Chinese Journal of Applied Chemistry ›› 2022, Vol. 39 ›› Issue (3): 391-406.DOI: 10.19894/j.issn.1000-0518.210394
• Review • Previous Articles Next Articles
Hui DU1,3, Chen-Yang YAO1,3, Hao PENG1,3, Bo JIANG1, Shun-Xiang LI1, Jun-Lie YAO1, Fang ZHENG1, Fang YANG1,2(), Ai-Guo WU1,2()
Received:
2021-08-07
Accepted:
2021-11-03
Published:
2022-03-01
Online:
2022-03-15
Contact:
Fang YANG,Ai-Guo WU
About author:
yangf@nimte.ac.cn; aiguo@nimte.ac.cnSupported by:
CLC Number:
Hui DU, Chen-Yang YAO, Hao PENG, Bo JIANG, Shun-Xiang LI, Jun-Lie YAO, Fang ZHENG, Fang YANG, Ai-Guo WU. Applications of Transition Metal⁃doped Iron⁃based Nanoparticles in Biomedicine[J]. Chinese Journal of Applied Chemistry, 2022, 39(3): 391-406.
Add to citation manager EndNote|Ris|BibTeX
URL: http://yyhx.ciac.jl.cn/EN/10.19894/j.issn.1000-0518.210394
Fig.2 (a) Doping mechanism of ferrite with different zinc doping and its total magnetic moment in oleic acid/alcohol/water system[8]. (b) Effect of Co2+ doping into ferrite in the form of ion exchange on its coercivity[9]
Fig.3 (a) Mechanistic diagram of doping Zn2+ and Mn2+ into γ-Fe2O3 and the T1-weighted imaging effect of the synthesized MNPs[14]. (b) MRI T1-weighted images of metastases in mice of Zn0.4F@Zn0.4Mn0.2F-AMD, BLI images and H&E images of the lung (scale bar: left, 1 mm; right, 50 μm)[14]
Fig.5 (a) Aggregation strategy based on magnetic nanoparticles to activate apoptotic signaling: magnetic switch aggregates death receptor 4 (DR4), which is used to induce apoptosis by TRAIL mimicking biochemical signaling[37]; (b) Scanning electron microscopy (SEM) images of M-TAT on the surface of cells[37]
Fig.6 (a) Multicomponent (Mn, Zn, Co) doped ferrite for magnetothermal studies[49]; (b) Magneto-mechanical force based on spin- field assembly and high frequency alternating magnetic field triggered magnetothermal synergy therapy (MTIT)[51]
1 | HU Y, MIGNANI S, MAJORAL J P, et al. Construction of iron oxide nanoparticle-based hybrid platforms for tumor imaging and therapy[J]. Chem Soc Rev, 2018, 47(5): 1874-1900. |
2 | POON W, KINGSTON B R, OUYANG B, et al. A framework for designing delivery systems[J]. Nat Nanotechnol, 2020, 15(10): 819-829. |
3 | WANG J, LI Y, NIE G. Multifunctional biomolecule nanostructures for cancer therapy[J]. Nat Rev Mater, 2021: 1-18. |
4 | WILLIAMS A R, MORUZZI V L, GELATT C D, et al. Aspects of transition-metal magnetism[J]. J Appl Phy, 1982, 53(3): 2019-2023. |
5 | JANG J T, NAH H, LEE J H, et al. Critical enhancements of MRI contrast and hyperthermic effects by dopant-controlled magnetic nanoparticles[J]. Angew Chem Int Ed Engl, 2009, 48(7): 1234-1242. |
6 | LIU C, ZOtU B, RONDINONE A J, et al. Chemical Control of superparamagnetic properties of magnesium and cobalt spinel ferrie nanoparticles through atomic level magnetic couplings[J]. J Am Chem Soc, 2000, 122(26): 6263-6267. |
7 | LEE J H, HUH Y M, JUN Y W, et al. Artificially engineered magnetic nanoparticles for ultra-sensitive molecular imaging[J]. Nat Med, 2007, 13(1): 95-99. |
8 | FRAGA C G. Relevance, essentiality and toxicity of trace elements in human health[J]. Mol Asp Med, 2005, 26(4/5): 235-244. |
9 | LANDSIEDEL R, MA-HOCK L, KROLL A, et al. Testing metal-oxide nanomaterials for human safety[J]. Adv Mater, 2010, 22(24): 2601-2627. |
