Chinese Journal of Applied Chemistry ›› 2022, Vol. 39 ›› Issue (1): 74-85.DOI: 10.19894/j.issn.1000-0518.210460
• Review • Previous Articles Next Articles
Received:
2021-09-09
Accepted:
2021-10-13
Published:
2022-01-01
Online:
2022-01-10
Contact:
Yan-Hao YU
About author:
yuyh@sustech.edu.cnSupported by:
CLC Number:
LI Chun, YU Yan-Hao. Research Progress on Mechanism and Application of Biomimetic Mineralization[J]. Chinese Journal of Applied Chemistry, 2022, 39(1): 74-85.
Add to citation manager EndNote|Ris|BibTeX
URL: http://yyhx.ciac.jl.cn/EN/10.19894/j.issn.1000-0518.210460
Fig.4 (a) Macro/micro morphology of biomimetic synthetic nacre; (b) Comparison of mechanical properties of synthetic nacre, natural nacre, pure aragonite and other materials[48]
Fig.5 (a) Preparation of hydroxyapatite/magnesium composite orthopedic implant material; (b) Evaluation of corrosion resistance by volume of released H2 and pH of SBF solution[60]
Fig.6 (a) Schematic illustration of the preparation process and network microstructure of the PVA/Alg/HAP hybrid macrofiber; (b) Typical tensile stress-strain curves of the artificial macrofiber and different SSF obtained from 1) Euprosthenops sp (Pisauridae), 2) Cyrtophora citricola (Araneidae), 3) Latrodectus mactans (Theridiidae), 4) A. diadematus (Araneidae), and 5) N. edulis (Tetragnathidae); (c - e) Photograph of a free-standing hybrid macrofiber net, the as-prepared net can bear a static load of 2.5 kg and an impact load of 500 g free-falling from a height of 1 m[69]
1 | 崔福斋. 生物矿化[M]. 第二版. 北京: 清华大学出版社, 2012: 1-5. |
CUI F Z. Biomineralization [M]. 2nd Ed. Beijing: Tsinghua University Press, 2012: 1-5. | |
2 | YAO S S, BIAO J, LIU Z M, et al. Biomineralization: from material tactics to biological strategy[J]. Adv Mater, 2017, 29(14): 1605903. |
3 | NUDELMAN F, SOMMERDIJK N A J M. Biomineralization as an inspiration for materials chemistry[J]. Angew Chem Int Ed Engl, 2012, 51(27): 6582-6596. |
4 | TIAN E, WATANABE F, MARTIN B, et al. Innate biomineralization[J]. Int J Mol Sci, 2020, 21(14): 4820. |
5 | RAUT H K, SCHWARTZMAN A F, DAS R, et al. Tough and strong: cross-lamella design imparts multifunctionality to biomimetic nacre[J]. ACS Nano, 2020, 14(8): 9771-9779. |
6 | MA Z Q, LI B K, TANG R K. Biomineralization: biomimetic synthesis of materials and biomimetic regulation of organisms[J]. Chinese J Chem, 2021, 39(8): 2071-2082. |
7 | QIN W, WANG C Y, MA Y X, et al. Microbe-mediated extracellular and intracellular mineralization: environmental, industrial, and biotechnological applications[J]. Adv Mater, 2020, 32(22): e1907833. |
8 | ANBU P, KANG C H, SHIN Y J, et al. Formations of calcium carbonate minerals by bacteria and its multiple applications[J]. SpringerPlus, 2016, 5: 250. |
9 | WEINER S, ADDADI L. Crystallization pathways in biomineralization[J]. Annu Rev Mater Sci, 2011, 41(1): 21-40. |
10 | JIN W J, JIANG S Q, PAN H H, et al. Amorphous phase mediated crystallization: fundamentals of biomineralization[J]. Crystals, 2018, 8(1): 48. |
11 | GEBAUER D, KELLERMEIER M, GALE J D, et al. Pre-nucleation clusters as solute precursors in crystallisation[J]. Chem Soc Rev, 2014, 43(7): 2348-2371. |
12 | KARTHIKA S, RADHAKRISHNAN T K, KALAICHELVI P. A review of classical and nonclassical nucleation theories[J]. Cryst Growth Des, 2016, 16(11): 6663-6681. |
13 | LIU R L, HUANG S S, ZHANG X W, et al. Bio-mineralisation, characterization, and stability of calcium carbonate containing organic matter[J]. RSC Adv, 2021, 11(24): 14415-14425. |
