Chinese Journal of Applied Chemistry
• Review • Previous Articles Next Articles
QU Fengjin, CHEN Fang, HOU Xiuzhang, MA Xiaoyan*
Received:
2013-01-25
Revised:
2013-03-14
Published:
2013-12-10
Online:
2013-12-10
CLC Number:
QU Fengjin, CHEN Fang, HOU Xiuzhang, MA Xiaoyan*. Research Progress in the Sensor Application of Ferrocene and Its Derivatives[J]. Chinese Journal of Applied Chemistry, DOI: 10.3724/SP.J.1095.2013.30062.
Add to citation manager EndNote|Ris|BibTeX
[1] Werner H. At Least 60 Years of Ferrocene:The Discovery and Rediscovery of the Sandwich Complexes[J]. Angew Chem Int Ed,2012,51(25):6052-6058.[2] Li Q,Chen X,Yue X,et al. Construction and Transformation of Stimuli-responsive Vesicles from the Ferrocene Derivative Supramolecular Amphiphiles[J]. Colloids Surf A,2012,409:98-104.[3] Wang Z P,Mohwald H,Gao C Y. Preparation and Redox-Controlled Reversible Response of Ferrocene-Modified Poly(allylamine hydrochloride) Microcapsules[J]. Langmuir,2011,27(4):1286-1291.[4] Li Q,Chen X,Jing B,et al. Redox Switched Transition of Vesicles Self-assembled from AOT and Ferrocene Derivative Molecules[J]. Colloids Surf A,2010,355(1/3):146-150.[5] Ochi Y,Suzuki M,Imaoka T,et al. Controlled Storage of Ferrocene Derivatives as Redox-active Molecules in Dendrimers[J]. J Am Chem Soc,2010,132(14):5061-5069.[6] Cheng J,Zou X P,Zhu G,et al. Synthesis of Iron-filled Carbon Nanotubes with A Great Excess of Ferrocene and Their Magnetic Properties[J]. Solid State Commun,2009,149(39/40):1619-1622.[7] Ornelas C. Application of Ferrocene and Its Derivatives in Cancer Research[J]. New J Chem,2011,35(10):1973-1985.[8] Mishchenko A,Abdualla M,Rudnev A,et al. Electrochemical Scanning Tunnelling Spectroscopy of A Ferrocene-modified n-Si(111)-surface:Electrolyte Gating and Ambipolar FET Behaviour[J]. Chem Commun,2011,47(35):9807-9809.[9] Martos-Maldonado M C,Casas-Solvas J M,Tellez-Sanz R,et al. Binding Properties of Ferrocene-glutathione Conjugates as Inhibitors and Sensors for Glutathione S-Transferases[J]. Biochimie,2012,94(2):541-550.[10] Gimeno M C,Goitia H,Laguna A,et al. Conjugates of Ferrocene with Biological Compounds Coordination to Gold Complexes and Antitumoral Properties[J]. J Inorg Biochem,2011,105(11):1373-1382.[11] Quirante J,Dubar F,Gonzalez A,et al. Ferrocene-indole Hybrids for Cancer and Malaria Therapy[J]. J Organomet Chem,2011,696(5):1011-1017.[12] Hottin A,Dubar F,Steenackers A,et al. Iminosugar-ferrocene Conjugates as Potential Anticancer Agents[J]. Org Biomol Chem,2012,10(29):5592-5597.[13] Mahajan A,Kremer L,Louw S,et al. Synthesis and In Vitro Antitubercular Activity of Ferrocene-based Hydrazones[J]. Bioorg Med Chem Lett,2011,21(10):2866-2868.[14] Pejovic' A,Damljanovic' I,Stevanovic' D,et al. Antimicrobial Ferrocene Containing Quinolinones:Synthesis, Spectral, Electrochemical and Structural Characterization of 2-Ferrocenyl-2,3-dihydroquinolin-4(1H)-one and Its 6-Chloro and 6-Bromo Derivatives[J]. Polyhedron,2012,31(1):789-795.[15] Kovacevic M,Barisic L,Ribic R,et al. Ferrocene Conjugates with Mannose:Synthesis and Influence of Ferrocene Aglycon on Mannose-mediated Adhesion of Escherichia Coli[J]. Appl Organomet Chem,2012,26(2):74-79.