Chinese Journal of Applied Chemistry ›› 2022, Vol. 39 ›› Issue (11): 1641-1651.DOI: 10.19894/j.issn.1000-0518.220077
• Review • Previous Articles Next Articles
Jing-Wan LIU1, Qiong LI1, En-Peng WANG1, Tao ZHANG2, Huan WANG1, Zhe ZHANG1, Xue CHEN1(), Chang-Bao CHEN1()
Received:
2022-03-17
Accepted:
2022-06-30
Published:
2022-11-01
Online:
2022-11-09
Contact:
Xue CHEN,Chang-Bao CHEN
About author:
ccb2021@126.comSupported by:
CLC Number:
Jing-Wan LIU, Qiong LI, En-Peng WANG, Tao ZHANG, Huan WANG, Zhe ZHANG, Xue CHEN, Chang-Bao CHEN. Research Progress on Cultivation of Panax Ginseng C.A.Meyer[J]. Chinese Journal of Applied Chemistry, 2022, 39(11): 1641-1651.
Add to citation manager EndNote|Ris|BibTeX
URL: http://yyhx.ciac.jl.cn/EN/10.19894/j.issn.1000-0518.220077
化合物类型 Type of compound | 化合物 Compound | 林下参 MFCG | 农田参 FCG | 参考文献 Ref. |
---|---|---|---|---|
有机小分子化合物 Organic small molecule compound | 种子中的β?谷固醇 β?Sitosterol in seed | 83.60±2.40 (mg/100 g oil) | 48.10±2.00 (mg/100 g oil) | [ |
种子中总酚类物质 Total phenolics in seed | 28.10 ±1.20 (mg GAE/g) | 20.30±0.40 (mg GAE/g) | [ | |
种子中的总黄酮 Total flavonoids in seed | 5.50±0.30 (mg QE/g) | 3.90±0.30 (mg QE/g) | [ | |
肌醇 Myo?inositol | 2.47±0.29 (mg/mL) | 1.44±0.11 (mg/mL) | [ | |
白藜芦醇 Campesterol | 7.43±0.37 (mg/mL) | 28.41±1.73 (mg/mL) | [ | |
类固醇 Steroids | 林下参和农田参中类固醇表达量的比值<1 FC of MFCG/FCG<1 | [ | ||
丁二酸 Succinic acid | 1.37±0.17 (mg/mL) | 0.69±0.11 (mg/mL) | [ | |
氨基酸 Amino acid | γ?氨基丁酸 γ?Aminobutyric acid | 2.86±0.48 (mg/mL) | 1.13±0.20 (mg/mL) | [ |
柠檬酸 Citric acid | 46.60±1.94 (mg/mL) | 34.60±1.94 (mg/mL) | [ | |
丙氨酸 Alanine | 0.00±0.00 (mg/mL) | 0.20±0.05 (mg/mL) | [ | |
天冬氨酸 Aspartic acid | 0.00±0.00 (mg/mL) | 0.78±0.08 (mg/mL) | [ | |
色氨酸 Tryptophan | 0.68±0.08 (mg/mL) | 1.53±0.36 (mg/mL) | [ | |
脯氨酸 Proline | 5.52±0.24 (mg/mL) | 11.27±0.62 (mg/mL) | [ | |
焦谷氨酸 Pyroglutamic acid | 5.92±0.35 (mg/mL) | 12.14±0.54 (mg/mL) | [ | |
三七素 Dencichine | 0.00±0.00 (mg/mL) | 5.73±0.20 (mg/mL) | [ | |
人参皂苷 Ginsenoside | 原人参二醇/原人参三醇皂苷 Protopanaxadiol/protopanaxatriol | 2.36 | 1.42 | [ |
人参皂苷Ra3 Ginsenoside Ra3 | 31.70±2.07 (mg/mL) | 14.49±1.00 (mg/mL) | [ | |
人参皂苷Rb1 Ginsenoside Rb1 | 36.78±1.08 (mg/mL) | 52.38±2.86 (mg/mL) | [ | |
人参皂苷Rc Ginsenoside Rc | 19.37±0.96 (mg/mL) | 28.3±1.80 (mg/mL) | [ | |
人参皂苷Rd Ginsenoside Rd | 20.15±0.65 (mg/mL) | 17.85±1.35 (mg/mL) | [ | |
人参皂苷Re Ginsenoside Re | 5.35±0.39 (mg/mL) | 8.03±0.72 (mg/mL) | [ | |
人参皂苷Rf Ginsenoside Rf | 30.36±0.67 (mg/mL) | 36.03±1.41 (mg/mL) | [ | |
人参皂苷Rg1 Ginsenoside Rg1 | 271.16±6.74 (mg/mL) | 193.66±11.94 (mg/mL) | [ | |
拟人参皂苷F11 Pseudo?ginsenoside F11 | 4.88±0.27 (mg/mL) | 8.80±0.37 (mg/mL) | [ | |
三七皂苷R1 Notoginsenoside R1 | 0.00±0.00 (mg/mL) | 9.08±0.60 (mg/mL) | [ | |
人参皂苷F3 Ginsenoside F3 | 2.82±0.45 (mg/mL) | 15.14±0.63 (mg/mL) | [ | |
人参稀有参皂苷 Rare ginsenosides | 林下参和农田参中稀有人参皂苷表达量的比值大于1 FC of MFCG/FCG>1 | [ | ||
丙二酰人参皂苷 Malony ginsenosides | 林下参和农田参中丙二酰人参皂苷表达量的比值小于1 FC of MFCG/FCG<1 | [ | ||
人参皂苷20 (R)?Rh1 Ginsenoside 20 (R)?Rh1 | 林下参和农田参中人参皂苷20 (R)?Rh1表达量的比值为24 FC of MFCG/FCG=24 | [ | ||
人参皂苷20 (S)?Rh2 Ginsenoside 20 (S)?Rh2 | 林下参和农田参中人参皂苷20 (S)?Rh2表达量的比值为33 FC of MFCG/FCG=33 | [ | ||
人参皂苷Rg3 Ginsenoside Rg3 | 林下参和农田参中人参皂苷Rg3表达量的比值为2.5 FC of MFCG/FCG=2.5 | [ | ||
人参皂苷Rg1/Re Ginsenoside Rg1/Re | >1 | <1 | [ | |
人参皂苷Ro/Rb1 Ginsenoside Ro/Rb1 | 0.492 | 0.742 | [ | |
糖 Sugar | 麦芽糖 Maltose | 11.58±2.1312 (mg/mL) | 19.07±3.3072 (mg/mL) | [ |
果糖 Fructose | 0.19±0.0284 (mg/mL) | 0.75±0.1602 (mg/mL) | [ | |
