Chinese Journal of Applied Chemistry ›› 2023, Vol. 40 ›› Issue (3): 329-340.DOI: 10.19894/j.issn.1000-0518.220205
• Review • Previous Articles Next Articles
Bing LI, Jun-Hui LIU(), Ya-Kun SONG, Xiang LI(), Xu-Ming GUO, Jian XIONG
Received:
2022-06-28
Accepted:
2022-11-16
Published:
2023-03-01
Online:
2023-03-27
Contact:
Jun-Hui LIU,Xiang LI
About author:
lixiang@haust.edu.cnSupported by:
CLC Number:
Bing LI, Jun-Hui LIU, Ya-Kun SONG, Xiang LI, Xu-Ming GUO, Jian XIONG. Recent Advances in Application of Metal-Organic Frameworks for Hydrogen Generation by Catalytic Hydrolysis of Ammonia Borane[J]. Chinese Journal of Applied Chemistry, 2023, 40(3): 329-340.
Add to citation manager EndNote|Ris|BibTeX
URL: http://yyhx.ciac.jl.cn/EN/10.19894/j.issn.1000-0518.220205
Num | Catalysts | Approaches to application | TOF/(mol?mol-1?min-1) | Ea/(kJ?mol-1) | Ref. |
---|---|---|---|---|---|
1 | AuNi@MIL-101 | a | 66.2 | - | [ |
2 | Cu2Ni1@MIL-101 | a | 20.9 | 32.2 | [ |
3 | AuCo@MIL-101 | a | 23.5 | - | [ |
4 | RuCuCo@MIL-101 | a | 241.2 | 48 | [ |
5 | Cu8Ni1Co1@MIL-101 | a | 72.1 | 29.1 | [ |
6 | 1.62wt%Ru@MIL-101 | a | 144 | - | [ |
7 | Co/MIL-101-2 | a | 4.5 | - | [ |
Co/MIL-101-2-U | a | 9.9 | - | [ | |
Co/MIL-101-1 | a | 22.3 | - | [ | |
Co/MIL-101-1-U | a | 51.4 | 31.3 | [ | |
8 | CuCo@MIL-101 | a | 19.6 | - | [ |
9 | Ru1Co1@MIL-96 | a | 320.7 | 36.0 | [ |
10 | Ru/MIL-96 | a | 231 | 47.7 | [ |
11 | Ru@MIL-53(Cr) | a | 260.8 | 28.9 | [ |
Ru@MIL-53(Al) | a | 266.9 | 33.7 | [ | |
12 | CuPd0.01@ZIF-67@ZIF-8 | b | 30.15 | 28.78 | [ |
13 | cZIF-67_μm | b | 13.5 | - | [ |
cZIF-67_nm | b | 13.2 | - | [ | |
14 | Rh25Co75@ZIF-67 | a | 100.21 | - | [ |
15 | ZIF-67@Co | a | 112.3 | 25.68 | [ |
16 | Cu0.5@Co0.5-MOF/5 | b | 129.8 | 26.5 | [ |
17 | fcc-Ni/C | b | 2.10 | 40.15 | [ |
Hcp-Ni/C | b | 4.32 | 35.49 | [ | |
Hcp-CuNi/C | b | 22.64 | 29.92 | [ | |
18 | Co-MOF-74 | a | 22(h-1) | - | [ |
Co/Zn-MOF-74 | a | 176.5(h-1) | 32.8 | [ | |
19 | Pd@Co@MIL-101 | a | 51 | 22 | [ |
20 | Ag-doped Ni/MIL-101 | b | 20.2 | 25 | [ |
21 | Co/NC-50 | b | 7.6 | 44.9 | [ |
22 | NiCo-NC | b | 35.2 | 43.6 | [ |
23 | Ni0.66Co0.19P0.15/OPC-300 | b | 95.24 | 38.9 | [ |
24 | Co-CoO x @NCS-II | a | - | 46.37 | [ |
25 | Pt/MIL-101 | b | 446.4 | 40.7 | [ |
26 | Co4N-Co3O4 | b | 79 | - | [ |
27 | Cu@Ni6-MOF | b | 69.1 | 31.6 | [ |
28 | PdCo@NCHP | b | 470.57 | 36.9 | [ |
Table 1 The catalytic performance of MOFs-based catalysts for hydrolytic dehydrogenation of NH3BH3
Num | Catalysts | Approaches to application | TOF/(mol?mol-1?min-1) | Ea/(kJ?mol-1) | Ref. |
---|---|---|---|---|---|
1 | AuNi@MIL-101 | a | 66.2 | - | [ |
2 | Cu2Ni1@MIL-101 | a | 20.9 | 32.2 | [ |
3 | AuCo@MIL-101 | a | 23.5 | - | [ |
4 | RuCuCo@MIL-101 | a | 241.2 | 48 | [ |
5 | Cu8Ni1Co1@MIL-101 | a | 72.1 | 29.1 | [ |
6 | 1.62wt%Ru@MIL-101 | a | 144 | - | [ |
7 | Co/MIL-101-2 | a | 4.5 | - | [ |
Co/MIL-101-2-U | a | 9.9 | - | [ | |
Co/MIL-101-1 | a | 22.3 | - | [ | |
Co/MIL-101-1-U | a | 51.4 | 31.3 | [ | |
8 | CuCo@MIL-101 | a | 19.6 | - | [ |
9 | Ru1Co1@MIL-96 | a | 320.7 | 36.0 | [ |
10 | Ru/MIL-96 | a | 231 | 47.7 | [ |
11 | Ru@MIL-53(Cr) | a | 260.8 | 28.9 | [ |
Ru@MIL-53(Al) | a | 266.9 | 33.7 | [ | |
12 | CuPd0.01@ZIF-67@ZIF-8 | b | 30.15 | 28.78 | [ |
13 | cZIF-67_μm | b | 13.5 | - | [ |
cZIF-67_nm | b | 13.2 | - | [ | |
14 | Rh25Co75@ZIF-67 | a | 100.21 | - | [ |