14 | RAVENHILL E R, ADOBES-VIDAL M, UNWIN P R. Calcium carbonate crystallisation at charged graphite surfaces[J]. Chem Commun, 2017, 53(93): 12552-12555. |
15 | SONG R Q, COLFEN H. Additive controlled crystallization[J]. Cryst Eng Comm, 2011, 13(5): 1249-1276. |
16 | YANG W C, YIN Q X, CHEN C L. Designing sequence-defined peptoids for biomimetic control over inorganic crystallization[J]. Chem Mater, 2021, 33(9): 3047-3065. |
17 | YOREO J J D, GILBERT P U P A, SOMMERDIJK N A J M, et al. Crystallization by particle attachment in synthetic, biogenic, and geologic environments[J]. Science, 2015, 349(6247): 6760. |
18 | GEBAUER D, COLFEN H. Prenucleation clusters and non-classical nucleation[J]. Nano Today, 2011, 6(6): 564-584. |
19 | MELDRUM F C, O’SHAUGHNESSY C. Crystallization in confinement[J]. Adv Mater, 2020, 32(21): 2001068. |
20 | WANG X Y, YANG J, ANDREI C M, et al. Biomineralization of calcium phosphate revealed by in situ liquid-phase electron microscopy[J]. Chem Comm, 1(1): 80. |
21 | WEINER S, LEVI-KALISMAN Y, RAZ S, et al. Biologically formed amorphous calcium carbonate[J]. Connect Tissue Res, 2003, 44(1): 214-218. |
22 | MAHAMID J, SHARIR A, ADDADI L, et al. Amorphous calcium phosphate is a major component of the forming fin bones of zebrafish: indications for an amorphous precursor phase[J]. Proc Natl Acad Sci USA, 2008, 105(35): 12748-12753. |
23 | XIAO S H. Ediacaran sponges, animal biomineralization, and skeletal reefs[J]. Proc Natl Acad Sci USA, 2020, 117(35): 20997-20999. |
24 | TANG Q, WAN B, YUAN X L, et al. Spiculogenesis and biomineralization in early sponge animals[J]. Nat Commun, 2019, 10(1): 3348. |
25 | MALIK A, EINBINDER S, MARTINEZ S, et al. Molecular and skeletal fingerprints of scleractinian coral biomineralization: from the sea surface to mesophotic depths[J]. Acta Biomater, 2021, 120: 263-276. |
26 | JIANG S Q, PAN H H, CHEN Y, et al. Amorphous calcium phosphate phasemediated crystal nucleation kinetics and pathway[J]. Faraday Discuss,2015, 179: 451-461. |
27 | GEBAUER D, VOLKEL A, COLFEN H, et al. Stable prenucleation calcium carbonate clusters[J]. Science, 2008, 322(5909): 1819-1822. |
28 | POUGET E M, BOMANS P H H, GOOS J A C M, et al. The initial stages of template-controlled CaCO3 formation revealed by cryo-TEM[J]. Science, 2009, 323(5920): 1455-1458. |
29 | DEY A, BOMANS P H H, MULLER F A, et al. The role of prenucleation clusters in surface-induced calcium phosphate crystallization[J]. Nat Mater, 2010, 9(12): 1010-1014. |
30 | JEE S S, CULVER L, LI Y P, et al. Biomimetic mineralization of collagen via an enzyme-aided PILP process[J]. J Cryst Growth, 2010, 312(8): 1249-1256. |
31 | YU L, WEI M. Biomineralization of collagen-based materials for hard tissue repair[J]. Int J Mol Sci, 2021, 22(2): 944. |
32 | STURM E V, COLFEN H. Mesocrystals: structural and morphogenetic aspects[J]. Chem Soc Rev, 2016, 45(21): 5821-5833. |
33 | RAO A, RONCAL-HERRERO T, SCHMID E, et al. On biomineralization: enzymes switch on mesocrystal assembly[J]. ACS Cent Sci, 2019, 5(2): 357–364. |
34 | CHEN Y Y, FEN Y M, DEVEAUX J G, et al. Biomineralization forming process and bio-inspired nanomaterials for biomedical application: a review[J]. Minerals, 2019, 9(2): 68. |
35 | MA Y F, GAO Y H, FENG Q L, et al. Effects of pH and temperature on CaCO3 crystallization in aqueous solution with water soluble matrix of pearls[J]. J Cryst Growth, 2010, 312(21): 3165-3170. |
