Chinese Journal of Applied Chemistry ›› 2022, Vol. 39 ›› Issue (1): 55-73.DOI: 10.19894/j.issn.1000-0518.210514
• Review • Previous Articles Next Articles
Received:
2021-10-27
Accepted:
2021-11-16
Published:
2022-01-01
Online:
2022-01-10
Contact:
Jun FU
About author:
E⁃mail:fujun8@mail.sysu.edu.cnSupported by:
CLC Number:
Sheng-Nan LI, Jun FU. Biomimetic Flexible Hydrogel Electronics[J]. Chinese Journal of Applied Chemistry, 2022, 39(1): 55-73.
Add to citation manager EndNote|Ris|BibTeX
URL: http://yyhx.ciac.jl.cn/EN/10.19894/j.issn.1000-0518.210514
Fig.5 (a) MXene (Ti3C2Tx)/PVA hydrogel capacitive sensor[55]; (b) Capacitive sensor composed of alginate/polyacrylamide hydrogel and silver nanofibers (AgNFs)[58]
Fig.9 (a) Synthesis of tissue-adhesive zwitterionic nanocomposite hydrogels and used as strain sensor[78]; (b) PDA-clay-PSBMA adhesive hydrogel and used as an implantable sensor[81]
Fig.11 (a) The drug-loaded conductive hydrogel used as a flexible artificial nerve[20]; (b) Stretchable,light-responsive and conductive hydrogel artificial nerve with light response[84]
Fig.12 (a) P(AAm-co-AAc) hydrogel bionic muscle reinforced by β-cyclodexnitrile cellulose nanocrystals[85]; (b) Ion-printable P (NIPAM-co-NaMAc) hydrogel actuator[86]
1 | LING H, LIU S, ZHENG Z, et al. Organic flexible electronics[J]. Small Methods, 2018, 2(10): 1800070. |
2 | CAO Y, LI T, GU Y, et al. Fingerprint-inspired flexible tactile sensor for accurately discerning surface texture[J]. Small, 2018, 14(16): 1703902. |
3 | LAI Y C, DENG J, NIU S, et al. Electric eel-skin-inspired mechanically durable and super-stretchable nanogenerator for deformable power source and fully autonomous conformable electronic-skin applications[J]. Adv Mater, 2016, 28(45): 10024-10032. |
4 | LI H, XU Y, LI X, et al. Epidermal inorganic optoelectronics for blood oxygen measurement[J]. Adv Healthc Mater, 2017, 6(9): 1601013. |
5 | KIM S, KWON H J, LEE S, et al. Low-power flexible organic light-emitting diode display device[J]. Adv Mater, 2011, 23(31): 3511-3516. |
6 | MENG B, TANG W, TOO Z H, et al. A transparent single-friction-surface triboelectric generator and self-powered touch sensor[J]. Energy Environ Sci, 2013, 6(11): 3235-3240. |
7 | XU S, ZHANG Y, CHO J, et al. Stretchable batteries with self-similar serpentine interconnects and integrated wireless recharging systems[J]. Nat Commun, 2013, 4(1): 1-8. |
8 | IMANI S, BANDODKAR A J, MOHAN A V, et al. A wearable chemical-electrophysiological hybrid biosensing system for real-time health and fitness monitoring[J]. Nat Commun, 2016, 7(1): 1-7. |
9 | LING W, LIEW G, LI Y, et al. Materials and techniques for implantable nutrient sensing using flexible sensors integrated with metal-organic frameworks[J]. Adv Mater, 2018, 30(23): 1800917. |
10 | CHOI S, LEE H, GHAFFARI R, et al. Recent advances in flexible and stretchable bio-electronic devices integrated with nanomaterials[J]. Adv Mater, 2016, 28(22): 4203-4218. |
11 | GAN D, HAN L, WANG M, et al. Conductive and tough hydrogels based on biopolymer molecular templates for controlling in situ formation of polypyrrole nanorods[J]. ACS Appl Mater Interfaces, 2018, 10(42): 36218-36228. |
