Chinese Journal of Applied Chemistry ›› 2022, Vol. 39 ›› Issue (11): 1652-1664.DOI: 10.19894/j.issn.1000-0518.220119
• Review • Previous Articles Next Articles
Hui LU1,3, Jiang LI1,2, Li-Hua WANG1,2, Ying ZHU1,2, Jing CHEN1,2()
Received:
2022-04-10
Accepted:
2022-07-05
Published:
2022-11-01
Online:
2022-11-09
Contact:
Jing CHEN
About author:
chenjing@sari.ac.cnSupported by:
CLC Number:
Hui LU, Jiang LI, Li-Hua WANG, Ying ZHU, Jing CHEN. Researsh Progress of Photocatalytic Applications of Atomically Precise Coinage Metal Nanoclusters[J]. Chinese Journal of Applied Chemistry, 2022, 39(11): 1652-1664.
Add to citation manager EndNote|Ris|BibTeX
URL: http://yyhx.ciac.jl.cn/EN/10.19894/j.issn.1000-0518.220119
Fig.1 Photocatalytic process of semiconductor materials: electron-hole pair generation, charge transfer, electron-hole pair recombination in the bulk or at the surface, and electron and hole induced chemistry at the surface[4]
Fig.3 (A) Schematic illustration of Au x -GSH-Sensitized Pt/TiO2 NPs photocatalytic system for water splitting reaction under visible light illumination; (B) Time course of hydrogen evolution following the visible light illumination of an aqueous suspension of Au x -GSH-sensitized Pt/TiO2 nanoparticles (3B: M is mol/L) [24]
Fig.4 (A)?Photocatalytic properties of TiO2 NP, Ag NP-TiO2 and 1-TiO2(p) under UV/Vis light; (B) Schematic illustration of the charge-transfer pathways in the Ag44/TiO2 photocatalytic system for H2 evolution?under irradiation with visible light and UV-Vis light; (C)?Cycling test over 1-TiO2(p) NPs under UV-Vis light[25]
Fig.5 (A) Photocatalytic properties of TiO2-NS, UJN-Cu20 and UJN-Cu20@TiO2-NS containing different mass percent UJN-Cu20; (B) Schematic presentation of the photocatalytic H2 evolution mechanism for UJN-Cu20@TiO2-NS[27](wt.% is mass percent)
Fig.6 (A) The visible light photocatalytic activity of without the catalyst, pure TiO2 and Au25(SR)18(0.94%)/TiO2; (B) Mechanism of photocatalytic decomposition of organic dyes by Au25(SR)18/TiO2 under visible light irradiation[31]
Fig.7 (A) The solid UV-Vis absorption spectra of TiO2, Cu54 and Cu54/TiO2; (B) the photocatalytic degradation of phenol on Cu54/TiO2 and TiO2; (C) Possible mechanism of photocatalytic phenol degradation[35]
Fig.8 (A) Proposed mechanism for photo-oxidation of benzylamine catalyzed by TiO2-suppported Au25 clusters; (B) Photocatalytic oxidation of a range of amine substrates over Au25/TiO2 catalyst[38]
Fig.9 (A) X-ray structure of [Au23-x Ag x (S-Adm)15] (x=4~7), Au: Yellow; Ag with full occupancy: pink; Ag with partial occupancy: blue; S: green; C: gray; (B) The photocatalytic degradation of RhB on Au23-x Ag x /TiO2, Au23/TiO2 and TiO2 under visible-light irradiation[42]
Fig.10 Schematic illustration of the process of modifying Au clusters with L-cys ligands and further grafting them with metal cations for photocatalytic CO2 reduction[44]
Fig.11 (A) Schematic presentation for synthesis of Au-NC@UiO-68-NHC; (B) Time courses of CO evolution by photocatalytic CO2 reduction using different photocatalysts; (C) Time courses of photocatalytic CO2 reduction on Au-NC@UiO-68-NHC under AM 1.5G irradiation for 12?h[47]