蔗糖 Sucrose | 2.41±0.1149 (mg/mL) | 7.64±0.8627 (mg/mL) | [ | |
肽 Peptide | 肽p1 p1 | 林下参和农田参中肽p1表达量的比值为22.75 FC of MFCG/FCG=22.75 | [ | |
肽p16 p16 | 林下参和农田参中肽p16表达量的比值为2.68 FC of MFCG/FCG=2.68 | [ | ||
肽p18 p18 | 林下参和农田参中肽p18表达量的比值为3.73 FC of MFCG/FCG=3.73 | [ | ||
肽p20 p20 | 林下参和农田参中肽p20表达量的比值为8.57 FC of MFCG/FCG=8.57 | [ | ||
肽p39 p39 | 林下参和农田参中肽p39表达量的比值为17.49 FC of MFCG/FCG=17.49 | [ | ||
肽p40 p40 | 林下参和农田参中肽p40表达量的比值为2.86 FC of MFCG/FCG=2.86 | [ | ||
肽p9 p9 | 林下参和农田参中肽p9表达量的比值为0.37 FC of MFCG/FCG=0.37 | [ | ||
肽p17 p17 | 林下参和农田参中肽p17表达量的比值为0.21 FC of MFCG/FCG=0.21 | [ | ||
肽p25 p25 | 林下参和农田参中肽p25表达量的比值为0.33 FC of MFCG/FCG=0.33 | [ | ||
肽p26 p26 | 林下参和农田参中肽p26表达量的比值为0.28 FC of MFCG/FCG=0.28 | [ | ||
肽p28 p28 | 林下参和农田参中肽p28表达量的比值为0.24 FC of MFCG/FCG=0.24 | [ | ||
肽p34 p34 | 林下参和农田参中肽p34表达量的比值为0.36 FC of MFCG/FCG=0.36 | [ | ||
肽p35 p35 | 林下参和农田参中肽p35表达量的比值为0.21 FC of MFCG/FCG=0.21 | [ | ||
肽p37 p37 | 林下参和农田参中肽p37表达量的比值为0.36 FC of MFCG/FCG=0.36 | [ | ||
肽p41 p41 | 林下参和农田参中肽p41表达量的比值为0.26 FC of MFCG/FCG=0.26 | [ | ||
肽p47 p47 | 林下参和农田参中肽p47表达量的比值为0.15 FC of MFCG/FCG=0.15 | [ | ||
肽p49 p49 | 林下参和农田参中肽p49表达量的比值为0.36 FC of MFCG/FCG=0.36 | [ | ||
肽p51 p51 | 林下参和农田参中肽p51表达量的比值为0.36 FC of MFCG/FCG=0.36 | [ | ||
肽p52 p52 | 林下参和农田参中肽p52表达量的比值为0.24 FC of MFCG/FCG=0.24 | [ | ||
激素 Hormone | 脱落酸 Abscisic acid | 林下参和农田参中脱落酸表达量的比值大于1 FC of MFCG/FCG>1 | [ | |
赤霉素 Germacrenes | 林下参和农田参中赤霉素表达量的比值大于1 FC of MFCG/FCG>1 | [ | ||
菜油甾醇 Gibberellins | 林下参和农田参中菜油甾醇表达量的比值小于1 FC of MFCG/FCG<1 | [ |
Table 1 Difference in chemical components between mountain forest cultivated ginseng (MFCG) and farmland cultivated ginseng (FCG)
化合物类型 Type of compound | 化合物 Compound | 林下参 MFCG | 农田参 FCG | 参考文献 Ref. |
---|---|---|---|---|
有机小分子化合物 Organic small molecule compound | 种子中的β?谷固醇 β?Sitosterol in seed | 83.60±2.40 (mg/100 g oil) | 48.10±2.00 (mg/100 g oil) | [ |
种子中总酚类物质 Total phenolics in seed | 28.10 ±1.20 (mg GAE/g) | 20.30±0.40 (mg GAE/g) | [ | |
种子中的总黄酮 Total flavonoids in seed | 5.50±0.30 (mg QE/g) | 3.90±0.30 (mg QE/g) | [ | |
肌醇 Myo?inositol | 2.47±0.29 (mg/mL) | 1.44±0.11 (mg/mL) | [ | |
白藜芦醇 Campesterol | 7.43±0.37 (mg/mL) | 28.41±1.73 (mg/mL) | [ | |
类固醇 Steroids | 林下参和农田参中类固醇表达量的比值<1 FC of MFCG/FCG<1 | [ | ||
丁二酸 Succinic acid | 1.37±0.17 (mg/mL) | 0.69±0.11 (mg/mL) | [ | |
氨基酸 Amino acid | γ?氨基丁酸 γ?Aminobutyric acid | 2.86±0.48 (mg/mL) | 1.13±0.20 (mg/mL) | [ |
柠檬酸 Citric acid | 46.60±1.94 (mg/mL) | 34.60±1.94 (mg/mL) | [ | |
丙氨酸 Alanine | 0.00±0.00 (mg/mL) | 0.20±0.05 (mg/mL) | [ | |
天冬氨酸 Aspartic acid | 0.00±0.00 (mg/mL) | 0.78±0.08 (mg/mL) | [ | |
色氨酸 Tryptophan | 0.68±0.08 (mg/mL) | 1.53±0.36 (mg/mL) | [ | |
脯氨酸 Proline | 5.52±0.24 (mg/mL) | 11.27±0.62 (mg/mL) | [ | |
焦谷氨酸 Pyroglutamic acid | 5.92±0.35 (mg/mL) | 12.14±0.54 (mg/mL) | [ | |
三七素 Dencichine | 0.00±0.00 (mg/mL) | 5.73±0.20 (mg/mL) | [ | |
人参皂苷 Ginsenoside | 原人参二醇/原人参三醇皂苷 Protopanaxadiol/protopanaxatriol | 2.36 | 1.42 | [ |
人参皂苷Ra3 Ginsenoside Ra3 | 31.70±2.07 (mg/mL) | 14.49±1.00 (mg/mL) | [ | |
人参皂苷Rb1 Ginsenoside Rb1 | 36.78±1.08 (mg/mL) | 52.38±2.86 (mg/mL) | [ | |
人参皂苷Rc Ginsenoside Rc | 19.37±0.96 (mg/mL) | 28.3±1.80 (mg/mL) | [ | |
人参皂苷Rd Ginsenoside Rd | 20.15±0.65 (mg/mL) | 17.85±1.35 (mg/mL) | [ | |
人参皂苷Re Ginsenoside Re | 5.35±0.39 (mg/mL) | 8.03±0.72 (mg/mL) | [ | |
人参皂苷Rf Ginsenoside Rf | 30.36±0.67 (mg/mL) | 36.03±1.41 (mg/mL) | [ | |
人参皂苷Rg1 Ginsenoside Rg1 | 271.16±6.74 (mg/mL) | 193.66±11.94 (mg/mL) | [ | |
拟人参皂苷F11 Pseudo?ginsenoside F11 | 4.88±0.27 (mg/mL) | 8.80±0.37 (mg/mL) | [ | |