12 | XU X, ZHOU X, ZHOU K, et al. Large-area, semitransparent, and flexible all-polymer photodetectors[J]. Adv Funct Mater, 2018, 28(48): 1805570. |
13 | WANG Z, CONG Y, FU J. Stretchable and tough conductive hydrogels for flexible pressure and strain sensors[J]. J Mater Chem B, 2020, 8(16): 3437-3459. |
14 | YUK H, LU B, ZHAO X. Hydrogel bioelectronics[J]. Chem Soc Rev, 2019, 48(6): 1642-1667. |
15 | 王思恒, 杨欣欣, 刘鹤, 等. 导电水凝胶的制备及应用研究进展[J]. 化工进展, 2020, 40(5): 2646-2664. |
WANG S H,YANG X X, LIU H, et al. Research progress on the preparation and application of conductive hydrogels[J]. Chem Prog, 2020, 40(5): 2646-2664. | |
16 | LEE K Y, MOONEY D J. Hydrogels for tissue engineering [J]. Chem Rev, 2001, 101(7): 1869-1880. |
17 | NAGAMINE K, CHIHARA S, KAI H, et al. Totally shape-conformable electrode/hydrogel composite for on-skin electrophysiological measurements[J]. Sens Actuators B, 2016, 237: 49-53. |
18 | GAN D, HUANG Z, WANG X, et al. Graphene oxide-templated conductive and redox-active nanosheets incorporated hydrogels for adhesive bioelectronics[J]. Adv Funct Mater, 2020, 30(5): 1907678. |
19 | KIM S H, JUNG S, YOON I S, et al. Ultrastretchable conductor fabricated on skin-like hydrogel-elastomer hybrid substrates for skin electronics[J]. Adv Mater, 2018, 30(26): 1800109. |
20 | ABIDIAN M R, MARTIN D C. Multifunctional nanobiomaterials for neural interfaces[J]. Adv Funct Mater, 2009, 19(4): 573-585. |
21 | WANG X, DONG L, ZHANG H, et al. Recent progress in electronic skin[J]. Adv Sci, 2015, 2(10): 1500169. |
22 | ZHOU H, YAO W, LI G, et al. Graphene/poly (3,4-ethylenedioxythiophene) hydrogel with excellent mechanical performance and high conductivity[J]. Carbon, 2013, 59: 495-502. |
23 | PAN K, PENG S, CHU Y, et al. Highly sensitive, stretchable and durable strain sensors based on conductive double-network polymer hydrogels[J]. J Polym Sci, 2020, 58(21): 3069-3081. |
24 | JO H, SIM M, KIM S, et al. Electrically conductive graphene/polyacrylamide hydrogels produced by mild chemical reduction for enhanced myoblast growth and differentiation[J]. Acta Biomater, 2017, 48: 100-109. |
25 | AHN Y, LEE H, LEE D, et al. Highly conductive and flexible silver nanowire-based microelectrodes on biocompatible hydrogel[J]. ACS Appl Mater Interfaces, 2014, 6(21): 18401-18407. |
26 | DEVAKI S J, NARAYANAN R K, SAROJAM S. Electrically conducting silver nanoparticle-polyacrylic acid hydrogel by in situ reduction and polymerization approach[J]. Mater Lett, 2014, 116: 135-138. |
27 | LIU H, LI M, OUYANG C, et al. Biofriendly, stretchable, and reusable hydrogel electronics as wearable force sensors[J]. Small, 2018, 14(36): 1801711. |
28 | WANG Z, CHEN J, CONG Y, et al. Ultrastretchable strain sensors and arrays with high sensitivity and linearity based on super tough conductive hydrogels[J]. Chem Mater, 2018, 30(21): 8062-8069. |
29 | WANG M, ZHOU H, JIN X, et al. Highly compliant and low strain hysteresis sensory electronic skins based on solution processable hybrid hydrogels[J]. J Mater Chem C, 2021, 9(5): 1822-1828. |
