SHI, Zhong-Hui SUN, Zhong-Qian SONG, XU-Jia NAN, Dong-Xue HAN, Li NIU. Research Progress of Layered Transition Metal Oxides Cathode Materials for Sodium-ion Batteries [J]. Chinese Journal of Applied Chemistry, 2023, 40(4): 583-596. |
[2] | Xue-Jian SHI, Wan-Qiang LIU, Chun-Li WANG, Yong CHENG, Li-Min WANG. Research Progress of Sb-based Anode Materials for Potassium Ion Batteries [J]. Chinese Journal of Applied Chemistry, 2023, 40(2): 210-228. |
[3] | Jun-Ling MENG, Chuan TIAN, Na XU, Li-Na ZHAO, Hai-Xia ZHONG, Zhan-Lin XU. Research Progress of in Situ Exsolution of Electrode Surface of Solid Oxide Fuel Cells [J]. Chinese Journal of Applied Chemistry, 2023, 40(10): 1335-1346. |
[4] | Yu MENG, Qing ZHANG, Wen-Hao PENG, Xiao-Fei ZHU, De-Feng ZHOU. Preparation and Electrochemical Performance of Pr0.8Sr0.2Fe0.7Ni0.3O3-δ ⁃Pr1.2Sr0.8Ni0.6Fe0.4O4+δ Composite Cathode [J]. Chinese Journal of Applied Chemistry, 2022, 39(5): 797-808. |
[5] | WANG Xu-Yao, FANG Ying-Jun, ZHANG Ling-Zhi. Synthesis and Characterization of Cross-linked Solid Polymer Electrolyte Based on N-Cyanoethylated Polyethylenimine for Lithium-Ion Batteries [J]. Chinese Journal of Applied Chemistry, 2021, 38(8): 946-953. |
[6] | TAO Chengye, YANG Zhanxu, LI Yue. Preparation and Electrochemical Properties of Red Phosphorus/Graphite Composite [J]. Chinese Journal of Applied Chemistry, 2020, 37(9): 1056-1061. |
[7] | WANG Chunli,SUN Lianshan,ZHONG Ming,WANG Limin,CHENG Yong. Research Progress of Transition Metal and Compounds for Lithium-Sulfur Batteries [J]. Chinese Journal of Applied Chemistry, 2020, 37(4): 387-404. |
[8] | CUI Huamin, ZHANG Xueqian, HU Pandeng, YAN Bing, HUANG Weiwei, GUO Wenfeng. Calix[4]quinone/N-Doped Amorphous Carbon Nanofibers Composites for Lithium-Ion Batteries [J]. Chinese Journal of Applied Chemistry, 2020, 37(2): 198-204. |
[9] | HUI Kanglong, FU Jipeng, GAO Tian, TANG Mingxue. Research Progress of Metal Sulfides in Rechargeable Batteries [J]. Chinese Journal of Applied Chemistry, 2020, 37(12): 1384-1402. |
[10] | YANG Tao, LIU Wenfeng, MA Mengyue, DONG Hongyu, YANG Shuting. Fade Mechanism of Ternary Lithium Ion Power Battery [J]. Chinese Journal of Applied Chemistry, 2020, 37(10): 1181-1186. |
[11] | YAN Bing, XIONG Wenxu, ZHENG Shibing, ZHANG Xueqian, HUANG Weiwei. Single-Walled Carbon Nanotubes Enhanced Electrochemical Performance of High-Capacity Organic Cathode Composites Calix[4]quinone/Mesporous Carbon CMK-3 for Li-Ion Batteries [J]. Chinese Journal of Applied Chemistry, 2019, 36(5): 554-563. |
[12] | HUANG Jimei, MENG Ruijin, YANG Jinhu. Preparation and Lithium Ion Storage Performance of Sulfur-Doped Titanium Dioxide/Titanium Carbide Composite [J]. Chinese Journal of Applied Chemistry, 2018, 35(8): 925-931. |
[13] | Jimei HUANG, Ruijin MENG, Jinhu YANG. Preparation and Lithium Ion Storage Performance of Sulfur-Doped Titanium Dioxide/Titanium Carbide Composite [J]. Chinese Journal of Applied Chemistry, 2018, 35(8): 0-0. |
[14] | Zhaomin WANG, Zheng YI, Ming ZHONG, Yong CHENG, Limin WANG. Research Progress of Antimony-Based Anode Materials for Lithium Ion Batteries [J]. Chinese Journal of Applied Chemistry, 2018, 35(7): 745-755. |
[15] | ZHANG He,ZHANG Mengshi,LIAO Shijun. Recent Progress in the Lithium-Rich Ternary Layered Cathode Materials [J]. Chinese Journal of Applied Chemistry, 2018, 35(11): 1277-1288. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||