三七皂苷R1 Notoginsenoside R1 | 0.00±0.00 (mg/mL) | 9.08±0.60 (mg/mL) | [ | |
人参皂苷F3 Ginsenoside F3 | 2.82±0.45 (mg/mL) | 15.14±0.63 (mg/mL) | [ | |
人参稀有参皂苷 Rare ginsenosides | 林下参和农田参中稀有人参皂苷表达量的比值大于1 FC of MFCG/FCG>1 | [ | ||
丙二酰人参皂苷 Malony ginsenosides | 林下参和农田参中丙二酰人参皂苷表达量的比值小于1 FC of MFCG/FCG<1 | [ | ||
人参皂苷20 (R)?Rh1 Ginsenoside 20 (R)?Rh1 | 林下参和农田参中人参皂苷20 (R)?Rh1表达量的比值为24 FC of MFCG/FCG=24 | [ | ||
人参皂苷20 (S)?Rh2 Ginsenoside 20 (S)?Rh2 | 林下参和农田参中人参皂苷20 (S)?Rh2表达量的比值为33 FC of MFCG/FCG=33 | [ | ||
人参皂苷Rg3 Ginsenoside Rg3 | 林下参和农田参中人参皂苷Rg3表达量的比值为2.5 FC of MFCG/FCG=2.5 | [ | ||
人参皂苷Rg1/Re Ginsenoside Rg1/Re | >1 | <1 | [ | |
人参皂苷Ro/Rb1 Ginsenoside Ro/Rb1 | 0.492 | 0.742 | [ | |
糖 Sugar | 麦芽糖 Maltose | 11.58±2.1312 (mg/mL) | 19.07±3.3072 (mg/mL) | [ |
果糖 Fructose | 0.19±0.0284 (mg/mL) | 0.75±0.1602 (mg/mL) | [ | |
蔗糖 Sucrose | 2.41±0.1149 (mg/mL) | 7.64±0.8627 (mg/mL) | [ | |
肽 Peptide | 肽p1 p1 | 林下参和农田参中肽p1表达量的比值为22.75 FC of MFCG/FCG=22.75 | [ | |
肽p16 p16 | 林下参和农田参中肽p16表达量的比值为2.68 FC of MFCG/FCG=2.68 | [ | ||
肽p18 p18 | 林下参和农田参中肽p18表达量的比值为3.73 FC of MFCG/FCG=3.73 | [ | ||
肽p20 p20 | 林下参和农田参中肽p20表达量的比值为8.57 FC of MFCG/FCG=8.57 | [ | ||
肽p39 p39 | 林下参和农田参中肽p39表达量的比值为17.49 FC of MFCG/FCG=17.49 | [ | ||
肽p40 p40 | 林下参和农田参中肽p40表达量的比值为2.86 FC of MFCG/FCG=2.86 | [ | ||
肽p9 p9 | 林下参和农田参中肽p9表达量的比值为0.37 FC of MFCG/FCG=0.37 | [ | ||
肽p17 p17 | 林下参和农田参中肽p17表达量的比值为0.21 FC of MFCG/FCG=0.21 | [ | ||
肽p25 p25 | 林下参和农田参中肽p25表达量的比值为0.33 FC of MFCG/FCG=0.33 | [ | ||
肽p26 p26 | 林下参和农田参中肽p26表达量的比值为0.28 FC of MFCG/FCG=0.28 | [ | ||
肽p28 p28 | 林下参和农田参中肽p28表达量的比值为0.24 FC of MFCG/FCG=0.24 | [ | ||
肽p34 p34 | 林下参和农田参中肽p34表达量的比值为0.36 FC of MFCG/FCG=0.36 | [ | ||
肽p35 p35 | 林下参和农田参中肽p35表达量的比值为0.21 FC of MFCG/FCG=0.21 | [ | ||
肽p37 p37 | 林下参和农田参中肽p37表达量的比值为0.36 FC of MFCG/FCG=0.36 | [ | ||
肽p41 p41 | 林下参和农田参中肽p41表达量的比值为0.26 FC of MFCG/FCG=0.26 | [ | ||
肽p47 p47 | 林下参和农田参中肽p47表达量的比值为0.15 FC of MFCG/FCG=0.15 | [ | ||
肽p49 p49 | 林下参和农田参中肽p49表达量的比值为0.36 FC of MFCG/FCG=0.36 | [ | ||
肽p51 p51 | 林下参和农田参中肽p51表达量的比值为0.36 FC of MFCG/FCG=0.36 | [ | ||
肽p52 p52 | 林下参和农田参中肽p52表达量的比值为0.24 FC of MFCG/FCG=0.24 | [ | ||
激素 Hormone | 脱落酸 Abscisic acid | 林下参和农田参中脱落酸表达量的比值大于1 FC of MFCG/FCG>1 | [ | |
赤霉素 Germacrenes | 林下参和农田参中赤霉素表达量的比值大于1 FC of MFCG/FCG>1 | [ | ||
菜油甾醇 Gibberellins | 林下参和农田参中菜油甾醇表达量的比值小于1 FC of MFCG/FCG<1 | [ |
1 | YOON S J, SUKWEENADHI J, KHOROLRAGCHAA A, et al. Overexpression of Panax ginseng sesquiterpene synthase gene confers tolerance against Pseudomonas syringae pv. tomato in Arabidopsis thaliana[J]. Physiol Mol Biol Pla, 2016, 22: 485-495. |
2 | LI X, SUN L, ZHAO D. Current status and problem-solving strategies for ginseng industry[J]. Chin J Integr Med, 2019, 25: 883-886. |
3 | HU L, ZHANG Z, WANG W, et al. Ginseng plantations threaten China′s forests[J]. Biodivers Conserv, 2018, 27: 2093-2095. |
4 | KIM Y J, LEE Y, KIM J, et al. Physicochemical characteristics and anti-oxidant activities of farm-cultivated and mountain-cultivated ginseng seeds[J]. Food Sci Biotechnol, 2018, 27: 1257-1264. |
5 | CHEN J, YUAN Y, RAN X, et al. Metabolomics analysis based on a UPLC-Q-TOF-MS metabolomics approach to compare Lin-Xia-Shan-Shen and garden ginseng[J]. RSC Adv, 2018, 8: 30616-30623. |
6 | FAN H, LI K, YAO F, et al. Comparative transcriptome analyses on terpenoids metabolism in field- and mountain-cultivated ginseng roots[J]. BMC Plant Biol, 2019, 19(1): 82. |
7 | ZHU L, LUAN X, YUAN Y, et al. The characteristics of ginsenosides and oligosaccharides in mountain and garden-cultivated ginseng[J]. J Sci Food Agr, 2021, 101(4): 1491-1498. |