30 | LI W, GAO F, WANG X, et al. Strong and robust polyaniline-based supramolecular hydrogels for flexible supercapacitors[J]. Angew Chem, 2016, 128(32): 9342-9347. |
31 | LEE C J, WU H, HU Y, et al. Ionic conductivity of polyelectrolyte hydrogels[J]. ACS Appl Mater Interfaces, 2018, 10(6): 5845-5852. |
32 | LI X, CHARAYA H, BERNARD G M, et al. Low-temperature ionic conductivity enhanced by disrupted ice formation in polyampholyte hydrogels[J]. Macromolecules, 2018, 51(7): 2723-2731. |
33 | ZHOU T, GAO X, DONG B, et al. Poly(ionic liquid) hydrogels exhibiting superior mechanical and electrochemical properties as flexible electrolytes[J]. J Mater Chem A, 2016, 4(3): 1112-1118. |
34 | PENG X, LIU H, YIN Q, et al. A zwitterionic gel electrolyte for efficient solid-state supercapacitors[J]. Nat Commun, 2016, 7(1): 1-8. |
35 | SHINTAKE J, PISKAREV E, JEONG S H, et al. Ultrastretchable strain sensors using carbon black-filled elastomer composites and comparison of capacitive versus resistive sensors[J]. Adv Mater Technol, 2018, 3(3): 1700284. |
36 | GE S, LI J, GENG J, et al. Adjustable dual temperature-sensitive hydrogel based on a self-assembly cross-linking strategy with highly stretchable and healable properties[J]. Mater Horiz, 2021, 8(4): 1189-1198. |
37 | LIU Z, LIU J, ZHANG J, et al. Highly compressible hydrogel sensors with synergistic long-lasting moisture, extreme temperature tolerance and strain-sensitivity properties[J]. Mater Chem Front, 2020, 4(11): 3319-3327. |
38 | PARK T H, PARK S, YU S, et al. Highly Sensitive on-skin temperature sensors based on biocompatible hydrogels with thermoresponsive transparency and resistivity[J]. Adv Healthcare Mater, 2021: 2100469. |
39 | SUN X, QIN Z, YE L, et al. Carbon nanotubes reinforced hydrogel as flexible strain sensor with high stretchability and mechanically toughness[J]. Chem Eng J, 2020, 382: 122832. |
40 | CAI Y, SHEN J, GE G, et al. Stretchable Ti3C2Tx MXene/carbon nanotube composite based strain sensor with ultrahigh sensitivity and tunable sensing range[J]. ACS Nano, 2018, 12(1): 56-62. |
41 | SUN H, DAI K, ZHAI W, et al. A highly sensitive and stretchable yarn strain sensor for human motion tracking utilizing a wrinkle-assisted crack structure[J]. ACS Appl Mater Interfaces, 2019, 11(39): 36052-36062. |
42 | 徐朝阳, 李健昱, 江向东, 等. MWCNTs增强聚乙二醇-聚乙烯醇复合水凝胶的制备及性能[J]. 复合材料学报, 2017, 34(6): 1191-1198. |
XU C Y, Li J Y, JIANG X D, et al. Preparation and performance of MWCNTs enhanced polyethylene glycol-polyvinyl alcohol composite hydrogel[J]. Acta Mater Compos Sin, 2017, 34(6): 1191-1198. | |
43 | WANG Z, CHEN J, WANG L, et al. Flexible and wearable strain sensors based on tough and self-adhesive ion conducting hydrogels[J]. J Mater Chem B, 2019, 7(1): 24-29. |
44 | LI S, CONG Y, FU J. Tissue adhesive hydrogel bioelectronics[J]. J Mater Chem B, 2021,9(22): 4423-4443. |
45 | CAI G, WANG J, QIAN K, et al. Extremely stretchable strain sensors based on conductive self-healing dynamic cross-links hydrogels for human-motion detection[J]. Adv Sci, 2017, 4(2): 1600190. |
46 | PAN X, WANG Q, HE P, et al. A bionic tactile plastic hydrogel-based electronic skin constructed by a nerve-like nanonetwork combining stretchable, compliant, and self-healing properties[J]. Chem Eng J, 2020, 379: 122271. |