[16] Hillard E A,Vessieres A,Jaouen G. Ferrocene Functionalized Endocrine Modulators as Anticancer Agents[J]. Med Organomet Chem,2010,32:81-117.[17] Amer W A,Wang L,Amin A M,et al. Recent Progress in the Synthesis and Applications of Some Ferrocene Derivatives and Ferrocene-based Polymers[J]. J Inorg Organomet Polym Mater,2010,20(4):605-615.[18] Zhao N,He Y Q,Mao X,et al. Electrochemical Assay of Active Prostate-specific Antigen(PSA) Using Ferrocene-functionalized Peptide Probes[J]. Electrochem Commun,2010,12(3):471-474.[19] Li H,Wei Q,He J,et al. Electrochemical Immunosensors for Cancer Biomarker with Signal Amplification Based on Ferrocene Functionalized Iron Oxide Nanoparticles[J]. Biosens Bioelectron,2011,26(8):3590-3595.[20] Li T,Yang M. Electrochemical Sensor Utilizing Ferrocene Loaded Porous Polyelectrolyte Nanoparticles as Label for the Detection of Protein Biomarker IL-6[J]. Sen Actuators B,2011,158(1):361-365.[21] Bourigua S,Ichi E S,Korri-Youssoufi H,et al. Electrochemical Sensing of Trimethylamine Based on Polypyrrole-flavin-containing Monooxygenase(FMO3) and Ferrocene as Redox Probe for Evaluation of Fish Freshness[J]. Biosens Bioelectron,2011,28(1):105-111.[22] Teng Y Q,Zhang X A,Fu Y,et al. Optimized Ferrocene-functionalized ZnO Nanorods for Signal Amplification in Electrochemical Immunoassay of Escherichia Coli[J]. Biosens Bioelectron,2011,26(12):4661-4666.[23] Liu M,Deng J,Chen Q,et al. Biosensors and Bioelectronics(2012),http://dx.doi.org/10.1016/j.bios.2012.08.040.[24] Pepi F,Tata A,Garzoli S,et al. Chemically Modified Multiwalled Carbon Nanotubes Electrodes with Ferrocene Derivatives Through Reactive Landing[J]. J Phys Chem C,2011,115(11):4863-4871.[25] Senel M. Construction of Reagentless Glucose Biosensor Based on Ferrocene Conjugated Polypyrrole[J]. Synth Met,2011,161(17/18):1861-1868.[26] Lawal A T,Adeloju S B. Mediated Xanthine Oxidase Potentiometric Biosensors for Hypoxanthine Based on Ferrocene Carboxylic Acid Modified Electrode[J]. Food Chem,2012,135(4):2982-2987.[27] Dong J,Zhou X,Zhao H,et al. Reagentless Amperometric Glucose Biosensor Based on the Immobilization of Glucose Oxidase on A Ferrocene@NaY Zeolite Composite[J]. Microchim Acta,2011,174(3/4):281-288.[28] Senel M,Cevik E,Abasiyanik M F. Amperometric Hydrogen Peroxide Biosensor Based on Covalent Immobilization of Horseradish Peroxidase on Ferrocene Containing Polymeric Mediator[J]. Sens Actuators B,2010,145(1):444-450.[29] evik E,??塁enel M,Abasyank M F. Construction of Biosensor for Determination of Galactose with Galactose Oxidase Immobilized on Polymeric Mediator Contains Ferrocene[J]. Curr Appl Phys,2010,10(5):1313-1316.[30] Yilmaz O,Demirkol D O,Gulcemal S,et al. Chitosan-ferrocene Film as A Platform for Flow Injection Analysis Applications of Glucose Oxidase and Gluconobacter Oxydans Biosensors[J]. Colloids Surf B,2012,100:62-68.[31] Fan L S,Zhang Q X,Wang K K,et al. Ferrocene Functionalized Graphene:Preparation, Characterization and Efficient Electron Transfer toward Sensors of H2O2[J]. J Mater Chem,2012,22(13):6165-6170.