[1] | Wild S,Roglic G,Green A,et al.Global Prevalence of Diabetes Estimates for the Year 2000 and Projections for 2030[J]. Diabetes Care,2004,27(5):1047-1053. | [2] | Guariguata L,Whiting D,Hambleton I,et al.Global Estimates of Diabetes Prevalence for 2013 and Projections for 2035[J]. Diabetes Res Clin Pract,2014,103(2):137-149. | [3] | Melmed S,Polonsky K S,Larsen P R,et al.Williams Textbook of Endocrinology:Elsevier Health Sciences[M],2015. | [4] | American Diabetes Association.Diagnosis and Classification of Diabetes Mellitus[J]. Diabetes Care,2014,37(S1):S81-S90. | [5] | Shah R,Patel M,Maahs D,et al.Insulin Delivery Methods:Past, Present and Future[J]. Int J Pharm Invest,2016,6(1):1-9. | [6] | Azagury A,Khoury L,Enden G,et al.Ultrasound Mediated Transdermal Drug Delivery[J]. Adv Drug Deliv Rev,2014,72:127-143. | [7] | Bakhru S H,Furtado S,Morello A P,et al.Oral Delivery of Proteins by Biodegradable Nanoparticles[J]. Adv Drug Deliv Rev,2013,65(6):811-821. | [8] | Soares S,Costa A,Sarmento B. Novel Non-Invasive Methods of Insulin Delivery[J]. Expert Opin Drug Deliv,2012,9(12):1539-1558. | [9] | Illum L. Nasal Drug Delivery-Recent Developments and Future Prospects[J]. J Control Release,2012,161(2):254-263. | [10] | Xie M,Ye H,Wang H,et al.Β-Cell-Mimetic Designer Cells Provide Closed-Loop Glycemic Control[J]. Science,2016,354(6317):1296-1301. | [11] | Carino G P,Mathiowitz E. Oral Insulin Delivery[J]. Adv Drug Deliv Rev,1999,35(2):249-257. | [12] | Ensign L M,Cone R,Hanes J. Oral Drug Delivery with Polymeric Nanoparticles:The Gastrointestinal Mucus Barriers[J]. Adv Drug Deliv Rev,2012,64(6):557-570. | [13] | Jeong Y,Lee D,Choe K,et al.Polypeptide-Based Polyelectrolyte Complexes Overcoming the Biological Barriers of Oral Insulin Delivery[J]. J Ind Eng Chem,2017,48:79-87. | [14] | Kuivila H G,Keough A H,Soboczenski E J. Areneboronates from Diols and Polyols1[J]. J Org Chem,1954,19(5):780-783. | [15] | Wu Q,Wang L,Yu H,et al.Organization of Glucose-Responsive Systems and Their Properties[J]. Chem Rev,2011,111(12):7855-7875. | [16] | Ma R,Shi L. Phenylboronic Acid-Based Glucose-Responsive Polymeric Nanoparticles:Synthesis and Applications in Drug Delivery[J]. Polym Chem,2014,5(5):1503-1518. | [17] | Wang J,Zhang Z,Wang X,et al.Size-and Pathotropism-Driven Targeting and Washout-Resistant Effects of Boronic Acid-Rich Protein Nanoparticles for Liver Cancer Regression[J]. J Control Release,2013,168(1):1-9. | [18] | Wang X,Zhen X,Wang J,et al.Doxorubicin Delivery to 3d Multicellular Spheroids and Tumors Based on Boronic Acid-Rich Chitosan Nanoparticles[J]. Biomaterials,2013,34(19):4667-4679. | [19] | Zhao L,Xiao C S,Wang L Y,et al.Glucose-Sensitive Polymer Nanoparticles for Self-Regulated Drug Delivery[J]. Chem Commun,2016,52(49):7633-7652. | [20] | Shi D,Ran M,Huang H,et al.Preparation of Glucose Responsive Polyelectrolyte Capsules with Shell