10 | MA Y, XIA J, YAO C, et al. Precisely tuning the contrast properties of ZnxFe3– xO4 nanoparticles in magnetic resonance imaging by controlling their doping content and size[J]. Chem Mater, 2019, 31(18): 7255-7264. |
11 | SYTNYK M, KIRCHSCHLAGER R, BODNARCHUK M I, et al. Tuning the magnetic properties of metal oxide nanocrystal heterostructures by cation exchange[J]. Nano Lett, 2013, 13(2): 586-593. |
12 | GABAL M A, BAYOUMY W A. Effect of composition on structural and magnetic properties of nanocrystalline Ni0.8- xZn0.2MgxFe2O4 ferrite[J]. Polyhedron, 2010, 29(13): 2569-2573. |
13 | ZHOU Z, YANG L, GAO J, et al. Structure-relaxivity relationships of magnetic nanoparticles for magnetic resonance imaging[J]. Adv Mater, 2019, 31(8): e1804567. |
14 | MIAO Y, ZHANG H, CAI J, et al. Structure-relaxivity mechanism of an ultrasmall ferrite nanoparticle T1 MR contrast agent: the impact of dopants controlled crystalline core and surface disordered shell[J]. Nano Lett, 2021, 21(2): 1115-1123. |
15 | CHOI J S, KIM S, YOO D, et al. Distance-dependent magnetic resonance tuning as a versatile MRI sensing platform for biological targets[J]. Nat Mater, 2017, 16(5): 537-542. |
16 | SHIN T H, KANG S, PARK S, et al. A magnetic resonance tuning sensor for the MRI detection of biological targets[J]. Nat Protoc, 2018, 13(11): 2664-2684. |
17 | GLEICH B, WEIZENECKER R. Tomographic imaging using the nonlinear response of magnetic particles[J]. Nature, 2005, 435(7046): 1214-1217. |
18 | GOODWILL P W, SARITAS E U, CROFT L R, et al. X-space MPI: magnetic nanoparticles for safe medical imaging[J]. Adv Mater, 2012, 24(28): 3870-3877. |
19 | LEMASTER J E, CHEN F, KIM T, et al. Development of a trimodal contrast agent for acoustic and magnetic particle imaging of stem cells[J]. ACS Appl Nano Mater, 2018, 1(3): 1321-1331. |
20 | WU L, MENDOZA-GARCIA A, LI Q, et al. Organic phase syntheses of magnetic nanoparticles and their applications[J]. Chem Rev, 2016, 116(18): 10473-10512. |
21 | SONG G, KENNEY M, CHEN Y S, et al. Carbon-coated FeCo nanoparticles as sensitive magnetic-particle-imaging tracers with photothermal and magnetothermal properties[J]. Nat Biomed Eng, 2020, 4(3): 325-334. |
22 | ARAMI H, TEEMAN E, TROKSA A, et al. Tomographic magnetic particle imaging of cancer targeted nanoparticles[J]. Nanoscale, 2017, 9(47): 18723-18730. |
23 | LUDEWIG P, GDANIEC N, SEDLACIK J, et al. Magnetic particle imaging for real-time perfusion imaging in acute stroke[J]. ACS Nano, 2017, 11(10): 10480-10488. |
24 | SONG G, CHEN M, ZHANG Y, et al. Janus iron oxides@semiconducting polymer nanoparticle tracer for cell tracking by magnetic particle imaging[J]. Nano Lett, 2018, 18(1): 182-189. |
25 | BAUER L M, SITU S F, GRISWOLD M A, et al. High-performance iron oxide nanoparticles for magnetic particle imaging - guided hyperthermia (hMPI)[J]. Nanoscale, 2016, 8(24): 12162-12169. |
26 | JIANG Z, HAN X, DU Y, et al. Mixed metal metal-organic frameworks derived carbon supporting ZnFe2O4/C for high-performance magnetic particle imaging[J]. Nano Lett, 2021, 21(7): 2730-2737. |
27 | DU Y, LIU X, LIANG Q, et al. Optimization and design of magnetic ferrite nanoparticles with uniform tumor distribution for highly sensitive MRI/MPI performance and improved magnetic hyperthermia therapy[J]. Nano Lett, 2019, 19(6): 3618-3626. |
28 | MÜLLER D J, HELENIUS J, ALSTEENS D, et al. Force probing surfaces of living cells to molecular resolution[J]. Nat Chem Biol, 2009, 5(6): 383-390. |
