1 |
LI Y, HU D, SHENG Z, et al. Self-assembled AIEgen nanoparticles for multiscale NIR-Ⅱ vascular imaging[J]. Biomaterials, 2021, 264: 120365.
|
2 |
WANG Z, WANG X, WAN J B, et al. Optical imaging in the second near infrared window for vascular bioimaging[J]. Small, 2021, 17(43): e2103780.
|
3 |
HORTON N G, WANG K, KOBAT D, et al. In vivo three-photon microscopy of subcortical structures within an intact mouse brain[J]. Nat Photonics, 2013, 7(3): 205-209.
|
4 |
NTZIACHRISTOS V, RIPOLL J, WANG L H V, et al. Looking and listening to light: the evolution of whole-body photonic imaging[J]. Nat Biotechnol, 2005, 23(3): 313-320.
|
5 |
ZHANG X L, TIAN Y L, ZHANG C, et al. Near-infrared fluorescence molecular imaging of amyloid beta species and monitoring therapy in animal models of alzheimer's disease[J]. Proc Nat Acad Sci USA, 2015, 112(31): 9734-9739.
|
6 |
HONG G, ANTARIS A L, DAI H. Near-infrared fluorophores for biomedical imaging[J]. Nat Biomed Eng, 2017, 1(1): 1-10.
|
7 |
DIAO S, HONG G, ANTARIS A L, et al. Biological imaging without autofluorescence in the second near-infrared region[J]. Nano Res, 2015, 8(9): 3027-3034.
|
8 |
HONG G S, DIAO S O, ANTARIS A L, et al. Carbon nanomaterials for biological imaging and nanomedicinal therapy[J]. Chem Rev, 2015, 115(19): 10816-10906.
|
9 |
NACZYNSKI D J, TAN M C, ZEVON M, et al. Rare-earth-doped biological composites as in vivo shortwave infrared reporters[J]. Nat Commun, 2013, 4(10): 2199.
|
10 |
TANG Y, PEI F, LU X, et al. Recent advances on activatable NIR-Ⅱ fluorescence probes for biomedical imaging[J]. Adv Opt Mater, 2019, 7(21): 1900917.
|
11 |
LI C, CHEN G, ZHANG Y, et al. Advanced fluorescence imaging technology in the near-infrared-Ⅱ window for biomedical applications[J]. J Am Chem Soc, 2020, 142(35): 14789-14804.
|
12 |
ZHU S, TIAN R, ANTARIS A L, et al. Near-infrared-Ⅱ molecular dyes for cancer imaging and surgery[J]. Adv Mater, 2019, 31(24): e1900321.
|
13 |
苏哲, 秦文璟, 白磊, 等. 近红外二区荧光探针在生物成像领域的研究进展[J]. 应用化学, 2019, 36(2): 123-136.
|
|
SU Z, QIN W J, BAI L, et al. Research progress on bioimaging with the second near-infrared fluorescence probes[J]. Chinese J Appl Chem, 2019, 36(2): 123-136.
|
14 |
KONG Y, CHEN J, FANG H, et al. Highly fluorescent ribonuclease-a-encapsulated lead sulfide quantum dots for ultrasensitive fluorescence in vivo imaging in the second near-infrared window[J]. Chem Mater, 2016, 28(9): 3041-3050.
|
15 |
YANG T, TANG Y, LIU L, et al. Size-dependent AgS2 nanodots for second near-infrared fluorescence/photoacoustics imaging and simultaneous photothermal therapy[J]. ACS Nano, 2017, 11(2): 1848-1857.
|
16 |
DIAO S, BLACKBURN J L, HONG G S, et al. Fluorescence imaging in vivo at wavelengths beyond 1500 nm[J]. Angew Chem Int Ed, 2015, 54(49): 14758-14762.
|
17 |
ROBINSON J T, HONG G S, LIANG Y Y, et al. In vivo fluorescence imaging in the second near-infrared window with long circulating carbon nanotubes capable of ultrahigh tumor uptake[J]. J Am Chem Soc, 2012, 134(25): 10664-10669.
|
18 |
LI T W, LI C Y, RUAN Z, et al. Polypeptide-conjugated second near-infrared organic fluorophore for image-guided photothermal therapy[J]. ACS Nano, 2019, 13(3): 3691-3702.
|
19 |
SHENG Z H, GUO B, HU D H, et al. Bright aggregation-induced-emission dots for targeted synergetic NIR-Ⅱ fluorescence and NIR-Ⅰ photoacoustic imaging of orthotopic brain tumors[J]. Adv Mater, 2018, 30(29): e1800766.
|
20 |
HONG G, ZOU Y, ANTARIS A L, et al. Ultrafast fluorescence imaging in vivo with conjugated polymer fluorophores in the second near-infrared window[J]. Nat Commun, 2014, 5: 4206.
|
21 |
LI Y, ZENG S, HAO J. Non-invasive optical guided tumor metastasis/vessel imaging by using lanthanide nanoprobe with enhanced down-shifting emission beyond 1500 nm[J]. ACS Nano, 2019, 13(1): 248-259.
|
22 |
REN F, LIU H, ZHANG H, et al. Engineering NIR-Ⅱb fluorescence of Er-based lanthanide nanoparticles for through-skull targeted imaging and imaging-guided surgery of orthotopic glioma[J]. Nano Today, 2020, 34: 100905.
|
23 |
YANG J, HE S, HU Z, et al. In vivo multifunctional fluorescence imaging using liposome-coated lanthanide nanoparticles in near-infrared-Ⅱ/Ⅱa/Ⅱb windows[J]. Nano Today, 2021, 38: 101120.
|
24 |
WANG X, YAKOVLIEV A, OHULCHANSKYY T Y, et al. Efficient erbium-sensitized core/shell nanocrystals for short wave infrared bioimaging[J]. Adv Opt Mater, 2018, 6(20): 1800690.
|
25 |
XU J, YANG D, LV R, et al. Design, fabrication, luminescence and biomedical applications of UCNPs@mSiO2-ZnPc-CDs-P(NIPAm-MAA) nanocomposites[J]. J Mater Chem B, 2016, 4(35): 5883-5894.
|
26 |
刘宏, 薛金萍, 江舟, 等. 肿瘤光动力治疗临床应用的光敏剂及其研究概况[J]. 应用化学, 2013, 30(12): 1386-1392.
|
|
LIU H, XUE J P, JIANG Z, et al. photosensitizer used in clinical photodynamic therapy for cancer[J]. Chinese J Appl Chem, 2013, 30(12): 1386-1392.
|
27 |
DONG A, YE X, CHEN J, et al. A generalized ligand-exchange strategy enabling sequential surface functionalization of colloidal nanocrystals[J]. J Am Chem Soc, 2011, 133(4): 998-1006.
|