Crosslinking via the Layer-by-Layer Technique and Sustained Release of Insulin[J]. Polym Chem,2016,7(44):6779-6788. | [21] | Matsumoto A,Ikeda S,Harada A,et al.Glucose-Responsive Polymer Bearing a Novel Phenylborate Derivative as a Glucose-Sensing Moiety Operating at Physiological pH Conditions[J]. Biomacromolecules,2003,4(5):1410-1416. | [22] | Li D,Chen Y,Liu Z. Boronate Affinity Materials for Separation and Molecular Recognition: Structure, Properties and Applications[J]. Chem Soc Rev,2015,44(22):8097-8123. | [23] | Guo H,Li H,Gao J,et al.Phenylboronic Acid-Based Amphiphilic Glycopolymeric Nanocarriers for in vivo Insulin Delivery[J]. Polym Chem,2016,7(18):3189-3199. | [24] | Guan Y,Zhang Y. Boronic Acid-Containing Hydrogels:Synthesis and Their Applications[J]. Chem Soc Rev,2013,42(20):8106-8121. | [25] | Farooqi Z H,Wu W,Zhou S,et al.Engineering of Phenylboronic Acid Based Glucose-Sensitive Microgels with 4-Vinylpyridine for Working at Physiological pH and Temperature[J]. Macromol Chem Phys,2011,212(14):1510-1514. | [26] | Sato K,Yoshida K,Takahashi S,et al.pH-and Sugar-Sensitive Layer-by-Layer Films and Microcapsules for Drug Delivery[J]. Adv Drug Deliv Rev,2011,63(9):809-821. | [27] | Dong Y,Wang W,Veiseh O,et al.Injectable and Glucose-Responsive Hydrogels Based on Boronic Acid Glucose Complexation[J]. Langmuir,2016,32(34):8743-8747. | [28] | Chai Z,Ma L,Wang Y,et al.Phenylboronic Acid as a Glucose-Responsive Trigger to Tune the Insulin Release of Glycopolymer Nanoparticles[J]. J Biomater Sci Polym Ed,2016,27(7):599-610. | [29] | Matsumoto A,Yamamoto K,Yoshida R,et al.A Totally Synthetic Glucose Responsive Gel Operating in Physiological Aqueous Conditions[J]. Chem Commun,2010,46(13):2203-2205. | [30] | Liu P,Luo Q,Guan Y,et al.Drug Release Kinetics from Monolayer Films of Glucose-Sensitive Microgel[J]. Polymer,2010,51(12):2668-2675. | [31] | Xing S,Guan Y,Zhang Y. Kinetics of Glucose-Induced Swelling of P(Nipam-Aapba) Microgels[J]. Macromolecules,2011,44(11):4479-4486. | [32] | Tang Z,Guan Y,Zhang Y. Contraction-Type Glucose-Sensitive Microgel Functionalized with a 2-Substituted Phenylboronic Acid Ligand[J]. Polym Chem,2014,5(5):1782-1790. | [33] | Zhang Y,Guan Y,Zhou S. Permeability Control of Glucose-Sensitive Nanoshells[J]. Biomacromolecules,2007,8(12):3842-3847. | [34] | Suk J S,Xu Q,Kim N,et al.Pegylation as a Strategy for Improving Nanoparticle-Based Drug and Gene Delivery[J]. Adv Drug Deliv Rev,2016,99(Part A):28-51. | [35] | Hoare T,Pelton R. Engineering Glucose Swelling Responses in Poly(N-isopropylacrylamide)-based Microgels[J]. Macromolecules,2007,40(3):670-678. | [36] | Wang Y,Chai Z,Ma L,et al.Fabrication of Boronic Acid-Functionalized Nanoparticles via Boronic Acid-Diol Complexation for Drug Delivery[J]. RSC Adv,2014,4(96):53877-53884. | [37] | Wang B,Ma R,Liu G,et al.Glucose-Responsive Micelles from Self-Assembly of Poly(ethylene