Chinese Journal of Applied Chemistry ›› 2023, Vol. 40 ›› Issue (6): 904-915.DOI: 10.19894/j.issn.1000-0518.220371
• Full Papers • Previous Articles Next Articles
Xing-Mei HU, Jin-Hong ZHANG, Yu-Lin MO, Hai-Bin LIN()
Received:
2022-11-15
Accepted:
2023-05-10
Published:
2023-06-01
Online:
2023-06-27
Contact:
Hai-Bin LIN
About author:
linhb97@mnnu.edu.cnSupported by:
CLC Number:
Xing-Mei HU, Jin-Hong ZHANG, Yu-Lin MO, Hai-Bin LIN. Designing Dual-output Digital Logic Circuits Based on the Combination of Bovine Serum Albumin and Schiff Base[J]. Chinese Journal of Applied Chemistry, 2023, 40(6): 904-915.
Add to citation manager EndNote|Ris|BibTeX
URL: http://yyhx.ciac.jl.cn/EN/10.19894/j.issn.1000-0518.220371
Fig.2 Representation of the interaction model with (A) Stern-Volmer plots of BSA interacted with different concentrations of SALPHENH2; (B) Double-logarithm plots of BSA interacted with different concentrations of SALPHENH2; SFS of BSA and the different concentration of SALPHENH2 (C) ?λ=15 nm; (D) ?λ=60 nm
T/K | KSV/(L·mol-1 ) | Kq/(L·mol-1·s-1) | lg Ka | n |
---|---|---|---|---|
308 | 1.08×105 | 1.08×1013 | 4.63 | 0.910 |
313 | 9.93×104 | 9.93×1012 | 4.58 | 0.910 |
318 | 9.47×104 | 9.47×1012 | 4.29 | 0.850 |
Table 1 Constants of the interaction between BSA and SALPHENH2
T/K | KSV/(L·mol-1 ) | Kq/(L·mol-1·s-1) | lg Ka | n |
---|---|---|---|---|
308 | 1.08×105 | 1.08×1013 | 4.63 | 0.910 |
313 | 9.93×104 | 9.93×1012 | 4.58 | 0.910 |
318 | 9.47×104 | 9.47×1012 | 4.29 | 0.850 |
T/K | |||
---|---|---|---|
308 | -63.9 | -118 | -27.5 |
313 | -63.9 | -118 | -26.9 |
318 | -63.9 | -118 | -26.3 |
Table 2 Thermodynamic constants of the interaction between BSA and SALPHENH2
T/K | |||
---|---|---|---|
308 | -63.9 | -118 | -27.5 |
313 | -63.9 | -118 | -26.9 |
318 | -63.9 | -118 | -26.3 |
Marker | Blank | WF | IB |
---|---|---|---|
Ka/(L·mol-1) | 4.34×108 | 1.52×108 | 4.43×106 |
Table 3 Comparison of binding constants in site-specific labeling experiments experiments of BSA@SALPHENH2
Marker | Blank | WF | IB |
---|---|---|---|
Ka/(L·mol-1) | 4.34×108 | 1.52×108 | 4.43×106 |
Fig.3 (A) Best conformations for SALPHENH2 docked to BSA in cartoon ribbons; (B) 2 Dimensional representation of amino acid residues surrounding SALPHENH2 in BSA; (C) The distance between SALOPHEN and Tryptophan residues; (D) The distance between SALPHENH2 and Tyrosine residues of BSA
Fig.4 (A) Fluorescence emission spectra of SALPHENH2-Zn2+@BSA at λex=280 nm; (B) Overlap spectra after normalization of the fluorescence emission curve of BSA and the UV absorption curve of SALPHENH2-Zn2+; (C) Fluorescence emission spectra of BSA@SALPHENH2-Zn2+ under different pH; (D) Fluorescence emission spectra of BSA@SALPHENH2-Zn2+ with λex=376 nm
Fig.5 (A) Fluorescence spectra of BSA and SALPHENH2 molecular system under different stimulations; (B) Changes of fluorescence intensity at 350 nm; (C) Changes of fluorescence intensity at 426 nm; (D) Combinational logic circuit equivalent to the BSA and SALPHENH2 molecular systems
Input | Output | ||||
---|---|---|---|---|---|
IN 1 Cu2+ | IN 2 Zn2+ | IN 3 Na2H2EDTA | OUT 1 at 350 nm | OUT 2 at 426 nm | |
a | 0 | 0 | 0 | 1 | 0 |
b | 0 | 0 | 1 | 1 | 0 |