15 | ZIF-67@Co | a | 112.3 | 25.68 | [ |
16 | Cu0.5@Co0.5-MOF/5 | b | 129.8 | 26.5 | [ |
17 | fcc-Ni/C | b | 2.10 | 40.15 | [ |
Hcp-Ni/C | b | 4.32 | 35.49 | [ | |
Hcp-CuNi/C | b | 22.64 | 29.92 | [ | |
18 | Co-MOF-74 | a | 22(h-1) | - | [ |
Co/Zn-MOF-74 | a | 176.5(h-1) | 32.8 | [ | |
19 | Pd@Co@MIL-101 | a | 51 | 22 | [ |
20 | Ag-doped Ni/MIL-101 | b | 20.2 | 25 | [ |
21 | Co/NC-50 | b | 7.6 | 44.9 | [ |
22 | NiCo-NC | b | 35.2 | 43.6 | [ |
23 | Ni0.66Co0.19P0.15/OPC-300 | b | 95.24 | 38.9 | [ |
24 | Co-CoO x @NCS-II | a | - | 46.37 | [ |
25 | Pt/MIL-101 | b | 446.4 | 40.7 | [ |
26 | Co4N-Co3O4 | b | 79 | - | [ |
27 | Cu@Ni6-MOF | b | 69.1 | 31.6 | [ |
28 | PdCo@NCHP | b | 470.57 | 36.9 | [ |
Fig. 1 (a) Schematic representation of the synthesis of the Cu-Ni-Co@MIL-101 matrix via the solvent evaporation method combined with the overwhelming reduction approach; (c) Time-course plots of H2 generation during the hydrolysis of ammonia borane catalyzed Cu0.8Ni0.1Co0.1@MIL-101, Cu0.8Ni0.1Co0.1@MIL-101*, Cu0.8Ni0.1Co0.1 NPs,and MIL-101; (b, d) TEM images of Cu0.8Ni0.1Co0.1@MIL-101 and Cu0.8Ni0.1Co0.1@MIL-101*[41]
Fig. 2 (a) Synthesis of Pd@Co@MIL-101, Pd@Co/MIL-101 and PdCo@MIL-101 catalysts by different procedures and reducing agents; (b) N2 adsorption/desorption isotherms for different catalysts at 77 K; (c) Plots of time vs volume of hydrogen generated from the catalytic hydrolysis of AB over various catalysts at 30 °C[55]
Fig. 3 (a, b) Two reaction modes on metal NPs/MOFs catcalysts interfaces, (c) Schematic illustration for the synthesis of Cu x @Co1-x -MOF/5 nanocatalysts[52]
Fig. 4 (a) Formation process of Co4N-Co3O4@C composites; (b) Density of states of the interface structures of Co4N, Co3O4, and Co4N-Co3O4; (c, d) Energy profiles of NH3BH3 and H2O adsorption and dissociation on Co4N(111), Co3O4(311) and Co4N-Co3O4(311) facets[62]
1 | YANG K, YANG K K, ZHANG S L, et al. Complete dehydrogenation of hydrazine borane and hydrazine catalyzed by MIL-101 supported NiFePd nanoparticles[J]. J Alloys Comp, 2018, 732: 363-371. |
2 | 鄯晓玲. Ni3B催化剂的制备及催化氨硼烷水解制氢研究[D]. 天津: 南开大学, 2014. |
SHAN X L. Preparation of Ni3B catalysts for hydrogen generation from hydrolysis of ammonia borane[D]. Tianjin: Nankai University, 2014. | |
3 | 许炜, 陶占良, 陈军. 储氢研究进展[J]. 化学进展, 2006, 18(2): 200-210. |
XU W, TAO Z L, CHEN J. Progress of research on hydrogen storage[J]. Prog Chem, 2006, 18(2): 200-210. | |
4 | 郑和闯. 碳基纳米复合材料的制备及其催化氨硼烷水解性能研究[D]. 苏州: 苏州大学, 2018. |
ZHENG H C. Carbon-based nanocomposites for high-efficiency hydrolysis of ammonia borane[D]. Suzhou: Soochow University, 2018. | |
5 | YANG Q H, XU Q, JIANG H L. Metal-organic frameworks meet metal nanoparticles: synergistic effect for enhanced catalysis[J]. Chem Soc Rev, 2017, 46(15): 4774-4808. |
6 | PERRY J J, PERMAN J A, ZAWOROTKO M J. Design and synthesis of metal-organic frameworks using metal-organic polyhedra as supermolecular building blocks[J]. Chem Soc Rev, 2009, 38(5): 1400-1417. |
7 | CUI Y J, LI B, HE H J, et al. Metal-organic frameworks as platforms for functional materials[J]. Acc Chem Res, 2016: 49(3): 483-493. |
8 | 李淑蓉, 王琳, 陈玉贞, 等. 金属-有机框架材料在液相催化化学制氢中的研究进展[J]. 高等学校化学学报, 2022, 43(1): 31-44. |
LI S R, WANG L, CHEN Y Z, et al.Research progress of metalorganic frameworks on liquid phase catalytic chemical hydrogen production[J].Chem J Chin Univ, 2022, 43(1): 31-44. | |
