[1] XU B W, WU X F, LI H B, et al. Selective detection of TNT and picric acid by conjugated polymer film sensors with donor-acceptor architecture[J]. Macromolecules, 2011, 44(13): 5089-5092. [2] BHALLA V, GUPTA A, KUMAR M, et al. Self-assembled pentacenequinone derivative for trace detection of picric acid[J]. ACS Appl Mater Interfaces, 2013, 5(3): 672-679. [3] MU R, YUAN Y, KARNJANAPIBOONWONG A, et al. Fast separation and quantification method for nitroguanidine and 2,4-dinitroanisole by ultrafast liquid chromatography-tandem mass spectrometry[J]. Anal Chem, 2012, 84(7): 3427-3432. [4] PENG Y, ZHANG A J, DONG M, et al. A Colorimetric and fluorescent chemosensor for the detection of an explosive-2,4,6-trinitrophenol (TNP)[J]. Chem Commun, 2011, 47(15): 4505-4507. [5] RISKIN M, TEL-VERED R, BOURENKO T, et al. Imprinting of molecular recognition sites through electropolymerization of functionalized Au nanoparticles: development of an electrochemical TNT sensor based on π-donor-acceptor interactions[J]. J Am Chem Soc, 2008, 130(30): 9726-9733. [6] XU Y, LI B, LI W, et al. “ICT-not-quenching” near infrared ratiometric fluorescent detection of picric acid in aqueous media[J]. Chem Commun, 2013, 49(42): 4764-4766. [7] CHENG S, DOU J, WANG W, et al. Dopant-assisted negative photoionization ion mobility spectrometry for sensitive detection of explosives[J]. Anal Chem, 2013, 85(1): 319-326. [8] SHANKARAN D, GOBI K, MATSUMOTO K, et al. Highly sensitive surface plasmon resonance immunosensor for parts-per-trillion level detection of 2,4,6-trinitrophenol[J]. Sens Actuator B, 2004, 100(2/3): 450-454. [9] KO H, CHANG S, TSUKRUK V V. Porous substrates for label-free molecular level detection of nonresonant organic molecules[J]. ACS Nano, 2009, 3(1): 181-188. [10] HUANG H, LI H, FENG J J, et al. One-pot green synthesis of highly fluorescent glutathione-stabilized copper nanoclusters for Fe3+ sensing[J]. Sens Actuator B, 2017, 241: 292-297. [11] OU G Z, ZHAO J, CHEN P, et al. Fabrication and application of noble metal nanoclusters as optical sensors for toxic metal ions[J]. Anal Bioanal Chem, 2018, 410(10): 2485-2498. [12] CAO H Y, CHEN Z H, ZHENG H Z, et al. Copper nanoclusters as a highly sensitive and selective fluorescence sensor for ferric ions in serum and living cells by imaging[J]. Biosens Bioelectron, 2014, 62(15): 189-195. [13] 孙道华, 刘兆岩, 肖正梨, 等. 基于植物质还原的银纳米颗粒的制备及在织物抗菌整理上的应用[J]. 化工学报, 2015, 66(9): 3678-3684. SUN D H, LIU Z Y, XIAO Z L, et al. Plant-mediated synthesis of silver nanoparticles and applicationin antibacterial fabric[J]. CIESC J, 2015, 66(9): 3678-3684. [14] 江新德, 王振希, 江桂仙, 等. 植物还原法制备Au-Ag合金纳米材料及其拉曼应用[J]. 化工学报, 2016, 67(11): 4906-4911. JIANG X D, WANG Z X, JIANG G X, et al. Raman enhancement of biosynthesized Au-Ag bimetallic nanomaterials[J]. CIESC J, 2016, 67(11): 4906-4911. [15] WANG C X, CHENG H, HUANG Y J, et al. Facile sonochemical synthesis of pH-responsive copper nanoclusters for selective and sensitive detection of Pb2+ in living cells[J]. Analyst, 2015, 140(16): 5634-5639. [16] APARNA R S, SYAMCHAND S S, GEORGE S. Tannic acid stabilised copper nanocluster developed through microwave mediated synthesis as a fluorescent probe for the turn on detection of dopamine[J]. J Clust Sci, 2017, 28(4): 2223-2238. [17] YANG K C, WANG Y Y, LU C S, et al. Ovalbumin-directed synthesis of fluorescent copper nanoclusters for sensing both vitamin B1 and doxycycline[J]. J Lumin, 2018, 196: 181-186. [18] GUI R J, SUN J, CAO X L, et al. Multidentate Polymers stabilized water-dispersed copper nanoclusters: facile photoreduction synthesis and selective fluorescence turn-on response[J]. RSC Adv, 2014, 4(55): 29083-29088. [19] TANG T, OUYANG J, HU L S, et al. Synthesis of peptide templated copper nanoclusters for fluorometric determination of Fe(III) in human serum[J]. Microchim Acta, 2016, 183(10): 2831-2836. [20] LIAN J Y, LIU Q, JIN Y, et al. Histone-DNA interaction: an effective approach to improve the fluorescence intensity and stability of DNA-templated Cu nanoclusters[J]. Chem Commun, 2017, 53(93): 12568-12571. [21] BAGHERI H, AFKHAMI A, KHOSHSAFAR H, et al. Protein capped Cu nanoclusters-SWCNT nanocomposite as a novel candidate of high performance platform for organophosphates enzymeless biosensor[J]. Biosens Bioelectron, 2017, 89(Pt 2): 829-836. [22] ZHANG Y Y, LI Y X, ZHANG C Y, et al. Fluorescence turn-on detection of alkaline phosphatase activity based on controlled release of PEI-capped Cu nanoclusters from MnO2 nanosheets[J]. Anal Bioanal Chem, 2017, 409(20): 4771-4778. [23] AI L, JIANG W R, LIU Z Y, et al. Engineering a red emission of copper nanocluster self-assembly architectures by employing aromatic thiols as capping ligands[J]. Nanoscale, 2017, 9(34): 12618-12627. [24] ZHANG W J, LIU S G, HAN L, et al. Copper nanoclusters with strong fluorescence emission as a sensing platform for sensitive and selective detection of picric acid[J]. Anal Methods, 2018, 10(35): 4251-4256. [25] YANG S H, SUN X H, CHEN Y. A novel fluorescence enhancement probe based on L-cystine modified copper nanoclusters for the detection of 2,4,6-trinitrotoluene[J]. Mater Lett, 2017, 194: 5-8. [26] LI L, HOU C J, LI J W, et al. Fluazinam direct detection based on the inner filter effect using a copper nanocluster fluorescent probe[J]. Anal Methods, 2019, 11(36): 4637-4634. [27] SHANMUGARAJ K, JOHN S A. Inner filter effect based selective detection of picric acid in aqueous solution using green luminescent copper nanoclusters[J]. New J Chem, 2018, 42(9): 7223-7229. [28] PATEL R, BOTHRA S, KUMAR R, et al. Pyridoxamine driven selective turn-off detection of picric acid using glutathione stabilized fluorescent copper nanoclusters and its applications with chemically modified cellulose strips[J]. Biosens Bioelectron, 2018, 102: 196-203. |