c | 0 | 1 | 0 | 0 | 1 |
d | 0 | 1 | 1 | 1 | 0 |
e | 1 | 0 | 0 | 0 | 0 |
f | 1 | 0 | 1 | 1 | 0 |
g | 1 | 1 | 0 | 0 | 1 |
h | 1 | 1 | 1 | 1 | 0 |
Table 4 Truth table for the mono-molecular circuit based on BSA@ SALPHENH2
Input | Output | ||||
---|---|---|---|---|---|
IN 1 Cu2+ | IN 2 Zn2+ | IN 3 Na2H2EDTA | OUT 1 at 350 nm | OUT 2 at 426 nm | |
a | 0 | 0 | 0 | 1 | 0 |
b | 0 | 0 | 1 | 1 | 0 |
c | 0 | 1 | 0 | 0 | 1 |
d | 0 | 1 | 1 | 1 | 0 |
e | 1 | 0 | 0 | 0 | 0 |
f | 1 | 0 | 1 | 1 | 0 |
g | 1 | 1 | 0 | 0 | 1 |
h | 1 | 1 | 1 | 1 | 0 |
Fig. 6 (A) Fluorescence spectra of BSA@ SALPHENH2-Zn2+ molecular system under different pH; (B) Changes of fluorescence intensity at 350 nm; (C) Changes of fluorescence intensity at 426 nm; (D) Combinational logic circuit equivalent to the BSA@ -SALPHENH2 molecular systems
Input | OUT | |||
---|---|---|---|---|
IN 1 OH- | IN 2 H+ | OUT 1 at 350 nm | OUT 2 at 426 nm | |
a | 0 | 0 | 0 | 0 |
b | 1 | 0 | 0 | 1 |
c | 0 | 1 | 1 | 1 |
d | 1 | 1 | 0 | 0 |
Table 5 Truth table for the molecular logic device half-subtractor based on BSA@SALPHENH2-Zn2+
Input | OUT | |||
---|---|---|---|---|
IN 1 OH- | IN 2 H+ | OUT 1 at 350 nm | OUT 2 at 426 nm | |
a | 0 | 0 | 0 | 0 |
b | 1 | 0 | 0 | 1 |
c | 0 | 1 | 1 | 1 |
d | 1 | 1 | 0 | 0 |
1 | DE SILVA A D, GUNARATNE N H Q, MCCOY C P. A molecular photoionic AND gate based on fluorescent signalling[J]. Nature,1993, 364(6432): 42-44. |
2 | ERBAS-CAKMA S, KOLEMEN S, SEDGWICK A C. Molecular logic gates: the past, present and future[J]. Chem Soc Rev, 2018, 47(7): 2228-2248. |
3 | DE SILVA A P, MCCLENAGHAN N D. Molecular-scale logic gates[J]. Chem Eur J, 2004, 10(3): 574-86. |
4 | WANG H B, MAO A L, TAO B B, et al. Fabrication of multiple molecular logic gates made of fluorescent DNA-templated Au nanoclusters[J]. New J Chem, 2021, 45(9): 4195-4201. |
5 | MARGULIES D, MELMAN G, SHANZER A. A molecular full-adder and full-subtractor, an additional step toward a moleculator[J]. J Am Chem Soc, 2006, 128(14): 4865-4871. |
6 | ZHANG S Q, LI K B, SHI W, et al. Resettable and enzyme-free molecular logic devices for the intelligent amplification detection of multiple miRNAs via catalyzed hairpin assembly[J]. Nanoscale, 2019, 11: 5048-5057. |
7 | HE K Y, YANG H, WANG L, et al. A universal platform for multiple logic operations based on self-assembled a DNA tripod and graphene oxide[J]. Chem Eng J, 2019, 368: 877-883. |
8 | WU Q, WU P M, DUANN H, et al. Quantum dot bead-based immunochromatographic assay for the quantitative detection of triazophos[J]. Food Agr Immunol, 2019, 30(1): 955-967. |
9 | HOSSEIN T, GOHAR D, NARGES M, et al. A reversible and dual responsive sensing approach for determination of ascorbate ion in fruit juice, biological, and pharmaceutical samples by use of available triaryl methane dye and its application to constructing a molecular logic gate and a set/reset memorized device[J]. Spectrochim Acta A Mol Biomol Spectrosc, 2019, 215: 276-289. |
10 | KHATEREH R, HAMID K, SAMIRA G D, et al. Studies on a multifunctional chromo-fluorogenic sensor for dual channel recognition of Zn2+ and CN- ions in aqueous media: mimicking multiple molecular logic gates and memory devices[J]. New J Chem, 2018, 42: 2158-2166. |