47 | LI Y, LI L, ZHANG Z, et al. An all-natural strategy for versatile interpenetrating network hydrogels with self-healing, super-adhesion and high sensitivity[J]. Chem Eng J, 2021, 420: 129736. |
48 | SHI Y, MA C, PENG L, et al. Conductive “smart” hybrid hydrogels with PNIPAM and nanostructured conductive polymers[J]. Adv Funct Mater, 2015, 25(8): 1219-1225. |
49 | PAN L, YU G, ZHAI D, et al. Hierarchical nanostructured conducting polymer hydrogel with high electrochemical activity[J]. Proc Natl Acad Sci, 2012, 109(24): 9287-9292. |
50 | ZHOU Y, WAN C, YANG Y, et al. Highly stretchable, elastic, and ionic conductive hydrogel for artificial soft electronics[J]. Adv Funct Mater, 2019, 29(1): 1806220. |
51 | LONG T, LI Y, FANG X, et al. Salt-mediated polyampholyte hydrogels with high mechanical strength, excellent self-healing property, and satisfactory electrical conductivity[J]. Adv Funct Mater, 2018, 28(44): 1804416. |
52 | LIU H, WANG X, CAO Y, et al. Freezing-tolerant, highly sensitive strain and pressure sensors assembled from ionic conductive hydrogels with dynamic cross-links[J]. ACS Appl Mater Interfaces, 2020, 12(22): 25334-25344. |
53 | HUANG H, HAN L, FU X, et al. Multiple stimuli responsive and identifiable zwitterionic ionic conductive hydrogel for bionic electronic skin[J]. Adv Electron Mater, 2020, 6(7): 2000239. |
54 | AMJADI M, KYUNG K U, PARK I, et al. Stretchable, skin-mountable, and wearable strain sensors and their potential applications: a review[J]. Adv Funct Mater, 2016, 26(11): 1678-1698. |
55 | ZHANG J, WAN L, GAO Y, et al. Highly stretchable and self-healable MXene/polyvinyl alcohol hydrogel electrode for wearable capacitive electronic skin[J]. Adv Electron Mater, 2019, 5(7): 1900285. |
56 | YIN M J, YIN Z, ZHANG Y, et al. Micropatterned elastic ionic polyacrylamide hydrogel for low-voltage capacitive and organic thin-film transistor pressure sensors[J]. Nano Energy, 2019, 58: 96-104. |
57 | YIN X Y, ZHANG Y, CAI X, et al. 3D printing of ionic conductors for high-sensitivity wearable sensors[J]. Mater Horiz, 2019, 6(4): 767-780. |
58 | XU H, LV Y, QIU D, et al. An ultra-stretchable, highly sensitive and biocompatible capacitive strain sensor from an ionic nanocomposite for on-skin monitoring[J]. Nanoscale, 2019, 11(4): 1570-1578. |
59 | 李雪雨, 朱玉宏, 温艳蓉, 等. 基于导电水凝胶的柔性应变传感器研究进展[J]. 橡塑技术与装备, 2021, 47(2): 10-16. |
LI X Y, ZHU Y H, WEN Y R, et al. Research progress of flexible strain sensor based on conductive hydrogel[J]. Rubb Plast Tech Equip, 2021,47(2): 10-16. | |
60 | ZHOU H, WANG Z, ZHAO W, et al. Robust and sensitive pressure/strain sensors from solution processable composite hydrogels enhanced by hollow-structured conducting polymers[J]. Chem Eng J, 2021, 403: 126307. |
61 | SHAO C, MENG L, CUI C, et al. An integrated self-healable and robust conductive hydrogel for dynamically self-adhesive and highly conformable electronic skin[J]. J Mater Chem C, 2019, 7(48): 15208-15218. |
