[1] Wang G,Zhang L,Zhang J. A Review of Electrode Materials for Electrochemical Supercapacitors[J]. J Chem Soc Rev,2012,41:797-828.[2] Burke A. Ultracapacitors:Why, How, and Where is the Technology[J]. J Power Sources,2000,91(1):37-50.[3] Zhang L,Zhao X. Carbon-based Materials as Supercapacitor Electrodes[J]. Chem Soc Rev,2009,38:2520-2531.[4] Fan Z,Yan J,Wei T,et al. Asymmetric Supercapacitors Based on Graphene/MnO2 and Activated Carbon Nanofiber Electrodes with High Power and Energy Density[J]. Adv Funct Mater,2011,21(12):2366-2375.[5] Ataherian F,Wu N. 1.2 Volt Manganese Oxide Symmetric Supercapacitor[J]. Electrochem Comm,2011,13(11):1264-1267.[6] Wu Z,Ren W,Wang D,et al. High-Energy MnO2 Nanowire/Graphene and Graphene Asymmetric Electrochemical Capacitors[J]. ACS Nano,2010,4(10):5835-5842.[7] Toupin M,Brousse T,Bélanger D. Influence of Microstructure on the Charge Storage Properties of Chemically Synthesized Manganese Dioxide[J]. Chem Mater,2002,14(9):3946-3952.[8] Toupin M,Brousse T,B langer D. Charge Storage Mechanism of MnO2 Electrode Used in Aqueous Electrochemical Capacitor[J]. Chem Mater,2004,16(16):3184-3190.[9] Liu J,Essner J. Hybrid Supercapacitor Based on Coaxially Coated Manganese Oxide on Vertically Aligned Carbon Nanofiber Arrays[J]. J Chem Mater,2010,22(17):5022-5030.[10] Ma R,Bando Y,Zhang L,et al. Layered MnO2 Nanobelts:Hydrothermal Synthesis and the Electrochemical Measurements[J]. Adv Mater,2004,16(11):918-922.[11] Zhang L,Kang L,Lv H,et al. Controllable Synthesis, Characterization and Electrochemical Properties of Manganese Oxide Nanoarchitectures[J]. J Mater Res,2008,23(3):780-789.[12] Ge J,Zhuo L,Yang F,et al. One-Dimensional Hierarchical Layered KxMnO2(x<0.3) Nanoarchitectures:Synthesis, Characterization, and Their Magnetic Properties[J]. J Phys Chem B,2006,110(36):17854-17859.[13] Subramanian V,Zhu H,Wei B. Nanostructured MnO2:Hydrothermal Synthesis and Electrochemical Properties as a Supercapacitor Electrode Material[J]. J Power Sources,2006,159(1):361-364.[14] Subramanian V,Zhu H,Vajtai R,et al. Hydrothermal Synthesis and Pseudocapacitance Properties of MnO2 Nanostructures[J]. J Phys Chem B,2005,109(43):20207-20214.[15] Kovtyukhova N,Ollivier P,Martin B,et al. Layer-by-Layer Assembly of Ultrathin Composite Films from Micron-Sized Graphite Oxide Sheets and Polycations[J]. Chem Mater,1999,11(3):771-778.[16] Cao L,Lu M,Li H L. Preparation of Mesoporous Nanocrystalline Co3O4 and Its Applicability of Porosity to the Formation of Electrochemical Capacitance[J]. J Electrochem Soc,2005,152(5):A871-A875.[17] Lei Z,Zhang J,Zhao X. Ultrathin MnO2 Nanofibers Grown on Graphitic Carbon Spheres as High-performance Asymmetric Supercapacitor Electrodes[J]. J Mater Chem,2012,22:153-160.[18] Yu C,Masarapu C,Rong J,et al. Stretchable Supercapacitors Based on Buckled Single-Walled Carbon Nanotube Macrofilms[J]. Adv Mater,2009,21(47):4793-4797.[19] Khomenko V,Raymundo-Piero E,Béguin F. A New Type of High Energy Asymmetric Capacitor with Nanoporous Carbon Electrodes in Aqueous Electrolyte[J]. J Power Sources,2010,195(1):4234-4241.[20] Deng L,Zhu G,Wang J,et al. Graphene-MnO2 and Graphene Asymmetrical Electrochemical Capacitor with a High Energy Density in Aqueous Electrolyte[J]. J Power Sources,2011,196(24):10782-10787.[21] Khomenko E,Raymundo-Pinero F,Beguin F. Optimisation of an Asymmetric Manganese Oxide/Activated Carbon Capacitor Working at 2 V in Aqueous Medium[J]. J Power Sources,2006,153(1):183-190.[22] Khomenko V,Raymundo-Pinero E,Frackowiak E,et al. High-voltage Asymmetric Supercapacitors Operating in Aqueous Electrolyte[J]. Appl Phys A,2006,82(4):567-573. |