36 | BRAHMI C, CHAPRON L, MOULLAC G L, et al. Effects of elevated temperature and pCO2 on the respiration, biomineralization and photophysiology of the giant clam tridacna maxima[J]. Conserv Physiol, 2021, 9(1): coab041. |
37 | ZHANG J L, TANG L, QI H N, et al. Dual function of magnesium in bone biomineralization[J]. Adv Healthc Mater, 2019, 8(21): 1901030. |
38 | MEIER A, KASTNER A, HARRIES D, et al. Calcium carbonates: induced biomineralization with controlled macromorphology[J]. Biogeosciences, 2017, 14(21): 4867-4878. |
39 | HAN Y J, AIZENBERG J. Effect of magnesium ions on oriented growth of calcite on carboxylic acid functionalized self-assembled monolayer[J]. J Am Chem Soc, 2003, 125(14): 4032-4033. |
40 | PURGSTALLER B, KONRAD F, DIETZEL M, et al. Control of Mg2+/Ca2+ activity ratio on the formation of crystalline carbonate minerals via an amorphous precursor[J]. Cryst Growth Des, 2017, 17(3): 1069-1078. |
41 | SUZUKI M. Structural and functional analyses of organic molecules regulating biomineralization[J]. Biosci Biotechnol Biochem, 2020, 84(8): 1529-1540. |
42 | PALAZZO B, WALSH D, IAFISCO M, et al. Amino acid synergetic effect on structure, morphology and surface properties of biomimetic apatite nanocrystals[J]. Acta Biomater, 2008, 5(4): 1241-1252. |
43 | JOSIPOVIC T M, KOVACEVIC M, MATESA S, et al. The influence of dierent classes of amino acids on calcium phosphates seeded growth[J]. Materials, 2020, 13(21): 4798. |
44 | WEI H, SHEN Q, ZHAO Y, et al. On the crystallization of calcium carbonate modulated by anionic surfactants[J]. J Cryst Growth, 2005, 279(3): 439-446. |
45 | ZHANG J L, JI Y T, JIANG S T, et al. Calcium-collagen coupling is vital for biomineralization schedule[J]. Adv Sci, 2021, 8(15): 2100363. |
46 | RUIZ-AGUDO C, LUTZ J, KECKEIS P, et al. Ubiquitin designer proteins as a new additive generation toward controlling crystallization[J]. J Am Chem Soc, 2019, 141(31): 12240-12245. |
47 | LIANG H S, SHENG F, ZHOU B, et al. Phosphoprotein/chitosan electrospun nanofibrous scaffold for biomineralization[J]. Int J Biol Macromol, 2017, 102: 218-222. |
48 | MAO L B, GAO H L, YAO H B, et al. Synthetic nacre by predesigned matrix-directed mineralization[J]. Science, 2016, 354(6308):107-110. |
49 | NGA N K, TAM L T T, HA N T H, et al. Enhanced biomineralization and protein adsorption capacity of 3D chitosan/hydroxyapatite biomimetic scaffolds applied for bone-tissue engineering[J]. RSC Adv, 2020, 10(70): 43045-43057. |
50 | LIU Y X, CHEN Y P, HUANG X C, et al. Biomimetic synthesis of calcium carbonate with different morphologies and polymorphs in the presence of bovine serum albumin and soluble starch[J]. Mater Sci Eng C Mater Biol Appl, 2017, 79: 457-464. |
51 | CAO Y, MEI M L, XU J D, et al. Biomimetic mineralisation of phosphorylated dentine by CPP-ACP[J]. J Dent, 2013, 41(9): 818-825. |
52 | XIAO L F, WU M H, YAN F F, et al. A radial 3D polycaprolactone nanofiber scaffold modified by biomineralization and silk fibroin coating promote bone regeneration in vivo[J]. Int J Biol Macromol, 2021, 72: 19-29. |
53 | IWATSUBO T, KISHI R, YAMAGUCHI T. Calcium carbonate skeletal material is synthesized via phase transition of the calcium carbonate cartilaginous material[J]. ACS Omega, 2019, 4(12): 14820-14830. |