9 | SUN J L, CHEN Y Z, GE B D, et al. Three-shell Cu@Co@Ni nanoparticles stabilized with ametal-organic framework for enhanced tandem catalysis[J]. ACS Appl Mater Inter, 2019, 11(1):940-947. |
10 | CAO N, SU J, CHENG G Z, et al. Ni-Pt nanoparticles supported on MIL-101 as highly efficient catalysts for hydrogen generation from aqueous alkaline solution of hydrazine for chemical hydrogen storage[J]. Int J Hydrogen Energy, 2014, 39(18):9726-9734. |
11 | ZHANG L, ZHOU L Q, YANG K Z, et al. Pd-Ni nanoparticles supported on MIL-101 as high-performance catalysts for hydrogen generation from ammonia borane[J]. J Alloy Compd, 2016, 677: 87-95. |
12 | CHEN M H, ZHOU L Q, LU D, et al. RuCo bimetallic alloy nanoparticles immobilized on multi-porous MIL-53(Al) as a highly efficient catalyst for the hydrolytic reaction of ammonia borane[J]. Int J Hydrogen Energy, 2018, 43(3): 1439-1450. |
13 | YOUNG C, KIM J, KANETI Y V, et al. One-step synthetic strategy of hybrid materials from bimetallic metal-organic frameworks for supercapacitor applications[J]. ACS Appl Energy Mater, 2018, 1(5):2007-2015. |
14 | CHAI L L, HU Z Y, WANG X, et al. Stringing bimetallic metal-organic framework-derived cobalt phosphide composite for high-efficiency overall water splitting[J]. Adv Sci,2020, 7(5): 1903195-1903204. |
15 | ZHU Z Q, WANG S W, DU J, et al. Ultrasmall Sn nanoparticles embedded in nitrogen-doped porous carbon as high-performance anode for lithium-ion batteries[J]. Nano Lett, 2014, 14(1): 153-157. |
16 | JIN H H, ZHOU H, LI W Q, et al. In situ derived Fe/N/S-codoped carbon nanotubes from ZIF-8 crystals as efficient electrocatalysts for oxygen reduction reaction and zinc-air batteries[J]. J Mater Chem A, 2018, 6(41): 20093-20099. |
17 | GU Z Y, YANG C X, CHANG N, et al. Metal-organic frameworks for analytical chemistry: from sample collection to chromatographic separation[J]. Acc Chem Res, 2012, 45(5): 734-745. |
18 | KAN L, LI G H, LIU Y L. Highly selective separation of C3H8 and C2H2 from CH4 within two water-stable Zn5 cluster-based metal-organic frameworks[J]. ACS Appl Mater Inter, 2020, 12(6): 18642-18649. |
19 | DING Q, ZHANG Z Q, YU C, et al. Exploiting equilibrium-kinetic synergetic effect for separation of ethylene and ethane in a microporous metal-organic framework[J]. Sci Adv, 2020, 6(15):eaaz4322-4328. |
20 | XIA T F, JIANG L C, ZHANG J, et al. A fluorometric metal-organic framework oxygen sensor: from sensitive powder to portable optical fiber device[J]. Micro Meso Mater, 2020, 305: 110396-110402. |
21 | KAJAL N, SINGH V, GUPTA R, et al. Metal organic frameworks for electrochemical sensor applications: a review[J]. Environ Res, 2021, 204:112320-112338. |
22 | WANG L Y. Metal-organic frameworks for QCM-based gas sensors: a review[J]. Sens Actuators A: Phys, 2020, 307:111984-111997. |
23 | WEI Q, SUN J, SONG P, et al. Spindle-like Fe2O3/ZnFe2O4 porous nanocomposites derived from metal-organic frameworks with excellent sensing performance towards triethylamine[J]. Sens Actuators B: Chem, 2020, 317:128205-128218. |
24 | WU Z L, HOU L L, LI W, et al. Application of a novel biomimetic double-ligand zirconium-based metal organic framework in environmental restoration and energy conversion[J]. J Colloid Interface Sci, 2021, 610:136-151. |