62 | QIN Z, SUN X, YU Q, et al. Carbon nanotubes/hydrophobically associated hydrogels as ultrastretchable, highly sensitive, stable strain, and pressure sensors[J]. ACS Appl Mater Interfaces, 2020, 12(4): 4944-4953. |
63 | LEI Z, WANG Q, SUN S, et al. A bioinspired mineral hydrogel as a self-healable, mechanically adaptable ionic skin for highly sensitive pressure sensing[J]. Adv Mater, 2017, 29(22): 1700321. |
64 | ZHOU H, WANG M, JIN X, et al. Capacitive pressure sensors containing reliefs on solution-processable hydrogel electrodes[J]. ACS Appl Mater Interfaces, 2021, 13(1): 1441-1451. |
65 | HAN L, LIU K, WANG M, et al. Mussel‐inspired adhesive and conductive hydrogel with long-lasting moisture and extreme temperature tolerance[J]. Adv Funct Mater, 2018, 28(3): 1704195. |
66 | RONG Q, LEI W, LIU M. Conductive hydrogels as smart materials for flexible electronic devices[J]. Chem Eur J, 2018, 24(64): 16930-16943. |
67 | LIU Y, HE K, CHEN G, et al. Nature-inspired structural materials for flexible electronic devices[J]. Chem Rev, 2017, 117(20): 12893-12941. |
68 | WANG Y, TEBYETEKERWA M, LIU Y, et al. Extremely stretchable and healable ionic conductive hydrogels fabricated by surface competitive coordination for human-motion detection[J]. Chem Eng J, 2021, 420: 127637. |
69 | DENG J, YUK H, WU J, et al. Electrical bioadhesive interface for bioelectronics[J]. Nat Mater, 2020: 1-8. |
70 | GHOBRIL C, GRINSTAFF M. The chemistry and engineering of polymeric hydrogel adhesives for wound closure: a tutorial[J]. Chem Soc Rev, 2015, 44(7): 1820-1835. |
71 | ZHANG X, WANG D, LIU H, et al. A nucleobase-inspired super adhesive hydrogel with desirable mechanical, tough and fatigue resistant properties based on cytosine and ε-caprolactone[J]. Eur Polym J, 2020, 133: 109741. |
72 | FAN X, WANG S, FANG Y, et al. Tough polyacrylamide-tannic acid-kaolin adhesive hydrogels for quick hemostatic application[J]. Mater Sci Eng: C, 2020, 109: 110649. |
73 | XIE C, WANG X, HE H, et al. Mussel-inspired hydrogels for self-adhesive bioelectronics[J]. Adv Funct Mater, 2020, 30(25): 1909954. |
74 | WANG S, XU J, WANG W, et al. Skin electronics from scalable fabrication of an intrinsically stretchable transistor array[J]. Nature, 2018, 555(7694): 83-88. |
75 | ZHANG D, XU Z, LI H, et al. Fabrication of strong hydrogen-bonding induced coacervate adhesive hydrogels with antibacterial and hemostatic activities[J]. Biomater Sci, 2020, 8(5): 1455-1463. |
76 | CUI C, WU T, CHEN X, et al. A Janus hydrogel wet adhesive for internal tissue repair and anti-postoperative adhesion[J]. Adv Funct Mater, 2020, 30(49): 2005689. |
77 | XU H, XIE Y, ZHU E, et al. Supertough and ultrasensitive flexible electronic skin based on nanocellulose/sulfonated carbon nanotube hydrogel films[J]. J Mater Chem A, 2020, 8(13): 6311-6318. |
78 | WANG L, GAO G, ZHOU Y, et al. Tough, adhesive, self-healable, and transparent ionically conductive zwitterionic nanocomposite hydrogels as skin strain sensors[J]. ACS Appl Mater Interfaces, 2018, 11(3): 3506-3515. |
79 | ZHANG Z, CHAO T, JIANG S. Physical, chemical, and chemical-physical double network of zwitterionic hydrogels[J]. J Phys Chem B, 2008, 112(17): 5327-5332. |