54 | ZHONG L, QU Y, SHI K, et al. Biomineralized polymer matrix composites for bone tissue repair: a review[J]. Sci China Chem, 2018, 61(12): 1553-1567. |
55 | KULAK A N, IDDON P, LI Y T, et al. Continuous structural evolution of calcium carbonate particles: a unifying model of copolymer-mediated crystallization[J]. J Am Chem Soc, 2007, 129(12): 3729-3736. |
56 | DEMINA V A, KRASHENINNIKOVA S V, BUZINA A I, et al. Biodegradable poly(L-lactide)/calcium phosphate composites with improved properties for orthopedics: effect of filler and polymer crystallinity[J]. Mater Sci Eng C, 2020, 112: 110813. |
57 | XU Y F, TIJSSEN K C H, BOMANS P H H, et al. Microscopic structure of the polymer-induced liquid precursor for calcium carbonate[J]. Nat Commun, 2018, 9: 2582. |
58 | FAN T X, CHOW S K, DI Z. Biomorphic mineralization: from biology to materials[J]. Prog Mater Sci, 2009, 54(5): 542-659. |
59 | KOVACS C S, CHAUSSAIN C, OSDOBY P, et al. The role of biomineralization in disorders of skeletal development and tooth formation[J]. Nat Rev Endocrinol, 2021, 17(6): 336-349. |
60 | SU Y C, LI D Y, SU Y C, et al. Improvement of the biodegradation property and biomineralization ability of magnesium-hydroxyapatite composites with dicalcium phosphate dihydrate and hydroxyapatite coatings[J]. ACS Biomater Sci Eng, 2016, 2(5): 818-828. |
61 | THRIVIKRAMAN G, ATHIRASALA A, GORDON R, et al. Rapid fabrication of vascularized and innervated cell-laden bone models with biomimetic intrafibrillar collagen mineralization[J]. Nat Commun, 2019, 10(1): 3520. |
62 | NONOYAMA T, WADA S, KIYAMA R, et al. Double-network hydrogels strongly bondable to bones by spontaneous osteogenesis penetration[J]. Adv Mater, 2016, 28(31): 6740-6745. |
63 | JACKSON R J, PATRICK P S, PAGE K, et al. Chemically treated 3D printed polymer scaffolds for biomineral formation[J], ACS Omega, 2018, 3(4): 4342-4351. |
64 | TAO J H, SHIN Y, JAYASINHA R, et al. The energetic basis for hydroxyapatite mineralization by amelogenin variants provides insights into the origin of amelogenesis imperfecta[J]. Proc Natl Acad Sci USA, 2019, 116(28): 13867-13872. |
65 | FAN Y W, WEN Z T, LIAO S M, et al. Novel amelogenin-releasing hydrogel for remineralization of enamel artificial caries[J]. J Bioact Compat Polym, 2012, 27(6): 585-603. |
66 | LI L, MAO C Y, WANG J M, et al. Bio-inspired enamel repair via glu-directed assembly of apatite nanoparticles: an approach to biomaterials with optimal characteristics[J]. Adv Mater, 2011, 23(40): 4695-4701. |
67 | SHAO C Y, JIN B A, MU Z, et al. Repair of tooth enamel by a biomimetic mineralization frontier ensuring epitaxial growth[J]. Sci Adv, 2019, 5(8): eaaw9569. |
68 | WHITE K A, CALI V J, OLABISI R M. Micropatterning biomineralization with immobilized mother of pearl proteins[J]. Sci Rep, 2021, 11(1): 2141. |
69 | YU Y D, HE Y, MU Z, et al. Biomimetic mineralized organic-inorganic hybrid macrofiber with spider silk-like supertoughness[J]. Adv Funct Mater, 2020, 30(6):1908556. |
70 | KUO D, NISHIMURA T, KAJIYAMA S, et al. Bioinspired environmentally friendly amorphous CaCO3-based transparent composites comprising cellulose nanofibers[J]. ACS Omega, 2018,3(10):12722-12729. |
71 | YANG K, YANG Q, LI G X, et al. Morphology and mechanical properties of polypropylene/calcium carbonate nanocomposites[J]. Mater Lett, 2006, 60(6): 805-809. |
72 | MASTROPIETRO F, GODARD P, BURGHAMMER M, et al. Revealing crystalline domains in a mollusc shell single-crystalline prism[J]. Nat Mater, 2017, 16(9): 946-952. |