11 | 辛涵申, 葛从伍, 傅丽娜, 等. 薁乙炔封端的萘二酰亚胺小分子的设计合成与场效应性能研究[J]. 有机化学, 2017, 37(3): 711-719. |
XIN H S, GE C W, FU L N, et al. Naphthalene diimides endcapped with ethynylazulene: molecular design, synthesis and properties[J]. Chin J Org Chem, 2017, 37(3): 711-719. | |
12 | 王斌, 王晓红, 段莉梅, 等. 基于P2Mo18O626-@Tb3+溶液可逆变色-荧光开关性质对维生素C和H2O2的光谱检测[J]. 高等学校化学学报, 2019, 40(4): 676-684. |
WANG B, WANG X H, DUAN L M, et al. Spectral detection for vitamin C and H2O2 based on the reversible color change and luminescent switching properties of P2Mo18O626-@Tb3+ mixed solution[J]. Chem J Chin Univ, 2019, 40(4): 676-684. | |
13 | 王志强, 肖殷, 金会义, 等. 含三苯胺基团的二噻吩乙烯光致变色化合物的合成及性能研究[J]. 化学学报, 2014, 72(6): 731-738. |
WANG Z Q, XIAO Y, JIN H Y, et al. Synthesis and properties of photochromic dithienylethene compounds with triphenylamine units[J]. Acta Chim Sin, 2014, 72(6): 731-738. | |
14 | JIMENEZ-LOPEZ J, RODRIGUES S S M, RIBEIRO D S M, et al. Exploiting the fluorescence resonance energy transfer (FRET) between CdTe quantum dots and Au nanoparticles for the determination of bioactive thiols[J]. Spectrochim Acta A: Mol Biomol Spectrosc, 2019, 212: 246-254. |
15 | TAHA Z A, AJLOUNI A M, AL-HASSAN K A. Syntheses, characterization, biological activity and fluorescence properties of bis-(salicylaldehyde)-1,3-propylenediimine Schiff base ligand and its lanthanide complexes[J]. Spectrochim Acta A: Mol Biomol Spectrosc, 2011, 81(1): 317-323. |
16 | RAJESWARI, NATCHIMUTHU S, VEMBU B. Pharmacophore and virtual screening of JAK3 inhibitors[J]. Bioinformation, 2014, 10(3): 157-163. |
17 | FAZI R, CRISTINA T, ANNALAURA B, et al. Homology model-based virtual screening for the identification of human helicase DDX3 inhibitors[J]. J Chem Inf Model, 2015, 55(11): 2443-2454. |
18 | 张方圆, 倪永年. 日落黄和β-胡萝卜素与牛血清白蛋白相互作用的对比研究[J]. 化学学报, 2012, 70(12): 1379-1384. |
ZHANG F Y, NI Y N. A comparison study on the interaction of Sunset Yellow and β-carotene with bovine serum albumin[J]. Acta Chim Sin, 2012, 70(12): 1379-1384. | |
19 | YANG Y W, ZHANG N, SUN Y J, et al. Multispectroscopic and molecular modeling studies on the interaction of bile acids with bovine serum albumin (BSA)[J]. J Mol Struct, 2019, 1180: 89-99. |
20 | PENG Q, HUA L, DING X Y, et al. Spectrochim. Influences of urea and guanidine hydrochloride on the interaction of 6-thioguanine with bovine serum albumin[J]. Acta A Mol Biomol Spectrosc, 2009, 74: 1224-1228. |
21 | LIN H B, LIAO Z Q, DAI Y H. Design of multiple efficient molecular logic devices based on molecular systems containing bovine serum albumin and 5-sulfosalicylic acid[J]. Sens Actuators B: Chem, 2018, 273: 672-680. |
22 | ZHANG R J, S B KOU, HU L, et, al. Exploring binding interaction of baricitinib with bovine serum albumin (BSA): multi-spectroscopic approaches combined with theoretical calculation[J]. J Mol Liq, 2022, 354: 1188311. |
23 | 李悦, 谷雨, 何佳, 等. 光谱法与分子模拟技术研究杨梅素与牛血清白蛋白的相互作用[J]. 化学学报, 2012, 70(2): 143-150. |
LI Y, GU Y, HE J, et al. Study on interaction between myricetin and bovine serum albumin by spectroscopy and molecular modeling[J]. Acta Chim Sin, 2012, 70(2): 143-150. | |