[32] Goff A L,Moggia F,Debou N,et al. Facile and Tunable Functionalization of Carbon Nanotube Electrodes with Ferrocene by Covalent Coupling and π-Stacking Interactions and Their Relevance to Glucose Bio-sensing[J]. J Electroanal Chem,2010,641(1/2):57-63.[33] Qiu J D,Zhou W M,Guo J,et al. Amperometric Sensor Based on Ferrocene-modified Multiwalled Carbon Nanotube Nanocomposites as Electron Mediator for the Determination of Glucose[J]. Anal Biochem,2009,385(2):264-269.[34] Cheng H M,Qiu H X,Zhu Z W,et al. Investigation of the Electrochemical Behavior of Dopamine at Electrodes Modified with Ferrocene-filled Double-walled Carbon Nanotubes[J]. Electrochim Acta,2012,63:83-88.[35] Qiu H X,Sun N J,Li M X,et al. Electrochemical Behaviors of Double-walled Carbon Nanotubes Encapsulating Ferrocene[J]. J Nanosci Nanotechnol,2011,11(5):4034-4038.[36] Frasconi M,D′Annibale A,Favero G,et al. Ferrocenyl Alkanethiols-thio β-Cyclodextrin Mixed Self-assembled Monolayers:Evidence of Ferrocene Electron Shuttling Through the β-Cyclodextrin Cavity[J]. Langmuir,2009,25(22):12937-12944.[37] Palomera N,Vera J L,Melendez E,et al. Redox Active Poly(pyrrole-N-ferrocene-pyrrole) Copolymer Based Mediator-less Biosensors[J]. J Electroanal Chem,2011,658(1/2):33-37.[38] Sabahat S,Janjua N K,Brust M,et al. Electrochemical Fabrication of Self Assembled Monolayer Using Ferrocene-functionalized Gold Nanoparticles on Glassy Carbon Electrode[J]. Electrochim Acta,2011,56(20):7092-7096.[39] Ho M Y,Li P,Estrela P,et al. Detection of Molecular Interactions with Modified Ferrocene Self-assembled Monolayers[J]. J Phys Chem B,2010,114(32):10661-10665.[40] Pawlak M,Grygolowicz-Pawlak E,Bakker E. Ferrocene Bound Poly(vinyl chloride) as Ion to Electron Transducer in Electrochemical Ion Sensors[J]. Anal Chem,2010,82(16):6887-6894.[41] Huang K,Duclairoir F,Pro T,et al. Ferrocene and Porphyrin Monolayers on Si(100) Surfaces: Preparation and Effect of Linker Length on Electron Transfer[J]. Chemphyschem,2009,10(6):963-971.[42] Zhuo Y,Chai Y Q,Yuan R,et al. Glucose Oxidase and Ferrocene Labels Immobilized at Au/TiO2 Nanocomposites with High Load Amount and Activity for Sensitive Immunoelectrochemical Measurement of ProGRP Biomarker[J]. Biosens Bioelectron,2011,26(9):3838-3844.[43] Kwon D,Jeong H,Chung B H. Label-free Electrochemical Detection of Human Alpha-thrombin in Blood Serum Using Ferrocene-coated Gold Nanoparticles[J]. Biosens Bioelectron,2011,28(1):454-458.[44] Liang R P,Fan L X,Huang D M,et al. A Label-free Amperometric Immunosensor Based on Redox-active Ferrocene-branched Chitosan/Multiwalled Carbon Nanotubes Conductive Composite and Gold Nanoparticles[J]. Electroanalysis,2011,23(3):719-727.[45] Zapata F,Caballero A,Molina P,et al. A Ferrocene-quinoxaline Derivative as a Highly Selective Probe for Colorimetric and Redox Sensing of Toxic Mercury(Ⅱ) Cations[J]. Sensors,2010,10(12):11311-11321.[46] Cao Q Y,Zhang J F,Ren W X,et al. Ferrocene-based Novel Electrochemical In3+ Sensor[J]. Tetrahedron Lett,2011,52(34):4464-4467.