8 | XU X F, CHENG X L, LIN Q H, et al. Identification of mountain-cultivated ginseng and cultivated ginseng using UPLC/oa-TOF MSE with a multivariate statistical sample-profiling strategy[J]. J Ginseng Res, 2016, 40(4): 344-350. |
9 | XU L, XU J, SHI G H, et al. Optimization of flash extraction, separation of ginsenosides, identification by HPLC-FT-ICR-MS and determination of rare ginsenosides in mountain cultivated ginseng[J]. RSC Adv, 10(72): 44050-44057. |
10 | ZHAO N, CHENG M, LV W, et al. Peptides as potential biomarkers for authentication of mountain-cultivated ginseng and cultivated ginseng of different ages using UPLC-HRMS[J]. J Agric Food Chem, 2020, 68: 2263-2275. |
11 | YANG B W, HAHM Y T. Transcriptome analysis using de novo RNA-seq to compare ginseng roots cultivated in different environments[J]. Plant Growth Regul, 2018, 84: 149-157. |
12 | 杨艳文, 姜沅彤, 张连学. 农田参和伐林参根际土壤酶指标与化学成分比较[J]. 北方园艺, 2016(17): 157-162. |
YANG Y W, JIANG Y T, ZHANG L X. Study on the relationship between soil enzyme activity and chemical composition in farmland and deforestation ginseng[J]. North Hortic, 2016(17): 157-162. | |
13 | TONG A Z, LIU W, LIU Q, et al. Diversity and composition of the Panax ginseng rhizosphere microbiome in various cultivation modes and ages[J]. BMC Microbiol, 2021, 21: 1. |
14 | BAO Y, QI B, HUANG W, et al. The fungal community in non-rhizosphere soil of Panax ginseng are driven by different cultivation modes and increased cultivation periods[J]. PEERJ, 2020, 8: e9930. |
15 | LU Z, FANG N, LIU Y, et al. Dissipation and residues of the diamide insecticide chlorantraniliprole in ginseng ecosystems under different cultivation environments[J]. Environ Monit Assess, 2017, 189: 534. |
16 | SUN H, WANG Q X, LIU N, et al. Effects of different leaf litters on the physicochemical properties and bacterial communities in Panax ginseng-growing soil[J]. Appl Soil Ecol, 2017, 11: 17-24. |
17 | SONG Y J, SONG S F. Identification and allelochemical ecological toxicity of ginseng decomposition products[J]. Bangl J Bot, 2016, 45: 835-843. |
18 | WANG Q, SUN H, LI M, et al. Different age-induced changes in rhizosphere microbial composition and function of Panax ginseng in transplantation mode[J]. Front Plant Sci, 2020, 11: 563240. |
19 | XIAO C P, YANG L M, ZHANG L X, et al. Effects of cultivation ages and modes on microbial diversity in the rhizosphere soil of Panax ginseng[J]. J Ginseng Res, 2015, 40: 28-37. |
20 | KIM J Y, KIM D H, KIM Y C, et al. In vitro grown thickened taproots, a new type of soil transplanting source in Panax ginseng[J]. J Ginseng Res, 2016, 40: 409-414. |
21 | CHUNG I M, KIM J K, YANG J H, et al. Effects of soil type and organic fertilizers on fatty acids and vitamin E in Korean ginseng (Panax ginseng Meyer)[J]. Food Res Int, 2017, 102: 265-273. |
22 | HWANG J E, SUH D H, KIM K T, et al. Comparative study on anti-oxidative and anti-inflammatory properties of hydroponic ginseng and soil-cultured ginseng[J]. Food Sci Biotechnol, 2019, 28: 215-224. |
23 | 张正海, 张亚玉, 雷慧霞, 等. 光照强度·温度·湿度和二氧化碳对人参光合速率的影响[J]. 特产研究, 2020, 42(2): 41-46. |
ZHANG Z H, ZHANG Y Y, LEI H X, et al. Effects of light intensity, temperature, humidity and carbon dioxide on photosynthetic rate of Panax ginseng C. A. Mey[J]. Special Wild Economic Animal Plant Res, 2020, 42(2): 41-46. | |
24 | 左湘熙, 张亚玉. 土壤特性对人参生长及品质的影响研究进展[J]. 特产研究, 2020, 42(1): 58-63. |