80 | CARR L, CHENG G, XUE H, et al. Engineering the polymer backbone to strengthen nonfouling sulfobetaine hydrogels[J]. Langmuir, 2010, 26(18): 14793-14798. |
81 | PEI X, ZHANG H, ZHOU Y, et al. Stretchable, self-healing and tissue-adhesive zwitterionic hydrogels as strain sensors for wireless monitoring of organ motions[J]. Mater Horiz, 2020, 7(7): 1872-1882. |
82 | 刘广玉, 徐开凯, 于奇, 等. 电子皮肤的研究进展[J]. 中国科学:信息科学, 2018, 48(6): 626-634. |
LIU G Y, XU K K, YU Q, et al. Research progress of electronic skin[J]. Sci China: Info Sci, 2018, 48(6): 626-364. | |
83 | LIU S, ZHAO Y, HAO W, et al. Micro- and nanotechnology for neural electrode-tissue interfaces[J]. Biosens Bioelectron, 2020: 112645. |
84 | DONG M, SHI B, LIU D, et al. Conductive hydrogel for a photothermal-responsive stretchable artificial nerve and coalescing with a damaged peripheral nerve[J]. ACS Nano, 2020, 14(12): 16565-16575. |
85 | CUI Y, LI D, GONG C, et al. Bioinspired shape memory hydrogel artificial muscles driven by solvents[J]. ACS Nano, 2021, 15(8): 13712-13720. |
86 | XU Z, FU J. Programmable and reversible 3D-/4D-shape-morphing hydrogels with precisely defined ion coordination[J]. ACS Appl Mater Interfaces, 2020, 12(23): 26476-26484. |
87 | JING H, XU L, WANG X, et al. A phase-change gel based pressure sensor with tunable sensitivity for artificial tactile feedback system[J]. J Mater Chem A, 2021, 9(35): 19914-19921 |
88 | GE G, LU Y, QU X, et al. Muscle-inspired self-healing hydrogels for strain and temperature sensor[J]. ACS Nano, 2019, 14(1): 218-228. |
89 | ZHAO X, CHEN F, LI Y, et al. Bioinspired ultra-stretchable and anti-freezing conductive hydrogel fibers with ordered and reversible polymer chain alignment[J]. Nat Commun, 2018, 9(1): 1-8. |
90 | RONG Q, LEI W, CHEN L, et al. Anti-freezing, conductive self-healing organohydrogels with stable strain-sensitivity at subzero temperatures[J]. Angew Chem Int Ed, 2017, 56(45): 14159-14163. |
91 | 郭美玲, 武元鹏, 杨茜, 等. 抗冻高分子水凝胶的设计策略及应用进展[J]. 高分子材料科学与工程, 2021, 37(5): 170-180. |
GUO M L, WU Y P, YANG Q, et al. Design strategy and application progress of antifreeze polymer hydrogels[J]. Polym Mater Sci Eng, 2021, 37(5): 170-180. | |
92 | 佘小红, 杜娟, 王璐珮, 等. 高强度聚乙烯醇/聚苯胺/聚吡咯/TiO2导电杂化水凝胶的制备与性能[J]. 应用化学, 2020, 37(5): 541-546. |
SHE X H, DU J, WANG L P, et al. Preparation and properties of high-strength polyvinyl alcohol/polyaniline/polypyrrole/TiO2 conductive hybrid hydrogel[J]. Chinese J Appl Chem, 2020, 37(5): 541-546. | |
93 | LIU X, LIU J, LIN S, et al. Hydrogel machines[J]. Mater Today, 2020, 36: 102-124. |
[1] | Xu-Juan HUANG, Ting WANG, Zheng-Qing DING, Xin-Xin YANG, Zhao-Sheng CAI, Shi-Bing SHANG. Preparation of Hydrogels Based on Dehydroabietyl Polyoxyethylene Glycidyl Ether Grafted Hydroxyethyl Chitosan and Their Properties [J]. Chinese Journal of Applied Chemistry, 2022, 39(9): 1421-1428. |
[2] | De LI, Nan WANG, Hua-Wei YANG, Jiao MA. Semi⁃interpenetrated Network Hydrogels Prepared by in⁃situ Initiation of Liquid Metal to Construct a Low Fouling Electrochemical Sensing Interface [J]. Chinese Journal of Applied Chemistry, 2022, 39(9): 1464-1474. |