Fig.12 (A) Au38S2(SAdm)20 nanocluster exhibits a pocketlike surface structure. Au: orange, S: green, C: grey, H: white; (B) Photocatalytic oxidation of benzylamine to imine[49]
1 | ARDO S, MEYER G J. Photodriven heterogeneous charge transfer with transition-metal compounds anchored to TiO2 semiconductor surfaces[J]. Chem Soc Rev, 2009, 38(1): 115-164. |
2 | KUDO A, MISEKI Y. Heterogeneous photocatalyst materials for water splitting[J]. Chem Soc Rev, 2009, 38(1): 253-278. |
3 | CHEN H H, NANAYAKKARA C E, GRASSIAN V H. Titanium dioxide photocatalysis in atmospheric chemistry[J]. Chem Rev, 2012, 112(11): 5919-5948. |
4 | GUO Q, ZHOU C Y, MA Z B, et al. Fundamentals of TiO2 photocatalysis: concepts, mechanisms, and challenges[J]. Adv Mater, 2019, 31(50): 1901997. |
5 | OPOKU F, GOVENDER K K, VAN SITTERT C G C E, et al. Enhancing charge separation and photocatalytic activity of cubic SrTiO3 with perovskite-type materials MTaO3 (M=Na, K) for environmental remediation: a first-principles study[J]. Chemistryselect, 2017, 2(22): 6304-6316. |
6 | MALATHI A, MADHAVAN J, ASHOKKUMAR M, et al. A review on BiVO4 photocatalyst: activity enhancement methods for solar photocatalytic applications[J]. Appl Catal A: Gen, 2018, 555: 47-74. |
7 | ZHANG P, ZHANG J J, GONG J L. Tantalum-based semiconductors for solar water splitting[J]. Chem Soc Rev, 2014, 43(13): 4395-4422. |
8 | CAO S W, LOW J X, YU J G, et al. Polymeric photocatalysts based on graphitic carbon nitride[J]. Adv Mater, 2015, 27(13): 2150-2176. |
9 | CHENG L, XIANG Q J, LIAO Y L, et al. CdS-Based photocatalysts[J]. Energy Environ Sci, 2018, 11(6): 1362-1391. |
10 | LI Z Z, MENG X C, ZHANG Z S. Recent development on MoS2-based photocatalysis: a review[J]. J Photoch Photobio C, 2018, 35: 39-55. |
11 | CHEN J, ZHANG Q F, BONACCORSO T A, et al. Controlling gold nanoclusters by diphospine ligands[J]. J Am Chem Soc, 2014, 136(1): 92-95. |
12 | ZHU Q, HUANG X, ZENG Y, et al. Controllable synthesis and electrocatalytic applications of atomically precise gold nanoclusters[J]. Nanoscale Adv, 2021, 3(22): 6330-6341. |
13 | CHEN J, ZHANG Q F, WILLIARD P G, et al. Synthesis and structure determination of a new Au20 nanocluster protected by tripodal tetraphosphine ligands[J]. Inorg Chem, 2014, 53(8): 3932-3934. |
14 | LIU L C, CORMA A. Metal catalysts for heterogeneous catalysis: from single atoms to nanoclusters and nanoparticles[J]. Chem Rev, 2018, 118(10): 4981-5079. |
15 | CHAKRABORTY I, PRADEEP T. Atomically precise clusters of noble metals: emerging link between atoms and nanoparticles[J]. Chem Rev, 2017, 117(12): 8208-8271. |
16 | LU H, CHEN B, LI Y, et al. Benzyl-rich ligand engineering of the photostability of atomically precise gold nanoclusters[J]. Chem Commun, 2022, 58(14): 2395-2398. |
17 | FANG J, ZHANG B, YAO Q F, et al. Recent advances in the synthesis and catalytic applications of ligand-protected, atomically precise metal nanoclusters[J]. Coordin Chem Rev, 2016, 322: 1-29. |
18 | CHAI O J H, LIU Z H, CHEN T K, et al. Engineering ultrasmall metal nanoclusters for photocatalytic and electrocatalytic applications[J]. Nanoscale, 2019, 11(43): 20437-20448. |