25 | AZHAR M R, ABID H R, TADE M O, et al. Cascade applications of robust MIL-96 metal organic frameworks in environmental remediation: proof of concept[J]. Chem Eng J, 2018, 341:262-271. |
26 | WANG X B, XU Z Z, LI L, et al. NO2 removal under ambient conditions by nanoporous multivariate zirconium-based metal-organic framework[J]. ACS Appl Nano Mater, 2020, 3(11):11442-11454. |
27 | KANETI Y V, TANG J, SALUNKHE R R, et al. Nanoarchitectured design of porous materials and nanocomposites from metal-organic frameworks[J]. Adv Mater, 2017, 29(12):1604898-1604937. |
28 | DHAKSHINAMOORTHY A, ASIRI A M, GARCIA H, et al. Metal organic frameworks as versatile hosts of Au nanoparticles in heterogeneous catalysis[J]. ACS Catal, 2017, 7(4): 2896-2919. |
29 | XIA Q, WANG H, HUANG B B, et al. State-of-the-art advances and challenges of iron-based metal organic frameworks from attractive features, synthesis to multifunctional applications[J]. Small, 2019, 15(2): 1803088-1803112. |
30 | CHUGHTAI A H, AHMAD N, YOUNUS H A, et al. Metal-organic frameworks: versatile heterogeneous catalysts for efficient catalytic organic transformations[J]. Chem Soc Rev, 2015, 44(19): 6804-6849. |
31 | BAVYKINA A, KOLOBOV N, KHAN I S, et al. Metal-organic frameworks in heterogeneous catalysis: recent progress, new trends, and future perspectives[J]. Chem Rev, 2020, 120(16): 8468-8535. |
32 | DHAKSHINAMOORTHY A, OPANASENKO M, CEIKA J. Metal organic frameworks as heterogeneous catalysts for the production of fine chemicals[J]. Catal Sci Technol, 2013, 3(10): 2509-2540. |
33 | 曹轩铭, 丛玉凤, 黄玮, 等. 功能性金属有机骨架材料催化应用的研究进展[J]. 化工新型材料, 2022, 50(3):23-34. |
CAO X M, CONG Y F, HUANG W, et al.Research progress on catalytic application of functional MOFs[J]. New Chem Mater, 2022, 50(3):23-34. | |
34 | BAO Z B, CHANG G G, XING H B, et al. Potential of microporous metal-organic frameworks for separation of hydrocarbon mixtures[J]. Energ Environ Sci, 2016, 9(12): 3612-3641. |
35 | ZHANG H B, NAI J W, YU L, et al. Metal-organic-framework-based materials as platforms for renewable energy and environmental applications[J]. Joule, 2017, 1(1): 77-107. |
36 | FU F Y, WANG C L, WANG Q, et al. Highly selective and sharp volcano-type synergistic Ni2Pt@ZiF-8-catalyzed hydrogen evolution from ammonia borane hydrolysis[J]. J Am Chem Soc, 2018, 140(31): 10034-10042. |
37 | ZHU Q L, LI J, XU Q. Immobilizing metal nanoparticles to metal-organic frameworks with size and location control for optimizing catalytic performance[J]. J Am Chem Soc, 2013, 135(28): 10210-10213. |
38 | GAO D D, ZHANG Y H, ZHOU L Q, et al. CuNi NPs supported on MIL-101 as highly active catalysts for the hydrolysis of ammonia borane[J]. Appl Surf Sci, 2018, 427: 114-122. |
39 | LI J, ZHU Q L, XU Q. Highly active AuCo alloy nanoparticles encapsulated in the pores of metal-organic frameworks for hydrolytic dehydrogenation of ammonia borane[J]. Chem Commun, 2014, 50(44): 5899-5901. |
40 | YANG K Z, ZHOU L Q, XIONG X, et al. RuCuCo nanoparticles supported on MIL-101 as a novel highly efficient catalysts for the hydrolysis of ammonia borane[J]. Micro Meso Mater, 2016, 225: 1-8. |
41 | LIANG Z J, XIAO X Z, YU X Y, et al. Non-noble trimetallic Cu-Ni-Co nanoparticles supported on metal-organic frameworks as highly efficient catalysts for hydrolysis of ammonia borane[J]. J Alloys Compd, 2018, 741:501-508. |