ZUO X X, ZHANG Y Y. Research progress in the effects of soil properties on growth and quality of Panax ginseng[J]. Special Wild Economic Animal Plant Res, 2020, 42(1): 58-63. | |
25 | 沈亮, 吴杰, 李西文, 等. 人参全球产地生态适宜性分析及农田栽培选地规范[J]. 中国中药杂志, 2016, 41(18): 3314-3322. |
SHEN L, WU J, LI X W, et al. A study of global ecological adaptability and field selection practices of Panax ginseng[J]. China J Chin Mater Med, 2016, 41(18): 3314-3322. | |
26 | SOO K S, KYU L C, HAG M K, et al. Land suitability evaluation for wild-simulated ginseng cultivation in South Korea[J]. Land, 2021, 10: 94. |
27 | FARH M E A, HAN J A, KIM Y J, et al. Discovery of a new primer set for detection and quantification of Ⅱyonectria mors-panacis in soils for ginseng cultivation[J]. J Ginseng Res, 2017, 43: 1-9. |
28 | 裴泽莲, 孙宗国, 尤晓东, 等. 人参种植机械化技术发展研究[J]. 农业科技与装备, 2020, 5: 52-54. |
PEI Z L, SUN Z G, YOU X D, et al. Research on development of ginseng cultivation mechanization technology[J]. Agric Sci Technol Equip, 2020, 5: 52-54. | |
29 | HIRAKI Y, MATSUBARA Y, IKEZAWA T. Effect of AMF symbiosis and environmental conditions on growth of Asian ginseng: The second Asian horticultural congress[C]. Chengdu: Sichuan Acadmy of Agricultural Sciences and Chengdu Academy of Agricultural Sciences, 2016: 271-276. |
30 | TIAN L, SHI S, JI L, et al. Effect of the biocontrol bacterium Bacillus amyloliquefaciens on the rhizosphere in ginseng plantings[J]. Int Microbiol, 2018, 21(3): 153-162. |
31 | 宋胜男, 郜玉钢, 张雪, 等. 人参内生多黏类芽孢杆菌对农田人参生长和皂苷累积的影响[J]. 江苏农业科学, 2019, 47(11): 155-160. |
SONG S N, GAO Y G, ZHANG X, et al. Effects of Paenibacillus polymyxa on growth and saponin accumulation of ginseng in farmland[J]. Jiangsu Agric Sci, 2019, 47(11): 155-160. | |
32 | SUKWEENADHI J, BALUSAMY S R, KIM Y J, et al. A growth-promoting bacteria, Paenibacillus yonginensis DCY84T enhanced salt stress tolerance by activating defense-related systems in Panax ginseng[J]. Front Plant Sci, 2018, 9: 813. |
33 | HUO Y, KANG J P, AHN J C, et al. Siderophore-producing rhizobacteria reduce heavy metal-induced oxidative stress in Panax ginseng Meyer[J]. J Ginseng Res, 2021, 45(2): 218-227. |
34 | 常思佳, 宁雪, 王日明, 等. 日光温室栽培模式下不同种质来源人参单体皂苷及氨基酸对比分析[J]. 人参研究, 2019, 31(3): 18-24. |
CHANG S J, NING X, WANG R M, et al. Comparative analysis of monomeric saponins and amino acids of ginseng from different germplasm sources in solar greenhouse cultivation mode[J]. Renshen Yanjiu, 2019, 31(3): 18-24. | |
35 | MINH N V, WOO E E, LEE G S, et al. Control efficacy of Streptomyces sp. A501 against ginseng damping-off and its antifungal substance[J]. Mycobiology, 2017, 45: 44-47. |
36 | JAYAKODI M, LEE S C and YANG T J. Comparative transcriptome analysis of heat stress responsiveness between two contrasting ginseng cultivars[J]. J Ginseng Res, 2019, 43: 572-579. |
37 | KIM Y J, SILVA J, ZHANG D B, et al. Development of interspecies hybrids to increase ginseng biomass and ginsenoside yield[J]. Plant Cell Rep, 2016, 35: 779-790. |
38 | SEO K H, MOHANAN P, YANG D U, et al. Interspecies hybrids of Panax ginseng Meyer new line 0837 and Panax quinquefolius generated superior F1 hybrids with greater biomass and ginsenoside contents[J]. Hortic Environ Biote, 2019, 60: 573-583. |
39 | ZHANG H, XU S Q, PANG S F, et al. Effect of seed size on seedling performance, yield and ginsenoside content of Panax ginseng[J]. Seed Sci Technol, 2018, 46: 407-417. |
40 | LI H Y, LI Y, XU S, et al. Removing the endosperm of ginseng and American ginseng, seeds results in embryos developing into normal seedlings[J]. Seed Sci Technol, 2020, 48: 297-301. |