[47] Pandey R,Gupta R K,Shahid M,et al. Synthesis and Characterization of Electroactive Ferrocene Derivatives:Ferrocenylimidazoquinazoline as a Multichannel Chemosensor Selectively for Hg2+ and Pb2+ Ions in an Aqueous Environment[J]. Inorg Chem,2012,51(1):298-311.[48] Shi L,Song W,Li Y,et al. A Multi-channel Sensor Based on 8-Hydroxyquinoline Ferrocenoate for Probing Hg(Ⅱ) Ion[J]. Talanta,2011,84(3):900-904.[49] Kaur P,Kaur M,Singh K. Ferrocene Based Chemosensor for Cu2+-A Dual Channel Signaling System[J]. Talanta,2011,85(2):1050-1055.[50] Alfonso M,Contreras-Garcia J,Espinosa A,et al. Highly Selective Mercury(Ⅱ) Cations Detection in Mixed-aqueous Media by A Ferrocene-based Fluorescent Receptor[J]. Dalton Trans,2012,41(15):4437-4444.[51] Sathyaraj G,Muthamilselvan D,Kiruthika M,et al. Ferrocene Conjugated Imidazolephenols as Multichannel Ditopic Chemosensor for Biologically Active Cations and Anions[J]. J Organomet Chem,2012,716:150-158.[52] Ma L,Wang L,Tan Q H,et al. Study on Synthesis and Electrochemical Properties of Novel Ferrocene-based Compounds and Their Applications in Anion Recognition[J]. Electrochim Acta,2009,54(23):5413-5420.[53] Miyaji H,Kim D S,Chang B Y,et al. Highly Cooperative Ion-pair Recognition of Potassium Cyanide Using a Heteroditopic Ferrocene-based Crown Ether-trifluoroacetylcarboxanilide Receptor[J]. Chem Commun,2008,(6):753-755.[54] Cormode D P,Evans A J,Davis J J,et al. Amplification of Anion Sensing by Disulfide Functionalized Ferrocene and Ferrocene-calixarene Receptors Adsorbed onto Gold Surfaces[J]. Dalton Trans,2010,39(28):6532-6541.[55] Thakur A,Sardar S,Ghosh S. A Highly Selective Redox, Chromogenic, and Fluorescent Chemosensor for Hg2+ in Aqueous Solution Based on Ferrocene-glycine Bioconjugates[J]. Inorg Chem,2011,50(15):7066-7073.[56] Zapata F,Caballero A,Espinosa A,et al. Imidazole-annelated Ferrocene Derivatives as Highly Selective and Sensitive Multichannel Chemical Probes for Pb(Ⅱ) Cations[J]. J Org Chem,2009,74(13):4787-4796.[57] Lafitte V G H,Wang W,Yashina A S,et al. Anthraquinone-ferrocene Film Electrodes:Utility in pH and Oxygen Sensing[J]. Electrochem Commun,2008,10(12):1831-1834.[58] Elanchezhian V S,Kandaswamy M. Multi-signaling Detection of Hg2+ and Cu2+ by a Ferrocene-Pyrazole Dyad Associated with Molecular-scale Arithmetic[J]. Inorg Chem Commun,2010,13(10):1109-1113.[59] HOU Xiuzhang,MA Xiaoyan,XI Yuchen,et al. Progress in Enzyme Electrode of Biofuel Cell[J]. Chem Ind Eng Prog,2013,32(2):414-419(in Chinese).侯秀璋,马晓燕,惠昱晨,等. 生物燃料电池酶电极的研究进展[J]. 化工进展,2013,32(2):414-419. |
[1] | Shi-Peng JIANG, Yu-Xi ZHOU, Pei-Ran MENG, Yan-Xuan XIE, Zhi-Yi SONG, Huan-Ying ZHAO, Yue SUN. Preparation and Properties of Ultramicro Imprinting Sensor for Human Serum Albumin via Metal-free Visible-light-induced Atom Transfer Radical Polymerization [J]. Chinese Journal of Applied Chemistry, 2023, 40(2): 299-308. |
[2] | De LI, Nan WANG, Hua-Wei YANG, Jiao MA. Semi⁃interpenetrated Network Hydrogels Prepared by in⁃situ Initiation of Liquid Metal to Construct a Low Fouling Electrochemical Sensing Interface [J]. Chinese Journal of Applied Chemistry, 2022, 39(9): 1464-1474. |