42 | CAO N, LIU T, SU J. Ruthenium supported on MIL-101 as an efficient catalyst for hydrogen generation from hydrolysis of amine boranes[J]. New J Chem, 2014, 38(9): 4032. |
43 | LIU P L, GU X J, KANG K, et al. Highly efficient catalytic hydrogen evolution from ammonia borane using the synergistic effect of crystallinity and size of noble-metal-free nanoparticles supported by porous metal-organic frameworks[J]. ACS Appl Mater Inter, 2017, 9(12): 10759-10767. |
44 | LI J, ZHU Q L, XU Q. Non-noble bimetallic CuCo nanoparticles encapsulated in the pores of metal-organic frameworks: synergetic catalysis in the hydrolysis of ammonia borane for hydrogen generation[J]. Catal Sci Technol, 2015, 5(1): 525-530. |
45 | LU D, YU G F, LI Y, et al. RuCo NPs supported on MIL-96(Al) as highly active catalysts for the hydrolysis of ammonia borane[J]. J Alloys Compd, 2017, 694: 662-671. |
46 | WEN L, SU J, WU X J, et al. Ruthenium supported on MIL-96: an efficient catalyst for hydrolytic dehydrogenation of ammonia borane for chemical hydrogen storage[J]. Int J Hydrogen Energy, 2019, 39(30): 17129-17135. |
47 | YANG K Z, ZHOU L Q, YU G F, et al. Ru nanoparticles supported on MIL-53(Cr, Al) as efficient catalysts for hydrogen generation from hydrolysis of ammonia borane[J]. Int J Hydrogen Energy, 2016, 41(15): 6300-6309. |
48 | ZHOU Y H, CAO X Y, NING J Z, et al. Pd-doped Cu nanoparticles confined by ZIF-67@ZIF-8 for efficient dehydrogenation of ammonia borane[J]. Int J Hydrogen Energy, 2020, 45(56): 31440-31451. |
49 | FANG M H, WU S Y, CHANG Y H, et al. Mechanistic insight into the synergetic interaction of ammonia borane and water on ZIF-67-derived Co@porous carbon for controlled generation of dihydrogen[J]. ACS Appl Mater Inter, 2021, 13: 47465-47477. |
50 | QU X P, YU Z Q, LI Z P, et al. CoRh nanoparticles supported on ZIF-67 as highly efficient catalysts for hydrolytic dehydrogenation of ammonia boranes for chemical hydrogen storage[J]. Int J Hydrogen Energy, 2021, 42(51):30037-30043. |
51 | WANG W J, LIANG M W, JIANG Y, et al. Nano-Co embedded in porous ZIF-67 polyhedron to catalyze hydrolysis of ammonia borane[J]. Mater Lett, 2021, 293(15): 129702-129705. |
52 | XU W J, LI W, WEN H, et al. Metal/metal-organic framework interfacial ensemble-induced dual site catalysis towards hydrogen generation[J]. Appl Catal B: Environ, 2021, 286: 119946-119953. |
53 | LI P, CHEN R, HUANG Y Q, et al. Activating transition metal via synergistic anomalous phase and doping engineering towards enhanced dehydrogenation of ammonia borane[J]. Appl Catal B: Environ, 2022, 300: 120725-120734. |
54 | ZHANG X L, ZHANG D X, CHANG G G, et al. Bimetallic (Zn/Co) MOFs-derived highly dispersed metallic Co/HPC for completely hydrolytic dehydrogenation of ammonia-borane[J]. Ind Eng Chem Res, 2019, 58(17):7209-7216. |
55 | CHEN Y Z, XU Q, YU S H, et al. Tiny Pd@Co core-shell nanoparticles confined inside a metal-organic framework for highly efficient catalysis[J]. Small, 2015, 11(1): 71-76. |
56 | CHEN Y Z, LIANG L F, YANG Q H, et al. A seed-mediated approach to the general and mild synthesis of non-noble metal nanoparticles stabilized by a metal-organic framework for highly efficient catalysis[J]. Mater Horiz, 2015, 2: 606-612. |
57 | ZACHO S L, MIELBY J, KEGNAES S. Hydrolytic dehydrogenation of ammonia borane over ZIF-67 derived Co nanoparticle catalysts[J]. Catal Sci Technol, 2018, 8(18): 4741-4746. |