41 | LEE J W, JO I H, KIM J U, et al. Improvement of seed dehiscence and germination in ginseng by stratification, gibberellin, and/or kinetin treatments[J]. Hortic Environ Biote, 2018, 59: 293-301. |
42 | KIM M J, SHIM C K, KIM Y K, et al. Enhancement of seed dehiscence by seed treatment with talaromyces flavus gg01 and gg04 in ginseng (Panax ginseng) [J]. J Gen Plant Pathol, 2017, 33(1): 1-8. |
43 | 陈长宝, 刘继永, 王艳艳, 等. 人参根际化感作用及其对种子萌发的影响[J].吉林农业大学学报, 2006,5: 534-537, 541. |
CHEN C B, LIU J Y, WANG Y Y, et al. Allelopathy of ginseng rhizosphere and its effect on germination of seed[J]. J Jilin Agric Univ, 2006, 5: 534-537, 541. | |
44 | SUN H, LI L, XU C L, et al. Effect of water extract from flue-cured tobacco on seed germination of Panax ginseng[J]. Seed, 2016, 35: 25-28. |
45 | LI Q, ZHANG L X, GUAN T Z, et al. Allelopathic effects of ginsenoside Rgl on seed germination and seedling growth of Panax ginseng[J]. Allelopathy J, 2020, 49: 229-242. |
46 | YONG S H, SEO Y R, KIM H G, et al. Growth characteristics and saponin content of mountain-cultivated ginseng (Panax ginseng C. A. Meyer) according to seed-sowing method suitable for cultivation under forest[J]. For Sci Technol, 2020, 16: 195-205. |
47 | SEONG B J, JEE M G, LEE K S, et al. Effects of Sowing Method on growth of directed seeding cultivation ginseng in paddy fields[J]. J. Korean Soc, 2020, 65: 151-155. |
48 | 刘文亮, 刘枫, 付家庆, 等. 人参机械化种植设备的设计研究[J]. 山西农业科学, 2016, 44(10): 1537-1540, 1545. |
LIU W L, LIU F, FU J Q, et al. Study on the design of mechanical planting equipment of ginseng[J]. J Shanxi Agric Sci, 2016, 44(10): 1537-1540, 1545. | |
49 | 赖庆辉, 贾广鑫, 苏微, 等. 基于DEM-MBD耦合的链勺式人参精密排种器研究[J]. 农业机械学报, 2022, 53(3): 91-104. |
LAI Q H, JIA G X, SU W, et al. Design and test of chain-spoon type precision seed-metering device for ginseng based on DEM-MBD coupling[J]. Trans Chin Soc Agric Mach, 2022, 53(3): 91-104. | |
50 | 方平, 杨鹤, 佐月, 等. 不同参膜下人参叶片光合相关参数和产量的差异分析[J]. 林农业大学学报, 2021, http://kns.cnki.net/kcms/detail/22.1100.S.20210311.1456.006.html. |
FANG P, YANG H, ZUO Y, et al. Analysis on the differences of photosynthetic related parameters and yield of ginseng under different ginseng films[J]. J Jilin Agric Univ, 2022, in press. | |
51 | 李晨曦, 何章, 许永华, 等. 不同遮荫棚下农田人参叶片光合特性的生育期变化[J]. 吉林农业大学学报, 2017, 39(1): 32-37, 48. |
LI C X, HE Z, XU Y H, et al. Seasonal changes of photosynthetic characteristics in farmland ginseng leaves under different shades[J]. J Jilin Agric Univ, 2017, 39(1): 32-37, 48. | |
52 | JANG I, DO G, SUH S, et al. Physiological responses and ginsenoside production of Panax ginseng seedlings grown under various ratios of red to blue light-emitting diodes[J]. Hortic Environ Biote, 2020, 61: 663-672. |
53 | KIM Y J, NGUYEN T K L, OH M M, et al. Growth and ginsenosides content of ginseng sprouts according to LED-based light quality changes[J]. Agronomy-Basel, 2020, 10(12): 1979. |
54 | SEONG B J, KIM H H, LEE K S, et al. Growth characteristics and ginsenoside contents of Korean ginseng (Panax ginseng C.A. Meyer) by shade materials and green manure crops[J]. Planta Med, 2016, 82: 183-183. |
55 | LIU Z, WANG C Z, ZHU X Y, et al. Dynamic changes in neutral and acidic ginsenosides with different cultivation ages and harvest seasons: identification of chemical characteristics for Panax ginseng quality control[J]. Molecules, 2017, 22: 734. |
56 | 芦学峰, 孟祥茹, 王佳, 等. 农田人参皂苷积累规律[J]. 分子植物育种, 2018, 16(1): 339-344. |
