[1] MANOURAS T, ARGITIS P. High sensitivity resists for EUV lithography: a review of material design strategies and performance results[J]. Nanomaterials, 2020, 10(8): 1593. [2] DAUENDORFFER A, SHIOZAWA T, YOSHIDA K, et al. CLEAN TRACK solutions for defectivity and CD control towards 5 nm and smaller nodes: extreme ultraviolet (EUV) lithography XI[C]. San Jose, 2020, 113232A. [3] DAUENDORFFER A, KAMEI Y, KAWAKAMI S, et al. New coater/developer technologies for CD control and defectivity reduction towards 5 nm and smaller nodes: international conference on extreme ultraviolet lithography 2019[C]. Monterey, 2019, 111471N. [4] 郑金红. 光刻胶的发展及应用[J]. 精细与专用化学品, 2006, 14(16): 24-30. ZHENG J H. Development and application of photoresist[J]. Fine Spec Chem, 2006,14(16): 24-30. [5] 许箭, 陈力, 田凯军, 等. 先进光刻胶材料的研究进展[J]. 影像科学与光化学, 2011, 29(6): 417-429. XU J, CHEN L, TIAN K J, et al. Research progress of advanced photoresist materials[J]. Imaging Sci Photochem, 2011,29(6): 417-429. [6] SAHOO P, VYAS R, WADHWA M, et al. Progress in deep-UV photoresists[J]. Bull Mater Sci, 2002, 25(6): 553-556. [7] 魏玮, 刘敬成, 李虎, 等. 微电子光致抗蚀剂的发展及应用[J]. 化学进展, 2014, 26(11): 1867-1888. WEI W, LIU J C, LI H, et al. Development and application of microelectronic photoresists[J]. Chem Prog, 2014, 26(11): 1867-1888. [8] 郑金红. I-Line光刻胶材料的研究进展[J]. 影像科学与光化学, 2012, 30(2): 81-90. ZHENG J H. Research progress of I-Line photoresist materials[J]. Imaging Sci Photochem, 2012, 30(2): 81-90. [9] LAU J H. Fan-out wafer-level packaging[M]. Berlin: Springer, 2018: 165-168. [10] LU Q H, ZHENG F. Polyimides for electronic applications, in advanced polyimide materials[M]. Amsterdam: Elsevier, 2018: 195-255. [11] BRAUN T, BECKER K F, W HRMANN M, et al. Trends in fan-out wafer and panel level packaging: 2017 international conference on electronics packaging (ICEP)[C]. Yamagata, 2017: 325-327. [12] 丁孟贤. 聚酰亚胺-化学、结构与性能的关系及材料[M]. 北京: 科学出版社, 2006: 729-758. DING M X. Polyimide-relationship between chemistry, structure and properties and materials[M]. Beijing: Science Press, 2006: 729-758. [13] FU M C, HIGASHIHARA T, UEDA M. Recent progress in thermally stable and photosensitive polymers[J]. Polym J, 2017, 50(1): 57-76. [14] MATSUKAWA D, NAKAMURA T, ENOMOTO T, et al. Low temperature curable PI/PBO for advanced packaging: additional conferences (device packaging, HiTEC, HiTEN, and CICMT) (2017)[C]. 2017(DPC): 1-15. [15] TOMIKAWA M, OKUDA R, OHNISHI H. Photosensitive polyimide for packaging applications[J]. J Photopolym Sci Technol, 2015, 28: 73-77. [16] 魏孜博, 马文超, 邱迎昕. 248 nm深紫外光刻胶用成膜树脂的研究进展[J]. 影像科学与光化学, 2020, 38(3):430-435. WEI Z B, MA W C, QIU Y X. Research progress of film-forming resin for 248 nm deep ultraviolet photoresist[J]. Imaging Sci Photochem, 2020,38(3): 430-435. [17] 郑祥飞, 孙小侠, 刘敬成, 等. 化学增幅型光刻胶材料研究进展[J]. 影像科学与光化学, 2020, 38(3): 392-408. ZHENG X F, SUN X X, LIU J C, et al. Research progress of chemically augmented photoresist materials[J]. Imaging Sci Photochem, 2020, 38(3): 392-408. [18] ALLEN R, WALLRAFF G, DIPIETRO R, et al. 193-nm single-layer positive resists: building etch resistance into a high-resolution imaging system: advances in resist technology and processing XII[C]. Santa Clara, 1995, 2438: 474-485. [19] FUJIMOTO H, SASAGO M, TANI Y, et al. Evaluation of resist materials for KrF excimer laser lithography: advances in resist technology and processing VII[C]. San Jose, 1990, 1262: 331-343. [20] ITO H. Dissolution behavior of chemically amplified resist polymers for 248-, 193-, and 157-nm lithography[J]. IBM J Res Dev, 2001, 45: 683-695. [21] SEO H U, JIN S H, CHOI S J, et al. Design and synthesis of new photoresist materials for ArF lithography[J]. J Appl Polym Sci, 2004, 92: 165-170. [22] AHN K D, KOO J S, CHUNG C M. Photoacid generating polymers based on sulfonyloxymaleimides and application as single-component resists[J]. J Polym Sci Part A: Polym Chem, 1996, 34: 183-191. [23] 郑金红, 黄志齐, 侯宏森. 248 nm深紫外光刻胶[J]. 感光科学与光化学, 2003, 21(5): 346-356. ZHENG J H, HUANG Z Q, HOU H S. 248 nm deep ultraviolet photoresist[J]. Imaging Sci Photochem, 2003, 21(5): 346-356. [24] 魏孜博, 马文超, 邱迎昕. 193 nm深紫外光刻胶用成膜树脂的研究进展[J]. 