58 | ZHAO L Q, WEI Q H, ZHANG L L, et al. NiCo alloy decorated on porous N-doped carbon derived from ZnCo-ZIF as highly efficient and magnetically recyclable catalyst for hydrogen evolution from ammonia borane[J]. Renew Energ, 2021, 173:273-282. |
59 | QU X P, JIANG R, LI Q, et al. Hydrolysis of ammonia borane catalyzed by NiCoP/OPC-300 nanocatalysts: high selectivity and efficiency, and mechanism[J]. Green Chem, 2019, 21: 850-860. |
60 | ZHANG H H, FAN Y P, LIU B Z, et al. Birdcage-type CoOx-carbon catalyst derived from metal-organic frameworks for enhanced hydrogen generation[J]. ACS Sustainable Chem Eng, 2019, 7(11): 9782-9792. |
61 | AIJAZ A, KARKAMKAR A, CHOI Y J, et al. Immobilizing highly catalytically active Pt nanoparticles inside the pores of metal-organic framework: a double solvents approach[J]. J Am Chem Soc, 2012, 134(34): 13926-13929. |
62 | GUAN S Y, LIU Y Y, ZHANG H H, et al. Atomic interface-exciting catalysis on cobalt nitride-oxide for accelerating hydrogen generation[J]. Small, 2022, 18(22): 2107417-2107427. |
63 | XU W J, LIU M, WANG S F, et al. Interfacial ensemble effect of copper nanoparticles and nickel metal-organic framework on promoting hydrogen generation[J]. Int J Hydrogen Energy, 2022, 47(55): 23213-23220. |
64 | DENG J, ZHOU X L, ZOU J D, et al. PdCo alloy supported on a ZIF-derived N-doped carbon hollow polyhedron for dehydrogenation of ammonia borane[J]. ACS Appl Energ Mater, 2022, 5(6): 7408-7419. |
65 | 李想, 张军. 氨硼烷水解制氢催化剂及其限域载体的形貌可控合成研究进展[J]. 材料导报, 2022, 22: 1-14. |
LI X, ZHANG J. Research progress of shape-controlled synthesis of catalysts and supports for ammonia borane dehydrogenation[J]. Mater Reports, 2022, 22: 1-14. | |
66 | LIU Y Y, HAN G S, ZHANG X Y, et al. Co-Co3O4@carbon core-shells derived from metal-organic framework nanocrystals as efficient hydrogen evolution catalysts[J]. Nano Res, 2017, 10(9): 3035-3048. |
67 | NA K, CHOI K M, YAGHI O M, et al. Metal nanocrystals embedded in single nanocrystals of MOFs give unusual selectivity as heterogeneous catalysts[J]. Nano Lett, 2014, 14(10): 5979-5983. |
68 | LUO S H, ZENG Z T, ZENG G M, et al. Metal organic frameworks as robust host of palladium nanoparticles in heterogeneous catalysis: synthesis, application, and prospect[J]. ACS Appl Mater Inter, 2019, 11(36): 32579-32598. |
69 | LIU J H, ZHANG A F, LIU M, et al. Fe-MOF-derived highly active catalysts for carbon dioxide hydrogenation to valuable hydrocarbons[J]. J CO2 Util, 2017, 21: 100-107. |
70 | WANG Q, ASTRUC D. State of the art and prospects in metal-organic framework (MOF)-based and MOF-derived nanocatalysis[J]. Chem Rev, 2020, 120(2): 1438-1511. |
71 | 刘军辉, 宋亚坤, 宋春山, 等. 金属-有机骨架衍生催化剂在二氧化碳加氢和费托合成反应中的应用[J]. 应用化学, 2020, 37(10): 1099-1111. |
LIU J H, SONG Y K, SONG C S. Recent advances in application of metal-organic framework-derived catalysts for hydrogenation of carbon dioxide and Fischer-Tropsch synthesis[J].Chin J Appl Chem, 2020, 37(10): 1099-1111. | |
72 | 姚显芳, 李映伟. MOFs作为牺牲模板制备纳米多孔碳材料的方法及其应用[J]. 科学通报, 2015, 60(20): 1906-1914. |
YAO X F, LI Y W. MOFs as sacrificial templates for preparation of nanoporous carbon materials and their applications[J]. Chin Sci Bull, 2015, 60(20): 1906-1914. | |
73 | BURCH H J, BROWN E, CONTERA S A, et al. Effect of acid treatment on the structure and electrical properties of nitrogen-doped multiwalled carbon nanotubes[J]. J Phys Chem C, 2008, 112(6):1908-1912. |