glycol)-b-Poly(acrylic acid-co-acrylamidophenylboronic acid) and the Controlled Release of Insulin[J]. Langmuir,2009,25(21):12522-12528. | [38] | Matsumoto A,Ishii T,Nishida J,et al.A Synthetic Approach toward a Self-Regulated Insulin Delivery System[J]. Angew Chem Int Ed,2012,51(9):2124-2128. | [39] | Zhao L,Ding J X,Xiao C S,et al.Glucose-Sensitive Polypeptide Micelles for Self-Regulated Insulin Release at Physiological pH[J]. J Mater Chem,2012,22(24):12319-12328. | [40] | Yao Y,Wang X,Tan T,et al.A Facile Strategy for Polymers to Achieve Glucose-Responsive Behavior at Neutral pH[J]. Soft Matter,2011,7(18):7948-7951. | [41] | Ma R,Yang H,Li Z,et al.Phenylboronic Acid-Based Complex Micelles with Enhanced Glucose-Responsiveness at Physiological pH by Complexation with Glycopolymer[J]. Biomacromolecules,2012,13(10):3409-3417. | [42] | Yang H,Sun X,Liu G,et al.Glucose-Responsive Complex Micelles for Self-Regulated Release of Insulin under Physiological Conditions[J]. Soft Matter,2013,9(35):8589-8599. | [43] | Cambre J N,Roy D,Gondi S R,et al.Facile Strategy to Well-Defined Water-Soluble Boronic Acid (Co) Polymers[J]. J Am Chem Soc,2007,129(34):10348-10349. | [44] | Roy D,Cambre J N,Sumerlin B S. Sugar-Responsive Block Copolymers by Direct Raft Polymerization of Unprotected Boronic Acid Monomers[J]. Chem Commun,2008,(21):2477-2479. | [45] | Roy D,Sumerlin B S. Glucose-Sensitivity of Boronic Acid Block Copolymers at Physiological pH[J]. ACS Macro Lett,2012,1(5):529-532. | [46] | Cambre J N,Roy D,Sumerlin B S. Tuning the Sugar-Response of Boronic Acid Block Copolymers[J]. J Polym Sci Part A:Polym Chem,2012,50(16):3373-3382. | [47] | Kim H,Kang Y J,Kang S,et al.Monosaccharide-Responsive Release of Insulin from Polymersomes of Polyboroxole Block Copolymers at Neutral pH[J]. J Am Chem Soc,2012,134(9):4030-4033. | [48] | Trewyn B G,Giri S,Slowing I I,et al.Mesoporous Silica Nanoparticle Based Controlled Release, Drug Delivery, and Biosensor Systems[J]. Chem Commun,2007,(31):3236-3245. | [49] | Li J,Qin X,Yang Z,et al.A Novel Mesoporous Silica Nanosphere Matrix for the Immobilization of Proteins and Their Applications as Electrochemical Biosensor[J]. Talanta,2013,104(2):116-121. | [50] | Lapeyre V,Renaudie N,Dechezelles J F,et al.Multiresponsive Hybrid Microgels and Hollow Capsules with a Layered Structure[J]. Langmuir,2009,25(8):4659-4667. | [51] | Zhang L,Xu Y,Yao H,et al.Boronic Acid Functionalized Core-Satellite Composite Nanoparticles for Advanced Enrichment of Glycopeptides and Glycoproteins[J]. Chemi Eur J,2009,15(39):10158-10166. | [52] | Tan L,Yang M Y,Wu H X,et al.Glucose-and pH-Responsive Nanogated Ensemble Based on Polymeric Network Capped Mesoporous Silica[J]. ACS Appl Mat Interfaces,2015,7(11):6310-6316. | [53] | Liu G,Ma R,Ren J,et al.A Glucose-Responsive Complex Polymeric Micelle Enabling Repeated On-Off Release and Insulin