影像科学与光化学, 2020, 38(3): 38-44. WEI Z B, MA W C, QIU Y X. Research progress of film-forming resin for 193 nm deep ultraviolet photoresist[J]. Imaging Sci Photochem, 2020, 38(3): 38-44. [25] REICHMANIS E, NALAMASU O, HOULIHAN F M. Organic materials challenges for 193 nm imaging[J]. Acc Chem Res, 1999, 32: 659-667. [26] ITO H. Chemical amplification resists for microlithography, in Microlithography Molecular Imprinting[M]. Berlin: Springer, 2005, 172: 37-245. [27] OKOROANYANWU U, SHIMOKAWA T, BYERS J, et al. New single-layer positive photoresists for 193-nm photolithography: advances in resist technology and processing XIV[C]. Santa Clara, 1997, 3049: 92-103. [28] WURM S. EUV lithography: progress, challenges, and outlook: 30th european mask and lithography conference[C]. Dresden, 2014, 923103. [29] ERDMANN A, F HNER T, EVANSCHITZKY P, et al. Optical and euv projection lithography: a computational view[J]. Microelectron Eng, 2015, 132: 21-34. [30] WALLOW T, HIGGINS C, BRAINARD R, et al. Evaluation of EUV resist materials for use at the 32 nm half-pitch node: emerging lithographic technologies XII[C]. San Jose, 2008, 69211F. [31] BUITRAGO E, YILDIRIM O, VERSPAGET C, et al. Evaluation of EUV resist performance using interference lithography: extreme ultraviolet (EUV) lithography VI[C]. San Jose, 2015, 94221S. [32] NAKAGAWA H, NARUOKA T, NAGAI T. Recent EUV resists toward high volume manufacturing[J]. J Photopolym Sci Technol, 2014, 27(6): 739 746. [33] LUO C, XU C, LV L, et al. Review of recent advances in inorganic photoresists[J]. RSC Adv, 2020, 10: 8385-8395. [34] KIM J, LEE J W, KIM D, et al. Measurement of EUV resists performances RLS by DUV light source: extreme ultraviolet (EUV) lithography[C]. San Jose, 2010, 76362Y. [35] SILVA A D, FELIX N M, OBER C K. Molecular glass resists as high-resolution patterning materials[J]. Adv Mater, 2008, 20(17): 3355-3361. [36] SILVA A D, LEE J K, ANDR X, et al. Study of the structure-properties relationship of phenolic molecular glass resists for next generation photolithography[J]. Chem Mater, 2008, 20(4): 1606-1613. [37] BRATTON D, AYOTHI R, FELIX N, et al. Molecular glass resists for next generation lithography: advances in resist technology and processing XXIII[C]. San Jose, 2006, 61531D. [38] CHANG S W, AYOTHI R, BRATTON D, et al. Sub-50 nm feature sizes using positive tone molecular glass resists for EUV lithography[J]. J Mater Chem, 2006, 16(15): 1470-1474. [39] KUDO H, HAYASHI R, MITANI K, et al. Molecular waterwheel (noria) from a simple condensation of resorcinol and an alkanedial[J]. Angew Chem Int Ed Engl, 2006, 45(47): 7948-52. [40] KUDO H, JINGUJI M, NISHIKUBO T, et al. Extreme ultraviolet (EUV)-resist materials of noria (water wheel-like cyclic oligomer) derivatives containing acetal moieties[J]. J Photopolym Sci Technol, 2010, 23(5): 657-664. [41] KUDO H, SUYAMA Y, OIZUMI H, et al. Novel extreme ultraviolet (EUV)-resist material based on noria (water wheel-like cyclic oligomer)[J]. J Mater Chem, 2010, 20(21): 4445-4450. [42] NIINA N, KUDO H, MARUYAMA K, et al. Multicomponent negative-type photoresist based on noria analog with 12 ethoxy groups[J]. Polym J, 2011, 43(4): 407-413. [43] SEKI H, KATO Y, KUDO H, et al. Negative-type extreme ultraviolet resist materials based on water-wheel-like cyclic oligomer (noria)[J]. Jpn J Appl Phys, 2010, 49(6): 06GF06. [44] MATSUO Y, TAHARA K, MORITA K, et al. Regioselective eightfold and tenfold additions of a pyridine-modified organocopper reagent to [60]fullerene[J]. Angew Chem Int Ed Engl, 2007, 46(16): 2844-2847. [45] MATSUO Y, SATO Y, HASHIGUCHI M, et al. Synthesis, electrochemical and photophysical properties, and electroluminescent performance of the octa- and deca(aryl)[60]fullerene derivatives[J]. Adv Funct Mater, 2009, 19(14): 2224-2229. [46] ISHII T, MURATA Y, SHIGEHARA K. Contrast enhancement of ZEP520 resist by fullerene-derivative incorporation[J]. Jpn J Appl Phys, 2001, 40: L478-L480. [47] ISHII T, TAMAMURA T, SHIGEHARA K. Fullerene-derivative nanocomposite resist for nanometer pattern fabrication[J]. Jpn J Appl Phys, 2000, 39: L1068-L1070. [48] YAMAMOTO H, KOZAWA T, TAGAWA S, et al. Chemically amplified molecular resist based on fullerene derivative for nanolithography: advances in resist materials and processing technology XXV[C]. San Jose, 2008, 69230N. [49] OIZUMI H, TANAKA K, KAWAKAMI K, et al. Development of new positive-tone molecular resists based on fullerene derivatives for extreme ultraviolet lithography[J]. Jpn J Appl Phys, 2010, 49(6): 06GF04. [50] OIZUMI H, MATSUNAGA K, KANEYAMA K, et al. Performance of EUV molecular resists based on fullerene derivatives: advances in resist materials and processing technology XXVIII[C]. 2011, 797209. |