74 | LUO Y S, LUO J S, ZHOU W W, et al. Controlled synthesis of hierarchical graphene-wrapped TiO2@Co3O4 coaxial nanobelt arrays for high-performance lithium storage[J]. J Mater Chem A, 2013, 1(2): 273-281. |
75 | 李红霞, 吴杰, 张庆堂, 等. 金属有机骨架衍生氮掺杂碳材料的制备及其电化学性能研究[J]. 合成化学, 2022, 30(3): 161-166. |
LI H X, WU J, ZHANG Q T, et al.Preparation and electrochemical performance studies of nitrogen-doped carbon materials derived from metal-organic framework[J]. Synth Chem, 2022, 30(3): 161-166. | |
76 | SU Z L, YE G Y, LI S Q, et al. A template-free I2-assisted pyrolysis strategy to synthesize coral-like nitrogen-doped carbon with a regulated hierarchical porous structure toward efficient oxygen reduction[J]. Chem Eng J, 2022, 440:135852-135859. |
77 | ZHAO J, GONG J W, WEI J N, et al. Metal organic framework loaded fluorescent nitrogen-doped carbon nanozyme with light regulating redox ability for detection of ferric ion and glutathione[J]. J Colloid Interface Sci, 2022, 618:11-21. |
78 | WANG Z Z, ZHOU X Z, JIN H H, et al. Ionic liquid-derived FeCo alloys encapsulated in nitrogen-doped carbon framework as advanced bifunctional catalysts for rechargeable Zn-air batteries[J]. J Alloy Compd, 2022, 908:164565-164574. |
79 | HE C Y, TAO J Z. Transition metal carbides coupled with nitrogen-doped carbon as efficient and stable Bi-functional catalysts for oxygen reduction reaction and hydrogen evolution reaction[J]. Int J Hydrogen Energy, 2022, 47(27):13240-13250. |
80 | XUAN C J, HOU B S, XIA W W, et al. From a ZIF-8 polyhedron to three-dimensional nitrogen doped hierarchical porous carbon: an efficient electrocatalyst for the oxygen reduction reaction[J]. J Mater Chem A, 2018, 6(23):10731-10739. |
81 | CHEN Z W, CHEN L X, YANG C C, et al. Atomic (single, double, and triple atoms) catalysis: frontiers, opportunities, and challenges[J]. J Mater Chem A, 2019, 7(8): 3492-3515. |
82 | 张洪威. MOFs衍生的多孔碳复合材料的合成及催化性能[D]. 沈阳: 辽宁大学, 2018. |
ZHANG H W. Synthesis and catalytic properties of porous-derived MOFs-derived carbon composites[D]. Shenyang: Liaoning University, 2018. | |
83 | MEHDI S, LIU Y Y, WEI H J, et al. Co-based nanoparticles fabricated on Ni foams for efficient hydrogen generation from ammonia borane[J]. ACS Appl Nano Mater, 2022, 5: 5064-5074. |
84 | PENG W, YANG X X, MAO L C, et al. ZIF-67-derived Co nanoparticles anchored in N doped hollow carbon nanofibers as bifunctional oxygen electrocatalysts[J]. J Mater Chem A, 2021, 407: 127157-127167. |
85 | XU Q, CHANDRA M. Catalytic activities of non-noble metals for hydrogen generation from aqueous ammonia-borane at room temperature[J]. J Power Sources, 2006, 163(1): 364-370. |
86 | 刘军辉, 郭旭明, 宋亚坤, 等. 催化氨硼烷水解制氢研究进展[J]. 应用化学, 2021, 38(2): 157-169. |
LIU J H, GUO X M, SOMH Y K, et al. Recent advances in hydrogen generation by catalytic hydrolysis of ammonia borane[J]. Chin J Appl Chem, 2021, 38(2): 157-169. |
[1] | Xue-Bo LEI, Hui-Jing LIU, He-Yu DING, Guo-Dong SHEN, Run-Jun SUN. Research Progress on Photocatalysts for Degradation of Organic Pollutants in Printing and Dyeing Wastewater [J]. Chinese Journal of Applied Chemistry, 2023, 40(5): 681-696. |
[2] | Hui-Hui LI, Kai-Sheng YAO, Ya-Nan ZHAO, Li-Na FAN, Yu-Lin TIAN, Wei-Wei LU. Ionic Liquid-Modulated Synthesis of Pt-Pd Bimetallic Nanomaterials and Their Catalytic Performance for Ammonia Borane Hydrolysis to Generate Hydrogen [J]. Chinese Journal of Applied Chemistry, 2023, 40(4): 597-609. |