19 | HOU B, KIM B S, LEE H K H, et al. Multiphoton absorption stimulated metal chalcogenide quantum dot solar cells under ambient and concentrated irradiance[J]. Adv Funct Mater, 2020, 30(39): 2004563. |
20 | NGUYEN C C, VU N N, DO T O. Recent advances in the development of sunlight-driven hollow structure photocatalysts and their applications[J]. J Mater Chem A, 2015, 3(36): 18345-18359. |
21 | WANG T, GONG J L. Single-crystal semiconductors with narrow band gaps for solar water splitting[J]. Angew Chem Int Ed, 2015, 54(37): 10718-10732. |
22 | TANG J F, LIU T L, MIAO S J, et al. Emerging energy harvesting technology for electro/photo-catalytic water splitting application[J]. Catalysts, 2021, 11(1): 142. |
23 | CHEN Y S, CHOI H, KAMAT P V. Metal-cluster-sensitized solar cells. a new class of thiolated gold sensitizers delivering efficiency greater than 2%[J]. J Am Chem Soc, 2013, 135(24): 8822-8825. |
24 | CHEN Y S, KAMAT P V. Glutathione-capped gold nanoclusters as photosensitizers. visible light-induced hydrogen generation in neutral water[J]. J Am Chem Soc, 2014, 136(16): 6075-6082. |
25 | WANG Y, LIU X H, WANG Q K, et al. Insights into charge transfer at an atomically precise nanocluster/semiconductor interface[J]. Angew Chem Int Ed, 2020, 59(20): 7748-7754. |
26 | YANG H Y, WANG Y, HUANG H Q, et al. All-thiol-stabilized Ag44 and Au12Ag32 nanoparticles with single-crystal structures[J]. Nat Commun, 2013, 4: 2422. |
27 | CAO Y D, HAO H P, LIU H S, et al. A 20-core copper (Ⅰ) nanocluster as electron-hole recombination inhibitor on TiO2 nanosheets for enhancing photocatalytic H2 evolution[J]. Nanoscale, 2021, 13(38): 16182-16188. |
28 | HU S Y, SUN Y N, FENG Z W, et al. Design and construction strategies to improve covalent organic frameworks photocatalyst's performance for degradation of organic pollutants[J]. Chemosphere, 2022, 286: 131646. |
29 | DONG H R, ZENG G M, TANG L, et al. An overview on limitations of TiO2-based particles for photocatalytic degradation of organic pollutants and the corresponding countermeasures[J]. Water Res, 2015, 79: 128-146. |
30 | ZHAO Y J, LI Y, SUN L D. Recent advances in photocatalytic decomposition of water and pollutants for sustainable application[J]. Chemosphere, 2021, 276: 130201. |
31 | YU C L, LI G, KUMAR S, et al. Stable Au25(SR)18/TiO2 composite nanostructure with enhanced visible light photocatalytic activity[J]. J Phys Chem Lett, 2013, 4(17): 2847-2852. |
32 | DENG C L, SUN C F, WANG Z, et al. A sodalite-type silver orthophosphate cluster in a globular silver nanocluster[J]. Angew Chem Int Ed, 2020, 59(31): 12659-12663. |
33 | ZHANG S Q, ZHAO L. A merged copper(I/II) cluster isolated from Glaser coupling[J]. Nat Commun, 2019, 10: 4848. |
34 | QU M, ZHANG F Q, WANG D H, et al. Observation of non-fcc copper in alkynyl-protected Cu53 nanoclusters[J]. Angew Chem Int Ed, 2020, 59(16): 6507-6512. |
35 | LIU L J, ZHANG J W, ASAD M, et al. A high-nuclearity CuI/CuII nanocluster catalyst for phenol degradation[J]. Chem Commun, 2021, 57(45): 5586-5589. |
36 | YE L, LI Z H. ZnIn2S4: a photocatalyst for the selective aerobic oxidation of amines to imines under visible light[J]. Chemcatchem, 2014, 6(9): 2540-2543. |
37 | ZHANG G M, WANG R R, LI G, et al. Non-metallic gold nanoclusters for oxygen activation and aerobic oxidation[J]. Chinese Chem Lett, 2018, 29(5): 687-693. |