[3] | Ding-Kun YUAN, Wei-Fan CHU, Jia-Hui NI. Preparation of Copper Ferrocyanide⁃Polyacrylamide/ Carboxymethyl Cellulose/Graphene Composite Hydrogel and Its Adsorption Performance of Rubidium [J]. Chinese Journal of Applied Chemistry, 2022, 39(11): 1746-1756. |
[4] | ZHAO Chang-Li, QIN Ming-Gao, DOU Xiao-Qiu, FENG Chuan-Liang. High Mechanical Stability and Osteogenesis of Chiral Supramolecular Hydrogel Induced by Inorganic Nanoparticles [J]. Chinese Journal of Applied Chemistry, 2022, 39(1): 177-187. |
[5] | LIU Xu, LI Yang-Ke-Xin, DU Li, YU Jian, WANG Jia-Cheng, GENG Yang, HAN Guang, SUN Kuan, LI Meng. Bio⁃inspired Hydrogels: Synthesis, Bionic Design and Applications in the Field of Energy Storage and Conversion [J]. Chinese Journal of Applied Chemistry, 2022, 39(1): 35-54. |
[6] | TANG Li-Zong, ZHANG Lin, DONG Yun-Sheng, QI Chun-Xiao, LIU Xiang-Sheng, WANG Shu-Fang. Research Progress on Responsive Hydrogels and Their Applications in Biomedicines [J]. Chinese Journal of Applied Chemistry, 2021, 38(7): 743-753. |
[7] | ZHOU Chao, SHENG Cheng-Ju, WEN Lin-Lin. Preparation of Imidazolium Salt-based Poly(ionic liquids) Antibacterial Agent and Its Application in Hydrogel Dressing [J]. Chinese Journal of Applied Chemistry, 2021, 38(1): 51-59. |
[8] | SHE Xiaohong, DU Juan, WANG Lupei, ZHU Wenli, YANG Qiaoling, ZOU Chihui. Preparation and Properties of Tough Polyvinyl/Polyaniline/Polypyrrole/TiO2 Conductive Hybrid Hydrogel [J]. Chinese Journal of Applied Chemistry, 2020, 37(5): 541-546. |
[9] | GUO Xiaoyan, CHENG Xiaoqi, ZHANG Liangliang, HUANG Yiping, XU Gewen, BAO Junjie. Preparation and Properties of Sulfonic Waterborne Polyurethane Hydrogels with Sodium N,N-Bis (2-hydroxyethyl)-2-aminoethane Sulfonate as Chain Extender [J]. Chinese Journal of Applied Chemistry, 2019, 36(6): 631-640. |
[10] | Gang HUANG, Hongwei ZHANG, Huanhuan ZHANG, Tongfei SHI, Donghua XU. Influence of Graphene Oxide on the Rheological Properties of Poly(vinyl alcohol)/Borate Hydrogel [J]. Chinese Journal of Applied Chemistry, 2018, 35(7): 767-775. |
[11] | LIANG Xuechen,DENG Yukun,PEI Xiaopeng,ZHAI Kankan,XU Kun,TAN Ying,WANG Pixin. Effect of Non-freezing Water on the Mechanical Properties of Microspherical Composite Hydrogels [J]. Chinese Journal of Applied Chemistry, 2018, 35(11): 1301-1308. |
[12] | DUAN Yuanshou, JIA Fengxia, WANG Shuo, LI Lifang. Synthesis and Thermosensitivity of Poly(N-isopropylacrylamide)/Hydrotalite Hydrogel [J]. Chinese Journal of Applied Chemistry, 2018, 35(1): 102-108. |
[13] | WANG Tong, LIU Shi, ZHANG Xiuying. Application of Cisplatin-loaded Thermosensitive Hydrogel in Local Chemotherapy of Cervical Cancer in Mice [J]. Chinese Journal of Applied Chemistry, 2017, 34(10): 1127-1133. |
[14] | CHEN Peizhen, LIU Ruilai, RAO Ruiye. Synthesis and Characterization of Poly(N-isopropyl acrylamide)-g-cellulose Hydrogels [J]. Chinese Journal of Applied Chemistry, 2016, 33(12): 1389-1395. |
[15] | LI Pengchong, XU Kun, TAN Ying, WANG Pixin. Synthesis and Characterization of Microgel-Reinforced Polyampholyte Hydrogels [J]. Chinese Journal of Applied Chemistry, 2015, 32(4): 386-391. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||