29 | CHENG Y, MUROSKI M E, PETIT D, et al. Rotating magnetic field induced oscillation of magnetic particles for in vivo mechanical destruction of malignant glioma[J]. J Control Release, 2016, 223: 75-84. |
30 | XIA Y, SUN J, ZHAO L, et al. Magnetic field and nano-scaffolds with stem cells to enhance bone regeneration[J]. Biomaterials, 2018, 183: 151-170. |
31 | GAHL T J, KUNZE A. Force-mediating magnetic nanoparticles to engineer neuronal cell function[J]. Front Neurosci, 2018, 12: 299. |
32 | WU C, SHEN Y, CHEN M, et al. Recent advances in magnetic-nanomaterial-based mechanotransduction for cell fate regulation[J]. Adv Mater, 2018, 30(17): e1705673. |
33 | LIU H, WEN J, XIAO Y, et al. In situ mechanical characterization of the cell nucleus by atomic force microscopy[J]. ACS Nano, 2014, 8(4): 3821-3829. |
34 | YUN H M, AHN S J, PARK K R, et al. Magnetic nanocomposite scaffolds combined with static magnetic field in the stimulation of osteoblastic differentiation and bone formation[J]. Biomaterials, 2016, 85: 88-98. |
35 | CHENYANG Y, FANG Y, LI S, et al. Magnetically switchable mechano-chemotherapy for enhancing the death of tumour cells by overcoming drug-resistance[J]. Nano Today, 2020, 35: 100967. |
36 | YUAN Y, DING Z, QIAN J, et al. Casp3/7-instructed intracellular aggregation of Fe3O4 nanoparticles enhances T2 MR imaging of tumor apoptosis[J]. Nano Lett, 2016, 16(4): 2686-2691. |
37 | CHO M H, KIM S, LEE J H, et al. Magnetic tandem apoptosis for overcoming multidrug-resistant cancer[J]. Nano Lett, 2016, 16(12): 7455-7460. |
38 | ZHANG E, KIRCHER M F, KOCH M, et al. Dynamic magnetic fields remote-control apoptosis via nanoparticle rotation[J]. ACS Nano, 2014, 8(4): 3192-3201. |
39 | DOMENECH M, MARRERO-BERRIO I, TORRES-LUGO M, et al. Lysosomal membrane permeabilization by targeted magnetic nanoparticles in alternating magnetic fields[J]. ACS Nano, 2013, 7(6): 5091. |
40 | CHEN M, WU J, NING P, et al. Remote control of mechanical forces via mitochondrial-targeted magnetic nanospinners for efficient cancer treatment[J]. Small, 2020, 16(3): e1905424. |
41 | BRAY F, FERLAY J, SOERJOMATARAM I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2018, 68(6): 394-424. |
42 | NOH S H, MOON S H, SHIN T H, et al. Recent advances of magneto-thermal capabilities of nanoparticles: from design principles to biomedical applications[J]. Nano Today, 2017, 13: 61-76. |
43 | MARMUGI L, RENZONI F. Optical magnetic induction tomography of the heart[J]. Sci Rep, 2016, 6: 23962. |
44 | LEE N, YOO D, LING D, et al. Iron oxide based nanoparticles for multimodal imaging and magnetoresponsive therapy[J]. Chem Rev, 2015, 115(19): 10637-10689. |
45 | LIU T Y, HU S H, LIU D M, et al. Biomedical nanoparticle carriers with combined thermal and magnetic responses[J]. Nano Today, 2009, 4(1): 52-65. |
46 | YOO D, JEONG H, NOH S H, et al. Magnetically triggered dual functional nanoparticles for resistance‐free apoptotic hyperthermia[J]. Angew Chem Int Ed, 2013, 52(49): 13047-13051. |
47 | HERGT R, DUTZ S, ZEISBERGER M. Validity limits of the Néel relaxation model of magnetic nanoparticles for hyperthermia[J]. Nanotechnology, 2010, 21(1): 015706. |
48 | DAS P, COLOMBO M, PROSPERI D. Recent advances in magnetic fluid hyperthermia for cancer therapy[J]. Colloids Surf B Biointerfaces, 2019, 174: 42-55. |