38 | CHEN H J, LIU C, WANG M, et al. Visible light gold nanocluster photocatalyst: selective aerobic oxidation of amines to imines[J]. ACS Catal, 2017, 7(5): 3632-3638. |
39 | NEGISHI Y, MIZUNO M, HIRAYAMA M, et al. Enhanced photocatalytic water splitting by BaLa4Ti4O15 loaded with similar to 1 nm gold nanoclusters using glutathione-protected Au25 clusters[J]. Nanoscale, 2013, 5(16): 7188-7192. |
40 | NEGISHI Y, MATSUURA Y, TOMIZAWA R, et al. Controlled loading of small Aun clusters (n=10~39) onto BaLa4Ti4O15 photocatalysts: toward an understanding of size effect of cocatalyst on water-splitting photocatalytic activity[J]. J Phy Chem C, 2015, 119(20): 11224-11232. |
41 | KURASHIGE W, HAYASHI R, WAKAMATSU K, et al. Atomic-level understanding of the effect of heteroatom doping of the cocatalyst on water-splitting activity in AuPd or AuPt alloy cluster-loaded BaLa4Ti4O15[J]. ACS Appl Energ Mater, 2019, 2(6): 4175-4187. |
42 | LIU C, REN X Q, LIN F, et al. Structure of the Au23- xAgx(S-Adm)15 nanocluster and its application for photocatalytic degradation of organic pollutants[J]. Angew Chem Int Ed, 2019, 58(33): 11335-11339. |
43 | LIU X, YAO G, CHENG X L, et al. Cd-driven surface reconstruction and photodynamics in gold nanoclusters[J]. Chem Sci, 2021, 12(9): 3290-3294. |
44 | CUI X F, WANG J, LIU B, et al. Turning Au nanoclusters catalytically active for visible-light-driven CO2 reduction through bridging ligands[J]. J Am Chem Soc, 2018, 140(48): 16514-16520. |
45 | WANG S, TANG L, CAI B, et al. Ligand modification of Au25 nanoclusters for near-infrared photocatalytic oxidative functionalization[J]. J Am Chem Soc, 2022, 144(9): 3787-3792. |
46 | KAWAWAKI T, KATAOKA Y, HIRATA M, et al. Creation of high-performance heterogeneous photocatalysts by controlling ligand desorption and particle size of gold nanocluster[J]. Angew Chem Int Ed, 2021, 60(39): 21340-21350. |
47 | JIANG Y L, YU Y, ZHANG X, et al. N-Heterocyclic carbene-stabilized ultrasmall gold nanoclusters in a metal-organic framework for photocatalytic CO2 reduction[J]. Angew Chem Int Ed, 2021, 60(32): 17388-17393. |
48 | CHEN H J, PENG L M, BIAN Y C, et al. Exerting charge transfer to stabilize Au nanoclusters for enhanced photocatalytic performance toward selective oxidation of amines[J]. Appl Catal B: Environ, 2021, 284: 119704. |
49 | LI Z M, LIU C, ABORSHAN H, et al. Au38S2(SAdm)20 photocatalyst for one-step selective aerobic oxidations[J]. ACS Catal, 2017, 7(5): 3368-3374. |
50 | QIN Z X, ZHAO D, ZHAO L, et al. Tailoring the stability, photocatalysis and photoluminescence properties of Au11 nanoclusters via doping engineering[J]. Nanoscale Adv, 2019, 1(7): 2529-2536. |
51 | ZHOU M, ZENG C J, SFEIR M Y, et al. Evolution of excited-state dynamics in periodic Au28, Au36, Au44, and Au52 nanoclusters[J]. J Phys Chem Lett, 2017, 8(17): 4023-4030. |
[1] | Xue-Bo LEI, Hui-Jing LIU, He-Yu DING, Guo-Dong SHEN, Run-Jun SUN. Research Progress on Photocatalysts for Degradation of Organic Pollutants in Printing and Dyeing Wastewater [J]. Chinese Journal of Applied Chemistry, 2023, 40(5): 681-696. |