[3] | Wen-Dong WANG, Zai-Jun LI. Synthesis of Ruthenium‑Graphene Quantum Dots Artificial Oxidase and Its Application in Colorimetric Detection of Phoxim in Carrots [J]. Chinese Journal of Applied Chemistry, 2022, 39(8): 1285-1293. |
[4] | Dong-Dong LI, Li QIN, Lu-Hua TANG, Wen-Hui GAO. Preparation and Application of Basic OrangeⅡImprinted Sensor [J]. Chinese Journal of Applied Chemistry, 2022, 39(7): 1052-1064. |
[5] | Shan SHAO, Jian ZHANG, Kai-Qiang DENG, Jie YANG, Shao-Ming YANG. Detection of Dopamine by Enzyme‑Free Sensor Constructed by Nickel‑Cobalt Bimetallic‑porphyrin Organic Framework Composites [J]. Chinese Journal of Applied Chemistry, 2022, 39(7): 1098-1107. |
[6] | Qin YANG, Ning-Hua CHEN, Yu-Jie ZHANG, Zhi-Xiang YE, Ying-Chun YANG. Preparation of Cerium Zirconium Composite Oxide Modified Glassy Carbon Electrode and the Detection of Pb2+ in Water Samples [J]. Chinese Journal of Applied Chemistry, 2022, 39(6): 990-999. |
[7] | Zhen-Hua LI, Ying ZHU, Jing CHEN, Shi-Ping SONG. Advances in Construction and Electrochemical Biosensing of Antifouling Interfaces [J]. Chinese Journal of Applied Chemistry, 2022, 39(5): 736-748. |
[8] | Tao WANG, Sha LIU, Bao-Lin LIU, Zhi-Xian GAO. Application of Biosensors Based on Aptamers and Antibodies in the Detection of Estradiol [J]. Chinese Journal of Applied Chemistry, 2022, 39(3): 374-390. |
[9] | Hong-Zhen PENG, Yu ZHANG, Lin-Jie GUO, Wei SONG, Qing-Nuan LI, Xiang-Ying MENG. Facile One⁃Step Synthesis of WS2@Au Quantum Dot Composite by in situ Reduction and Its Sensing Application [J]. Chinese Journal of Applied Chemistry, 2022, 39(3): 480-488. |
[10] | Li QIN, Xiao-Ting YOU, Lu-Hua TANG, Jian-Wen LI, Yin ZHANG, Wen-Hui GAO, Jun-Hua HAN. Preparation and Application of Auramine O Imprinted Sensor Based on Nanomaterials Modification [J]. Chinese Journal of Applied Chemistry, 2022, 39(12): 1880-1890. |
[11] | Xiao-Mei HUANG, Xiang DENG, Lang-Man XING, Wei CHEN, Li SUN, Xiao-Yu ZHU. Study of Electrochemical Non-enzyme Glucose Sensor Based on Cu(Ⅱ)Co(Ⅱ) Bimetallic Carbon Nanosheets [J]. Chinese Journal of Applied Chemistry, 2022, 39(12): 1891-1902. |
[12] | XIONG Hai-Tao, WU Rui, WU Ying-Chun. Electrochemiluminescence Determination of Carbamazepine Based on the Nafion-Carbon Nanotube Modified Electrode [J]. Chinese Journal of Applied Chemistry, 2021, 38(6): 731-738. |
[13] | LIU Yu-Ting, SUN Jia-Xi, YIN Da-Wei. Research Progress on the Synthesis and Application of Ferroncene-based Polymers [J]. Chinese Journal of Applied Chemistry, 2021, 38(4): 343-366. |
[14] | DONG Zhiyun, LIU Yang, WANG Yingjin, ZHAO Sanhu, XI Fugui. Naphthalimide-Benzimidazolium Based Fluorescent Chemosensor for Highly Selective Recogniton of H2PO-4 [J]. Chinese Journal of Applied Chemistry, 2020, 37(7): 839-846. |
[15] | SI Xiaojing, ZHU Wenjing, LI Xiang, LI Li, CHEN Zichao, DING Yaping. Determination of Ofloxacin in Medicine via Poly(p-aminobenzene sulfonic acid)/Graphene Electrochemical Modified Electrode [J]. Chinese Journal of Applied Chemistry, 2020, 37(6): 726-732. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||