[3] | Hua-Yu WANG, Chao ZHANG, Ke-Ming CHEN, Ming GE. Research Progress of Metal-organic Framework MIL-88A(Fe) and Its Composites in Water Treatment [J]. Chinese Journal of Applied Chemistry, 2023, 40(2): 155-168. |
[4] | Lu-Fei WANG, Meng-Meng ZHEN, Bo-Xiong SHEN. Research Progress of Controlling Lithium-Sulfur Batteries by Electrocatalysts under Lean Electrolyte Conditions [J]. Chinese Journal of Applied Chemistry, 2023, 40(2): 188-209. |
[5] | Xue-Xian YANG, Jian ZHANG, Zhi-Gang GU. Surface‑Coordinated Metal‑Organic Framework Thin Film HKUST‑1 for Optoelectronic Applications [J]. Chinese Journal of Applied Chemistry, 2022, 39(7): 1013-1025. |
[6] | Sheng-Jie LIU, Yong-Jie YE, Yin-Yi LIU, Shu-Man LIN, Hao-Yuan XIE, Wen-Ting LIU, Wei-Qin XU. Preparation of Uniformly Loaded Cu3P Nanoparticles in Porous Carbon Based on Copper Foam and Their Photocatalytic Performance for Dye Degradation [J]. Chinese Journal of Applied Chemistry, 2022, 39(7): 1090-1097. |
[7] | Chao ZHANG. Research Prospect of Single Atom Catalysts Towards Electrocatalytic Reduction of Carbon Dioxide [J]. Chinese Journal of Applied Chemistry, 2022, 39(6): 871-887. |
[8] | Yan WANG, Shu-Cong ZHANG, Xing-Kun WANG, Zhi-Cheng LIU, Huan-Lei WANG, Ming-Hua HUANG. Research Progress on Transition Metal⁃Based Catalysts for Hydrogen Evolution Reaction via Seawater Electrolysis [J]. Chinese Journal of Applied Chemistry, 2022, 39(6): 927-940. |
[9] | Xue WANG, Yi-Bo WANG, Xian WANG, Jian-Bing ZHU, Jun-Jie GE, Chang-Peng LIU, Wei XING. Research Progress of Mechanism of Acidic Oxygen Evolution Reaction and Development of Ir⁃based Catalysts [J]. Chinese Journal of Applied Chemistry, 2022, 39(4): 616-628. |
[10] | Di XU, Li DAI, Wen-Zhi YAO, Guang-Rui YANG, Hai-Rong WANG, Peng-Fei SONG, Yan-Song ZHU. Research Progress of Olefin Polymerization Catalysts [J]. Chinese Journal of Applied Chemistry, 2022, 39(3): 355-373. |
[11] | Dan WANG, Xian-Biao HOU, Xing-Kun WANG, Zhi-Cheng LIU, Huan-Lei WANG, Ming-Hua HUANG. Research Progress of Carbon‑Encapsulated Iron‑Based Nanoparticles Electrocatalysts for Zinc‑Air Batteries [J]. Chinese Journal of Applied Chemistry, 2022, 39(10): 1488-1500. |
[12] | ZHANG Yi-Fan, SHI Yan-Dong, GUO Hao, GAO Jian, WEI Wei, LIU Mei-Hua, ZHENG Chun-Bai, WANG Bo-Wei, DENG Peng-Yang. Metal-Organic Framework-Based Anti-icing Coatings: Synthesis and Their Properties [J]. Chinese Journal of Applied Chemistry, 2021, 38(7): 800-806. |
[13] | LIU Jun-Hui, GUO Xu-Ming, SONG Ya-Kun, GUO Xin-Wen. Recent Advances in Hydrogen Generation by Catalytic Hydrolysis of Ammonia Borane [J]. Chinese Journal of Applied Chemistry, 2021, 38(2): 157-169. |
[14] | ZHANG Ming-Shan, LI Teng-Ya, LEI Yu, WU Yan, HE Shu-Hai. Determination of Two Sulfonamides in Environmental Water Based on Dispersivesolid-Phase Extraction with MIL-101(Cr) Metal-Organic Framework [J]. Chinese Journal of Applied Chemistry, 2021, 38(2): 236-244. |
[15] | WU Qiu-Ping, CAI Kun-Ting, WANG Yuan-Kang, SUN Kai, YANG Jin-Bo, HAN Song-Bai, LIU Yun-Tao. Microwave Absorption Properties of Co/C and Microwave-Heat Conversion Properties of Co/C-Polyurethane Phase Change Composites [J]. Chinese Journal of Applied Chemistry, 2021, 38(12): 0-0. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||