[2] | Lin-Jie SHANG, Jiang LIU, Ya-Qian LAN. Covalent Organic Framework Materials for Photo/ Electrocatalytic Carbon Dioxide Reduction [J]. Chinese Journal of Applied Chemistry, 2022, 39(4): 559-584. |
[3] | Jia-He WANG, Da-Yong LIU, Wei LIU, Lin WANG, Biao DONG. Research Progress on Photocatalytic Antibacterial Application of TiO2 Nano Materials [J]. Chinese Journal of Applied Chemistry, 2022, 39(4): 629-646. |
[4] | Xiang-Zhi YE, Yun-Shui DENG, Yuan LIU, Yong-Liu ZHOU, Jian-Xiong HE, Chun-Rong XIONG. Glass Sphere Supported Amorphous Organotitanium Polymer to Improve the Turnover Frequency in Photocatalytic Reduction of CO2 [J]. Chinese Journal of Applied Chemistry, 2022, 39(10): 1554-1563. |
[5] | Ying-Zi LI, Ting LIU, Si-Qi WU, Xuan FANG, Jing GAO, Shi TANG. Metallaphotoredox⁃Catalyzed O⁃Arylation of Serine [J]. Chinese Journal of Applied Chemistry, 2022, 39(10): 1610-1616. |
[6] | YANG Yu-Ping, XU Shao-Hong, MA Guo-Yang, JIAO Li-Ming, SUN Li-Ping, XIA Ran. Synthesis of 5-Deuterated Ribavirin Derivative [J]. Chinese Journal of Applied Chemistry, 2021, 38(8): 911-916. |
[7] | GUO Yong-Yan, TIAN Yan-Fei, DANG Ming-Ming, YANG Ping, LONG Yun-Fei. Preparation of Thiourea Coordinated Chromium Black T Stabilized Silver Nanoclusters under Alkaline Environment [J]. Chinese Journal of Applied Chemistry, 2021, 38(2): 195-201. |
[8] | TANG Fei, DU Duo-Qin, TAN Yun-Fei, QIN Li-Xiao. Preparation and Characterization of MoO3-x Hexagonal Microrods as High-Efficiency Photocatalysts [J]. Chinese Journal of Applied Chemistry, 2021, 38(1): 92-98. |
[9] | ZHANG Chun-Hua, ZHAO Xiao-Bo, LI Yue-Jun, SUN Da-Wei. Preparation of (BiO)2CO3-Bi-TiO2 Composite Nanofibers and Its Photocatalytic Degradation of Antibiotics [J]. Chinese Journal of Applied Chemistry, 2021, 38(1): 99-106. |
[10] | CAI Zhi-Feng, WU Liang-Liang, QI Kai-Fei, DENG Chen-Hua, ZHANG Shen, ZHANG Cai-Feng. Synthesis of Proline-Stabilized Cu Nanoclusters for Detection of Picric Acid [J]. Chinese Journal of Applied Chemistry, 2021, 38(1): 107-115. |
[11] | HUANG Jieying, LIU Jianjun, ZUO Shengli, HAN Wenjing, YU Yingchun. Preparation of Ag3PO4 Quantum Dots/g-C3N4 Nanosheet Composite Photocatalysts and Its Activity for Selective Oxidation of Benzyl Alcohol [J]. Chinese Journal of Applied Chemistry, 2020, 37(9): 1030-1037. |
[12] | ZHANG Shen, GUO Yuyu. One-Pot Synthesis of Fluorescent Polyvinyl Pyrrolidone-Stabilized Cu Nanoclusters for the Determination of Quercetin [J]. Chinese Journal of Applied Chemistry, 2020, 37(9): 1069-1075. |
[13] | WANG Yuting,YANG Tianyi,ZHANG Yinghui. Application of Porphyrin-Based Framework Materials on Photocatalysis [J]. Chinese Journal of Applied Chemistry, 2020, 37(6): 611-619. |
[14] | FAN Zhe,ZHANG Shengsheng,TANG Jiahao,FAN Ping. Structure, Preparation and Application of Graded Nanomaterials [J]. Chinese Journal of Applied Chemistry, 2020, 37(5): 489-501. |
[15] | CAI Zhifeng, CHEN Siying, PANG Shulin, SONG Shuang, JIA Kang, MAO Yujin, TIAN Fang, ZHANG Caifeng. Synthesis of 2-Mercaptobenzimidazole-Functionalized Water-Soluble Copper Nanoclusters and Their Application to the Determination of Ag+ [J]. Chinese Journal of Applied Chemistry, 2020, 37(5): 587-594. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||