73 | LI W L, ZHONG D N, HUA S Y, et al. Biomineralized biohybrid algae for tumor hypoxia modulation and cascade radio-photodynamic therapy[J]. ACS Appl Mater Inter faces, 2020, 12(40): 44541-44553. |
74 | LEE K, WAGERMAIER W, MASIC A, et al. Self-assembly of amorphous calcium carbonate microlens arrays[J]. Nat Commun, 2012, 3: 725. |
75 | SOLLNER C, BURGHAMMER M, BUSCH-NENTWICH E, et al. Control of crystal size and lattice formation by starmaker in otolith biomineralization[J]. Science, 2003, 302(5643): 282-286. |
76 | QING S, LYU C L, ZHU L, et al. Biomineralized bacterial outer membrane vesicles potentiate safe and efficient tumor microenvironment reprogramming for anticancer therapy[J]. Adv Mater, 2020, 32(47): 2002085. |
77 | XIAO B, ZHOU X X, XU H X, et al. Integration of polymerization and biomineralization as a strategy to facilely synthesize nanotheranostic agents[J]. ACS Nano, 2018, 12(12): 12682-12691. |
78 | WANG P P, XIAO M S, PEI H, et al. Biomineralized DNA nanospheres by metal organic framework for enhanced chemodynamic therapy[J]. Chem Eng J, 2021, 415: 129036. |
79 | WANG J, LIU Z H, REN B Y, et al. Biomimetic mineralisation systems for in situ enamel restoration inspired by amelogenesis[J]. J Mater Sci Mater Med, 2021, 32(9): 115. |
80 | TANIMOTO S, NISHILL I, KANAOKA S. Biomineralization-inspired fabrication of chitosan/calcium carbonates core-shell type composite microparticles as a drug carrier[J]. Int J Biol Macromol, 2019, 129: 659-664. |
81 | SRIVASTAVA P, HIRA S K, SRIVASTAVA D N, et al. ATP-decorated mesoporous silica for biomineralization of calcium carbonate and P2 purinergic receptor-mediated antitumor activity against aggressive lymphoma[J]. ACS Appl Mater Inter faces, 2018, 10(8): 6917-6929. |
[1] | GAO Yanfang, WANG Haishui. Control of Crystalline Polymorphs and Morphologies for Calcium Carbonate with Sodium Citrate [J]. Chinese Journal of Applied Chemistry, 2015, 32(7): 831-836. |
[2] | ZHU Deqin, SHENG Yu*, ZOU Yinjiang, FANG Zhen, SU Xiaofen. Preparation of Polypropylene Composites Filled with Surface-modified Calcium Carbonate by in-situ Solid Phase Grafting [J]. Chinese Journal of Applied Chemistry, 2013, 30(12): 1411-1416. |
[3] | ZHU Deqin, SHENG Yu*, ZOU Yinjiang, FANG Zhen, SU Xiaofen. Effect of Modifiers on the Performance of Polypropylene/Calcium Carbonate Composites [J]. Chinese Journal of Applied Chemistry, 2013, 30(06): 655-660. |
[4] | LI Na1, FU Change2, ZHOU Yuming3, LU Yipin1, YANG Weiben1*. Synthesis and Scale Inhibition of a Polyether-typed Non-phosphorus Copolymer [J]. Chinese Journal of Applied Chemistry, 2013, 30(05): 528-533. |
[5] | OUYANG Junjun,ZHOU Li*. Preparation and Properties of Porous β-Tricalcium Phosphate/Chitosan/Polyvinyl Alcohol Composite Hydrogel [J]. Chinese Journal of Applied Chemistry, 2012, 29(09): 995-999. |
[6] | YANG Xiaohong2, LUO Chongxiao1, CHEN Jianbing2, LIU Jinku1,2*, ZHANG Lijia1. In Situ Preparation and Antistatic Research of Calcium Carbonate/Nickel Composite [J]. Chinese Journal of Applied Chemistry, 2011, 28(07): 798-803. |
[7] | GUO Yan-Chuan1, SUN Rui-Xue1, MA Ming1, CHEN Li-Juan1*, SONG Yu2, DENG Xu-Ming2. The preparation and characterization of gelatin/β-tricalcium phosphate porous composite spheres by W/O emulsion process [J]. Chinese Journal of Applied Chemistry, 2009, 26(12): 1391-1394. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||