49 | PARDO A, PELAZ B, GALLO J, et al. Synthesis, characterization, and evaluation of superparamagnetic doped ferrites as potential therapeutic nanotools[J]. Chem Mater, 2020, 32(6): 2220-2231. |
50 | CASTELLANOS-RUBIO I, ARRIORTUA O, MARCANO L, et al. Shaping up Zn-doped magnetite nanoparticles from mono- and bimetallic oleates: the impact of Zn content, Fe vacancies, and morphology on magnetic hyperthermia performance[J]. Chem Mater, 2021, 33(9): 3139-3154. |
51 | WU J, NING P, GAO R, et al. Programmable ROS-mediated cancer therapy via magneto-inductions[J]. Adv Sci, 2020, 7(12): 1902933. |
52 | YOO D, JEONG H, NOH S H, et al. Magnetically triggered dual functional nanoparticles for resistance-free apoptotic hyperthermia[J]. Angew Chem Int Ed Engl, 2013, 52(49): 13047-13051. |
53 | YIN P T, SHAH S, PASQUALE N J, et al. Stem cell-based gene therapy activated using magnetic hyperthermia to enhance the treatment of cancer[J]. Biomaterials, 2016, 81: 46-57. |
54 | WILHELM S, TAVARES A J, DAI Q, et al. Analysis of nanoparticle delivery to tumours[J]. Nat Rev Mater, 2016, 1(5): 16014. |
55 | FREEMAN M W, ARROTT A, WATSON J H L. Magnetism in medicine[J]. J Appl Phys, 1960, 31(5): S404-S405. |
56 | SUN C, LEE J, ZHANG M. Magnetic nanoparticles in MR imaging and drug delivery[J]. Adv Drug Delivery Rev, 2008, 60(11): 1252-1265. |
57 | LüBBE A, BERGEMANN C. Selected preclinical and first clinical experiences with magnetically targeted 4'-epidoxorubicin in patients with advanced solid tumor.in: Häfeli U, Schütt W, Teller J, et al. Scientific and Clinical Applications of Magnetic Carriers[M]. Boston, MA: Springer, 1997: 457-480. https://doi.org/10.1007/978-1-4757-6482-6_35 |
58 | LUBBE A S, ALEXIOU C, BERGEMANN C. Clinical applications of magnetic drug targeting[J]. J Surg Res, 2001, 95(2): 200-206. |
59 | ROTARIU O, STRACHAN N J C. Modelling magnetic carrier particle targeting in the tumor microvasculature for cancer treatment[J]. J Magn Magn Mater, 2005, 293(1): 639-646. |
60 | GRAESER M, THIEBEN F, SZWARGULSKI P, et al. Human-sized magnetic particle imaging for brain applications[J]. Nat Commun, 2019, 10(1): 1936. |
61 | ZHOU Z, SHEN Z, CHEN X. Tale of two magnets: an advanced magnetic targeting system[J]. ACS Nano, 2019, 14(1): 7-11. |
62 | XIE M, ZHANG W, FAN C, et al. Bioinspired soft microrobots with precise magneto-collective control for microvascular thrombolysis[J]. Adv Mater, 2020, 32(26): 2000366. |
63 | GOODING J J, GAUS K. Single-molecule sensors: challenges and opportunities for quantitative analysis[J]. Angew Chem Int Ed Engl, 2016, 55(38): 11354-11366. |
64 | GLOAG L, MEHDIPOUR M, CHEN D, et al. Advances in the application of magnetic nanoparticles for sensing[J]. Adv Mater, 2019, 31(48): e1904385. |
65 | RISSIN D M, KAN C W, CAMPBELL T G, et al. Single-molecule enzyme-linked immunosorbent assay detects serum proteins at subfemtomolar concentrations[J]. Nat Biotechnol, 2010, 28(6): 595-599. |
66 | HAO L, LENG Y, ZENG L, et al. Core-Shell-heterostructured magnetic-plasmonic nanoassemblies with highly retained magnetic-plasmonic activities for ultrasensitive bioanalysis in complex matrix[J]. Adv Sci, 2020, 7(2): 1902433. |
67 | CAO X. Zinc ferrite nanoparticles: simple synthesis via lyophilisation and electrochemical application as glucose biosensor[J]. Nano Express, 2021, 2(2):024001. |