24 | BAGALKOTI J T, JOSHI S D, NANDIBEWOOR S T. Spectral and molecular modelling studies of sulfadoxine interaction with bovine serum albumin[J]. J Photoch Photobio A, 2019, 382: 1118711. |
25 | ROSTAMNEZHAD F, HOSSEIN F M. Comprehensive investigation of binding of some polycyclic aromatic hydrocarbons with bovine serum albumin: spectroscopic and molecular docking studies[J]. Bioorg Chem, 2022, 120: 1056561. |
26 | ROSS P D, SUBRAMANIAN S. Thermodynamics of protein association reactions: forces contributing to stability[J]. Biochemistry-US, 1981, 20(11): 3096-3102. |
27 | GAN N, SUN Q M, TANG P X, et al. Determination of interactions between human serum albumin and niraparib through multi-spectroscopic and computational methods[J]. Spectrochim Act A Mol Biomol Spectrosc,2019, 206: 126-134. |
28 | NI Y, ZHU R, KOKOT S. Competitive binding of small molecules with biopolymers: a fluorescence spectroscopy and chemometrics study of the interaction of aspirin and ibuprofen with BSA[J]. Analyst, 2011, 136(22): 4794-4801. |
29 | NI Y, SU S, KOKOT S. Spectrofluorimetric studies on the binding of salicylic acid to bovine serum albumin using warfarin and ibuprofen as site markers with the aid of parallel factor analysis[J]. Anal Chim Acta, 2006, 580(2): 206-215. |
30 | SEN P, FATIMA S, AHMAD B. Interactions of thioflavin T with serum albumins: spectroscopic analyses[J]. Spectrochim Acta A Mol Biomol Spectrosc, 2009, 74(1): 94-99. |
31 | ABDELHAMEED A S, ALANAZI A M, BAKHEIT A H. Fluorescence spectroscopic and molecular docking studies of the binding interaction between the new anaplastic lymphoma kinase inhibitor crizotinib and bovine serum albumin[J]. Spectrochim Acta A Mol Biomol Spectrosc, 2017, 171: 174-182. |
32 | WU L, HUANG C, EMERY B P. Förster resonance energy transfer (FRET)-based small-molecule sensors and imaging agents[J]. Chem Soc Rev,2020, 49(15): 5110-5139. |
33 | MENG D, ZHOU H, XU J. Studies on the interaction of salicylic acid and its monohydroxy substituted derivatives with bovine serum albumin[J]. Chem Phys, 2021, 546:1111821. |
34 | STAROSTA R, SANTOS F C, RFMD A. Human and bovine serum albumin time-resolved fluorescence: tryptophan and tyrosine contributions, effect of DMSO and rotational diffusion[J]. J Mol Struct, 2020, 1221: 1288051. |
35 | JUN S, TONG N, LIU X Q, et al. Mechanochromism, thermochromism, protonation effect and discrimination of CHCl3 from organic solvents in a Et2N-substituted Salicylaldehyde Schiff base[J]. Dyes Pigm, 2021, 195: 1097081. |
36 | LI K, FENG Q, NIU G. Benzothiazole-based AIEgen with tunable excited-state intramolecular proton transfer and restricted intramolecular rotation processes for highly sensitive physiological pH sensing[J]. ACS Sens, 2018, 3(5): 920-928. |
[1] | Hong-Li YU, Si-Yi ZHOU, Chen HONG, Wen LUO. A Flavone-based “Off-On” Fluorescence Probe for Detecting Butyrylcholinesterase in Living Cell [J]. Chinese Journal of Applied Chemistry, 2023, 40(4): 500-508. |
[2] | Yue-Xia ZHANG, Xiao-Peng FAN, Yu-Juan CAO, Xin-Tong YANG, Zhong-Ping LI, Zhen-Hua YANG, Chuan DONG. Synthesis of Oil-soluble Carbon Quantum Dots by Pyrolysis Method for the Detection of Oxytetracycline [J]. Chinese Journal of Applied Chemistry, 2023, 40(4): 509-517. |