LU X F, MENG X R, WANG J, et al. The ginsenosides accumulation law of farmland planted ginseng[J]. Mol Plant Breed, 2018, 16(1): 339-344. | |
57 | PARK S E, SEO S H, KIM E J, et al. Metabolomic approach for discrimination of cultivation age and ripening stage in ginseng berry using gas chromatography-mass spectrometry[J]. Molecules, 2019, 24: 3837. |
58 | AHN C H. The effect of environmental fine bubble on the production of ginsenoside during the growth period of ginseng cultivation[J]. J Korean Con Soc, 2017, 8: 1-7. |
59 | PARK H B, PARK S Y, PARK I S, et al. Altered physical properties of root media by successive hydroponic cultivation and effects of elevated air-filled porosity on ginseng seedling growth[J]. Hortic Sci Technol, 2020, 38: 487-498. |
60 | KIM D W, KIM C S, KIM H J, et al. The effect of germanium treatment on rain shelter house cultivation of Korean ginseng (Panax ginseng C.A.Meyer)[J]. Planta Med, 2017, 4: S1-S202. |
61 | YOON S J, SUKWEENADHI J, KHOROLRAGCHAA A, et al. Overexpression of Panax ginseng sesquiterpene synthase gene confers tolerance against Pseudomonas syringae pv. tomato in Arabidopsis thaliana[J]. Physiol Mol Biol Pla, 2016, 22(4): 485-495. |
62 | JI S H, YOO S, CHOI E H, et al. Biochemical and molecular characterization of enhanced growth of Panax ginseng CA Meyer treated with atmospheric pressure plasma[J]. J Phys D Appl Phys, 2020, 53 (49): 494001. |
63 | PARK J E, KIM H, KIM J, et al. A comparative study of ginseng berry production in a vertical farm and an open field[J]. Ind Crop Prod, 2019, 140: 111612. |
64 | JANG M H, KIM S H, CHOI Y, et al. Characterizing the effects of microclimate on the growth of ginseng seedlings using multi-layer bed production facilities[J]. J Korean Med Sci, 2018, 26(6): 490-497. |
65 | LEE K J, KANG J Y, LEE D Y, et al. Use of an empirical model to estimate leaf wetness duration for operation of a disease warning system under a shade in a ginseng field[J]. Plant Dis, 2016, 100: 25-31. |
66 | 于合龙, 韩俊波, 李文书. 物联网下人参种植智能精准灌溉决策模型仿真[J]. 计算机仿真, 2020, 37(11): 250-254. |
YU H L, HAN J B, LI W S. Simulation of intelligent precision irrigation decision model for ginseng planting under the internet of things[J]. Comput Simul, 2020, 37(11): 250-254. | |
67 | 李建荣, 韩永忠, 狄平, 等. 物联网精准灌溉对人参栽培土壤环境及其产量和品质的影响[J]. 江苏农业学报, 2022, 38(2): 495-501. |
LI J R, HAN Y Z, DI P, et al. Effects of internet of things precision irrigation on the soil environment, yield and quality of ginseng[J]. Jiangsu Agric Sci, 2022, 38(2): 495-501. | |
68 | YIN L, CAI S, LI C. Signal recognition model of ginseng diseases and insect pests in agricultural internet of things: 2018 6th international conference on machinery, materials and computing technology (ICMMCT 2018)[C]. Jinan, 2018: 257-262. |
69 | JAYAPAL P K, PARK E, FAQEERZADA M A, et al. Analysis of RGB plant images to identify root rot disease in Korean ginseng plants using deep learning[J] Appl Sci, 2022, 12: 2489. |
[1] | Juan XIAO, Zhi-Feng SHI, Jia LIU, Bing LI, Xin-Rong XU. Effect of Sample Quality Control on X-ray Diffraction Measurement Results [J]. Chinese Journal of Applied Chemistry, 2023, 40(5): 720-729. |
[2] | Wei-Yin XU, Tian-Yang XU, Si-Meng SHAO, Zhao-Yang XIE, Hong-Mei YANG, Peng YU. Research Progress of the Role of Chemical Active Components of Ginseng in Prevention and Treatment of Neurodegenerative Diseases [J]. Chinese Journal of Applied Chemistry, 2023, 40(4): 486-499. |