Protection[J]. Soft Matter,2013,9(5):1636-1644. | [54] | Yang H,Zhang C,Li C,et al.Glucose-Responsive Polymer Vesicles Templated by α-CD/PEG Inclusion Complex[J]. Biomacromolecules,2015,16(4):1372-1381. | [55] | Yang H,Ma R,Yue J,et al.A Facile Strategy to Fabricate Glucose-Responsive Vesicles via a Template of Thermo-Sensitive Micelles[J]. Polym Chem,2015,6(20):3837-3846. | [56] | Han G,You C C,Kim B J,et al.Light-Regulated Release of DNA and Its Delivery to Nuclei by Means of Photolabile Gold Nanoparticles[J]. Angew Chem,2006,118(19):3237-3241. | [57] | Jiang G,Jiang T,Chen H,et al.Preparation of Multi-Responsive Micelles for Controlled Release of Insulin[J]. Colloid Polym Sci,2015,293(1):209-215. | [58] | JIANG Hanping,WANG Daping,RUAN Jianming,et al.Biocompatibility Study of Nano-Hydroxyapatite Artificial Bone[J]. Chinese J Mod Med,2005,15(10):1477-1480(in Chinese). 江捍平,王大平,阮建明,等. 纳米羟基磷灰石人工骨的生物相容性研究[J]. 中国现代医学杂志,2005,15(10):1477-1480. | [59] | Wang P C,Zhao S,Yang B Y,et al.Anti-Diabetic Polysaccharides from Natural Sources:A Review[J]. Carbohydr Polym,2016,148:86-97. | [60] | Guo Q,Wu Z,Zhang X,et al.Phenylboronate-Diol Crosslinked Glycopolymeric Nanocarriers for Insulin Delivery at Physiological pH[J]. Soft Matter,2014,10(6):911-920. | [61] | Yang Q,Xu Z K,Dai Z W,et al.Surface Modification of Polypropylene Microporous Membranes with a Novel Glycopolymer[J]. Chem Mater,2005,17(11):3050-3058. | [62] | Cheng C,Zhang X,Wang Y,et al.Phenylboronic Acid-Containing Block Copolymers:Synthesis, Self-Assembly, and Application for Intracellular Delivery of Proteins[J]. New J Chem,2012,36(6):1413-1421. | [63] | Guo Q,Zhang T,An J,et al.Block Versus Random Amphiphilic Glycopolymer Nanopaticles as Glucose-Responsive Vehicles[J]. Biomacromolecules,2015,16(10):3345-3356. | [64] | Wu Z,Zhang X,Guo H,et al.An Injectable and Glucose-Sensitive Nanogel for Controlled Insulin Release[J]. J Mater Chem,2012,22(42):22788-22796. | [65] | Lee D,Choe K,Jeong Y,et al.Establishment of a Controlled Insulin Delivery System Using a Glucose-Responsive Double-Layered Nanogel[J]. RSC Adv,2015,5(19):14482-14491. | [66] | Li X,Fu M,Jun W,et al.pH-sensitive Peptide Hydrogel for Glucose-responsive Insulin Delivery[J]. Acta Biomater,2017,51:94-303. | [67] | Zhang L,Xu Y,Yao H,et al.Boronic Acid Functionalized Core-satellite Composite Nanoparticles for Advanced Enrichment of Glycopeptides and Glycoproteins[J]. Chem Eur J,2009,15(39):10158-10166. | [68] | ZHAO Li,DING Jianxun,XIAO Chunsheng,et al.Poly(L-glutamic acid) Microsphere: Preparation and Application in Oral Drug Controlled Release[J]. Acta Chim Sin,2015,73(1):60-65(in Chinese). 赵丽,丁建勋,肖春生,等. 聚(L-谷氨酸)微球的制备及其口服药物控释研究[J]. 化学学报,2015,73(1):60-65. | [69] | Zhao L,Xiao C,Ding J,et al.Competitive Binding-Accelerated Insulin Release from a Polypeptide Nanogel for Potential Therapy of Diabetes[J]. Polym Chem,2015,6(20):3807-3815. |
|