[3] | Lei WU, Ling-Yun LI, Yong-Zhen PENG. Determination of Trace Heavy Metal Elements in Sewage by Total Reflection X-Ray Fluorescence Spectrometry [J]. Chinese Journal of Applied Chemistry, 2023, 40(3): 404-412. |
[4] | Jia-Mei GENG, Su-Fang MA, Wen LIU, Hai-Peng DIAO, Zhi-Fang WU, Si-Jin LI. Liver-Targeted Fluorescent Probes for Specific Detection of ONOO- in HepG2 Cells [J]. Chinese Journal of Applied Chemistry, 2023, 40(3): 441-448. |
[5] | Feng-Zhou XU, Hua-Ying TANG, Wu-Hui LIU, Yi-Feng JIANG, Wen-Kai LI, Xian-Hai LU. A Visual Semi⁃quantitative Method for Rapid Detection of Copper Ion in Water [J]. Chinese Journal of Applied Chemistry, 2022, 39(8): 1303-1311. |
[6] | Chen-Yi XUE, Lin-Jia LIU, Ting WANG, Lei GONG, Long JIN, Jian-Gang HAN, Tai-Hua LI. Research Progress on Fluorescence Detection of Heavy Metal Lead Ion [J]. Chinese Journal of Applied Chemistry, 2022, 39(7): 1039-1051. |
[7] | Hai-Yan QI, Chen-Qi ZHANG, Jin-Long LI, Jun LI. Synthesis of Sulfur and Nitrogen Doped Carbon Dots for Cu(Ⅱ) Detection [J]. Chinese Journal of Applied Chemistry, 2022, 39(6): 980-989. |
[8] | Song-Tao ZHANG, Ying-Hui WANG, Hong-Jie ZHANG. Nd3+ Sensitized Fluorescent Nanoprobes for Vascular Imaging in the Second Near Infrared Window [J]. Chinese Journal of Applied Chemistry, 2022, 39(4): 685-693. |
[9] | Si-Wei YU, Liang-Peng WANG, Ri-Zhe JIN, Chuan-Qing KANG. Recognition of ClO- and Cellular Imaging with Xanthene-based Fluorescent Probes [J]. Chinese Journal of Applied Chemistry, 2022, 39(12): 1903-1911. |
[10] | Jin-Ping SONG, Qi MA, Xiao-Min LIANG, Jian-Peng SHANG, Chuan DONG. Neodymium and Nitrogen Co‑doped Carbon Dots with High Fluorescence Quantum Yield for Detection of Sulfasalazine and Hela Cell Imaging [J]. Chinese Journal of Applied Chemistry, 2022, 39(11): 1726-1734. |
[11] | Chun-Mei ZHAO, Xiu-Miao ZHOU, Xi-Xi JIN, Yu-Hang WANG, Yi-Jing DANG. Preparation of Saddle-Shaped Cyclooctatetrathiophene-Based Hybrid Nanomaterials and Fluorescence Properties [J]. Chinese Journal of Applied Chemistry, 2022, 39(02): 283-288. |
[12] | ZHANG Cheng-Lu, BAO Jin-Di, YU Feng-Ming, DONG Wen-Jing, ZHANG Yang, GONG Rong-Qing, ZHANG Yan-Peng, ZHANG Lu. Synthesis and Application of a Fluorescence Probe with Quinazolinone as the Core Block for Highly Selective and Sensitive Detection of Hypochlorite Ion [J]. Chinese Journal of Applied Chemistry, 2021, 38(8): 986-994. |
[13] | DENG Pei-Yuan, YUAN Wei, LI Chang-Kan, CHEN Long-Xin, YANG Ying-Ying. Interaction Between Preservative Benzoic Acid and Human Serum Albumin [J]. Chinese Journal of Applied Chemistry, 2021, 38(8): 1014-1021. |
[14] | HAO Li-Juan, WANG Ting, DONG Guo-Hua, ZHANG Wen-Zhi, BAI Li-Ming, DU Hai-Yao, LANG Kun, LI Xin. Preparation of Green Carbon Quantum Dots from Corn Starch and Hydrogen Ion/Hydroxyl Ion Regulated Fluorescent Switch Performance [J]. Chinese Journal of Applied Chemistry, 2021, 38(2): 202-211. |
[15] | HUANG Jie-Tao, WANG Da-Peng. Analysis of the Physical Origin of the Red-Shift of Absorption Peaks of Conjugated Polymers in Solution [J]. Chinese Journal of Applied Chemistry, 2021, 38(11): 1486-1493. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||