[3] | Rui WANG, Xiang-Ru MENG, Qiong LI, En-Peng WANG, Xin HUANG, Chang-Bao CHEN. Research Progress on the Decomposed Allelopathy of Panax Genus [J]. Chinese Journal of Applied Chemistry, 2023, 40(1): 1-8. |
[4] | Yan-Long SHEN, Li-Ye CHENG, Xiang-Ru MENG, Qiong LI, Lian-Yun DU, En-Peng WANG, Chang-Bao CHEN. Effects of Ginseng Continuous Soil Crop on Growth Development and Antioxidant System of Ginseng at Different Fertility Stages [J]. Chinese Journal of Applied Chemistry, 2023, 40(1): 109-115. |
[5] | Jun-Jie ZHANG, Yun-Jiao SHEN, Li-Ying MA, Peng-Hui WANG, Lei WANG, Yu-Lin DAI, Lei ZHAO. Study on Extract Composition of American Ginseng Flower in Oxidative-Induced H9c2 Cardromyocytes by LC-MS [J]. Chinese Journal of Applied Chemistry, 2023, 40(1): 126-133. |
[6] | Ying-Xin GAO, Wei XU, Yan-Xu ZHANG, Ye-Chen WANG, Xue-Lian DONG. Evaluation of the Quality of Coptidis Rhizoma from Different Origins by the Combination of Grey Relational Analysis and Chromaticity Method [J]. Chinese Journal of Applied Chemistry, 2022, 39(6): 1000-1010. |
[7] | Jing-Wan LIU, Qiong LI, Tao ZHANG, En-Peng WANG, Huan WANG, Xue CHEN, Chang-Bao CHEN. Research Progress on the Continuous Cropping Obstacles of Ginseng from Soil Improvement [J]. Chinese Journal of Applied Chemistry, 2022, 39(12): 1818-1832. |
[8] | ZHANG Na, LI Le-Le, HUANG Xin, LIU Shu-Ying. Determination of Oligosaccharides in Ginseng from Different Growth Environments by Ultra Performance Liquid Chromatography Triple Quadrupole Tandem Mass Spectrometry Combined with Solid Phase Methylation [J]. Chinese Journal of Applied Chemistry, 2021, 38(3): 247-255. |
[9] | LI Le, TAN Lu-Ying, WANG Cai-Xia, LI Kun, LI Ping-Ya, LIU Jin-Ping, LIU Yun-He. Identification of Chemical Constituents of American Ginseng Fruit Pedicels by Ultra-performance Liquid Chromatography Quadrupole Time-of-Flight Mass Spectrometry [J]. Chinese Journal of Applied Chemistry, 2021, 38(3): 256-270. |
[10] | WANG En-Peng, DU Lian-Yun, JIANG Tao, LI Guang, WEI Kun, ZHU Shuang, YUE Hao, CHEN Chang-Bao. Whitening Activity, Antioxidant Activity and Ginsenosides Analysis of Ginseng Wash Water [J]. Chinese Journal of Applied Chemistry, 2021, 38(3): 289-297. |
[11] | ZHANG Hui-E, HOU Jian-Feng, WANG Jing-Yuan, ZHU Shuang, DU Lian-Yun, YE Ping, WEI Kun, CHEN Chang-Bao, LI Guang, WANG En-Peng. A Differential Study on in vitro Antioxidant Activity and Extract Composition of Different Parts of Panax Ginseng [J]. Chinese Journal of Applied Chemistry, 2021, 38(11): 1531-1540. |
[12] | TANG Dongsheng, CUI Jianxun, LIANG Ganghao, YU Yingjie, ZHOU Huiling, WEI Dengshuai, XIAO Haihua. Developing Biosafety Materials Science and Building the National Security Wall of China [J]. Chinese Journal of Applied Chemistry, 2020, 37(9): 985-993. |
[13] | GONG Hui, KANG Yu, ZHANG Rong, REN Guodong, HOU Xiaoyu, ZHANG Min, LI Lihong, LIU Wen, WANG Haojiang, DIAO Haipeng. Preparation of Nitrogen-Doped Carbon Dots for Highly Sensitive Detection of Amoxicillin [J]. Chinese Journal of Applied Chemistry, 2020, 37(2): 227-234. |
[14] | ZHAI Junfeng,YU Dengbin,LIU Ling,DONG Shaojun. Advance and Future Development of Mediator-Based Electrochemical Method Toward Water Total Toxicity [J]. Chinese Journal of Applied Chemistry, 2018, 35(9): 1102-1106. |
[15] | LIU Xiaofang,WANG Shengnan,XU Jian,LI Ran. Facile Preparation and Application of Fluorescent Material with High Quantum Yield [J]. Chinese Journal of Applied Chemistry, 2018, 35(6): 674-678. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||