68 | SABALE S R. Studies on catalytic activity of MnFe2O4 and CoFe2O4 MNPsas mediators in hemoglobin based biosensor[J]. Mater Today: Proc, 2020, 23: 139-146. |
69 | PARK K S, KIM H, KIM S, et al. Nanomagnetic system for rapid diagnosis of acute infection[J]. ACS Nano, 2017, 11(11): 11425-11432. |
70 | MARKUS M. Physical limits to magnetogenetics[J]. Elife, 2016, 5: e17210. |
71 | BOLES M A, LING D, HYEON T, et al. Erratum: the surface science of nanocrystals[J]. Nat Mater, 2016, 15(3): 364-364. |
72 | PAPAEFTHYMIOU G C. The Mssbauer and magnetic properties of ferritin cores[J]. Biochim Biophys Acta Gen Subj, 2010, 1800(8): 886-897. |
[1] | Xin-Tao XIE, Sang-Ni JIANG, Xi-Fei YU. Selective Binding pH Responsive Liposomes with Phenylboronic Acid for Drug Delivery [J]. Chinese Journal of Applied Chemistry, 2023, 40(6): 860-870. |
[2] | CHENG Cui-Lin, MA Jia-Pei, WANG Wei-Chen, WANG Bo-Yang, WANG Zhen-Yu. Application of Electrospinning Technology of Natural Products in Biomedicine [J]. Chinese Journal of Applied Chemistry, 2021, 38(6): 605-614. |
[3] | LI Xinyi,WANG Xiaohua,ZHOU Xiaodong,HU Jiming. Research Progress on Biosensing Based on Peptides and Gold Nanoparticles Composite Materials [J]. Chinese Journal of Applied Chemistry, 2019, 36(5): 489-499. |
[4] | FAN Ye, HAN Yichen, XIA Yongmei, BO Chunling, WANG Shuyu, FANG Yun. Investigation on Self-assembly of Nanocontainers by Vesiculation of Conjugated Linoleic Acid and Sodium Alginate and Their Drug Delivery Behavior [J]. Chinese Journal of Applied Chemistry, 2018, 35(12): 1478-1484. |
[5] | HUANG Zike, LIU Chao, FU Qiangqiang, LI Jin, ZOU Jianmei, XIE Sitao, QIU Liping. Aptamer-based Fluorescence Probe for Bioanalysis and Bioimaging [J]. Chinese Journal of Applied Chemistry, 2018, 35(1): 28-39. |
[6] | HUANG Qiongwei,ZHAO Li,SONG Zhiming,FENG Xiangru,DING Jianxun. Phenylboronic Acid-Based Glucose-Sensitive Polymer Nanocarriers Used as Drug Delivery Systems [J]. Chinese Journal of Applied Chemistry, 2017, 34(7): 733-743. |
[7] | Jia ZHOU, Yun NI, Chengwu ZHANG, Xinghan QIU, Yanfei ZHAO, Lei BAI, Gaobin ZHANG, Lin LI. Design and Synthesis of Pyrimidine Based Two-Photon Fluorescence Probe and Its Application in Bioimaging [J]. Chinese Journal of Applied Chemistry, 2017, 34(12): 1450-1456. |
[8] | Jia ZHOU, Yun NI, Chengwu ZHANG, Xinghan QIU, Yanfei ZHAO, Lei BAI, Gaobin ZHANG, Lin LI. Design and Synthesis of Pyrimidine Based Two-Photon Fluorescence Probe and Its Application in Bioimaging [J]. Chinese Journal of Applied Chemistry, 2017, 34(12): 0-0. |
[9] | LI Junrong,SHEN Aiguo,HU Jiming. Research Progress of Nanozymes and Its Application in Analysis [J]. Chinese Journal of Applied Chemistry, 2016, 33(11): 1245-1252. |
[10] | ZHANG Yi, WU Lingbo, HU Qian, CHEN Baoxin, Wu Boyang, XUE Wei . Functionally Modified Hyperbranched Polyglycerols for Drug Delivery [J]. Chinese Journal of Applied Chemistry, 2015, 32(4): 367-378. |
[11] | ZHANG Li1,2, ZHANG Jian2, ZHANG Zulei2, LIU Haiqing2, LI Lei1,2*. Preparation of Magnetic Nanomaterials and Its Adsorption Properties Towards Cr2O2-7 [J]. Chinese Journal of Applied Chemistry, 2013, 30(08): 927-931. |
[12] | WU Cheng-Yao1, XIE Jian-Gang1,2, QUAN Jing1*, ZHU Li-Min1*, BAO Jin-Yue3, ZHOU Hong-Qiang3. Preparation and Sustained-release of Ketoprofen Polymeric Prodrug with Glucose Pendant [J]. Chinese Journal of Applied Chemistry, 2010, 27(12): 1386-1391. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||