Chinese Journal of Applied Chemistry ›› 2022, Vol. 39 ›› Issue (10): 1543-1553.DOI: 10.19894/j.issn.1000-0518.220048
• Full Papers • Previous Articles Next Articles
Ya-Wei TANG1,2, Lan-Lan XU1, Xiao-Juan LIU1,2(
)
Received:2022-02-22
Accepted:2022-04-27
Published:2022-10-01
Online:2022-10-05
Contact:
Xiao-Juan LIU
About author:lxjuan@ciac.ac.cnSupported by:CLC Number:
Ya-Wei TANG, Lan-Lan XU, Xiao-Juan LIU. Effectively Improving the Electrocatalytic Activity of PrBaMn2O5+δ Anode by Doping Co, Ni and Fe[J]. Chinese Journal of Applied Chemistry, 2022, 39(10): 1543-1553.
Add to citation manager EndNote|Ris|BibTeX
URL: http://yyhx.ciac.jl.cn/EN/10.19894/j.issn.1000-0518.220048
样品 Sample | 晶格氧面积 Area of Olattice | 非晶格氧面积 Area of Ononlattice | 非晶格氧的占比 Onolattice/(Ononlattice+Olattice)/% |
|---|---|---|---|
| PBMC | 18 617.49 | 21 489.18 | 53.58 |
| PBMN | 19 596.53 | 22 957.11 | 53.18 |
| PBMF | 20 224.41 | 21 626.43 | 51.60 |
| PBMO | 37 951.47 | 14 066.15 | 27.04 |
Table 1 Proportion of Olattice andOnonlattice of PBMC, PBMN, PBMF and PBMO
样品 Sample | 晶格氧面积 Area of Olattice | 非晶格氧面积 Area of Ononlattice | 非晶格氧的占比 Onolattice/(Ononlattice+Olattice)/% |
|---|---|---|---|
| PBMC | 18 617.49 | 21 489.18 | 53.58 |
| PBMN | 19 596.53 | 22 957.11 | 53.18 |
| PBMF | 20 224.41 | 21 626.43 | 51.60 |
| PBMO | 37 951.47 | 14 066.15 | 27.04 |
Fig.4 (A-D)EIS spectra of PBMC, PBMN, PBMF and PBMO in humidified H2 at different temperature, (E)comparison of the ASRs and (F)corresponding Arrhenius plots
Fig.5 (A) Cross-sectional SEM image of single cell with PBMC after being electrochemical tested, (B-E) typical I?V?P curves of the single cells in wet H2 at various temperatures and (F) the comparison of peak power densities
样品 Sample | 晶格氧面积 Area of Olattice | 非晶格氧面积 Area of Ononlattice | 非晶格氧的占比 Onolattice/(Ononlattice+Olattice) (%) |
|---|---|---|---|
| P0.6BMC | 26 296.69 | 78 212.60 | 74.84 |
| P0.6BMN | 30 872.16 | 89 567.72 | 74.37 |
| P0.6BMF | 40 258.33 | 64 907.88 | 61.72 |
| P0.6BMO | 64 458.21 | 49 644.89 | 43.51 |
Table 2 Proportion of Olattice andOnonlattice of P0.6BMC, P0.6BMN, P0.6BMF and P0.6BMO
样品 Sample | 晶格氧面积 Area of Olattice | 非晶格氧面积 Area of Ononlattice | 非晶格氧的占比 Onolattice/(Ononlattice+Olattice) (%) |
|---|---|---|---|
| P0.6BMC | 26 296.69 | 78 212.60 | 74.84 |
| P0.6BMN | 30 872.16 | 89 567.72 | 74.37 |
| P0.6BMF | 40 258.33 | 64 907.88 | 61.72 |
| P0.6BMO | 64 458.21 | 49 644.89 | 43.51 |
| 1 | WANG W, SU C, WU Y, et al. Progress in solid oxide fuel cells with nickel-based anodes operating on methane and related fuels[J]. Chem Rev, 2013, 113(10): 8104-8151. |
| 2 | ZHU Y L, ZHOU W, CHEN Y B, et al. An Aurivillius oxide based cathode with excellent CO2 tolerance for intermediate-temperature solid oxide fuel cells[J]. Angew Chem Int Ed, 2016, 55(31): 8988-8993. |
| 3 | PENG J, HUANG J, WU X L, et al. Solid oxide fuel cell (SOFC) performance evaluation, fault diagnosis and health control: a review[J].J Power Sources, 2021, 505: 230058. |
| 4 | ATKINSON A, BARNETT S, GORTE R J, et al. Advanced anodes for high-temperature fuel cells[J]. Mater Renew Sustain Energy, 2011: 213-223. |
| 5 | LIU M L, LYNCH M E, BLINN K, et al. Rational SOFC material design: new advances and tools[J]. Mater Today, 2011, 14(11): 534-546. |
| 6 | JIN C, YANG Z, ZHENG H, et al. La0.6Sr1.4MnO4 layered perovskite anode material for intermediate temperature solid oxide fuel cells[J]. Electrochem Commun, 2012, 14(1): 75-77. |
| 7 | ABDALLA A M, HOSSAIN S, PETRA P M I, et al. Novel layered perovskite SmBaMn2O5+ δ for SOFCs anode material[J]. Mater Lett, 2017, 204: 129-132. |
| 8 | XU L, YIN Y M, ZHOU N, et al. Sulfur tolerant redox stable layered perovskite SrLaFeO4- δ as anode for solid oxide fuel cells[J]. Electrochem Comun 2017, 76: 51-54. |
| 9 | TRUKHANOV S, TRUKHANOV A, SZYMCZAK H, et al. Thermal stability of A-site ordered PrBaMn2O6 manganites[J]. J Phys Chem Solid, 2006, 67(4): 675-681. |
| 10 | KWON O, KIM K, JOO S, et al. Self-assembled alloy nanoparticles in a layered double perovskite as a fuel oxidation catalyst for solid oxide fuel cells[J]. J Mater Chem A, 2018, 6(33): 15947-15953. |
| 11 | SENGODAN S, CHOI S, JUN A, et al. Layered oxygen-deficient double perovskite as an efficient and stable anode for direct hydrocarbon solid oxide fuel cells[J]. Nat Mater, 2015, 14(2): 205-209. |
| 12 | HAN Z, YANG Z, HAN M, et al. Optimization of Ni-YSZ anodes for tubular SOFC by a novel and efficient phase inversion-impregnation approach[J]. J Alloys Compd, 2018, 750: 130-138. |
| 13 | VENABCIO S A, MOREIRA S B J, GOMES G G, et al. Multifunctional macroporous solid oxide fuel cell anode with active nanosized ceramic electrocatalyst[J]. Int J Hydrog Energy, 2020, 45(8): 5501-5511. |
| 14 | JANG D Y, KIM M, KIM J W, et al. High performance anode-supported solid oxide fuel cells with thin film yttria-stabilized zirconia membrane prepared by aerosol-assisted chemical vapor deposition[J]. J Electrochem Soc, 2017, 164(6): F484. |
| 15 | JO S, SHARMA B, PARK D H, et al. Materials and nano-structural processes for use in solid oxide fuel cells: a review[J]. J Korean Ceram Soc, 2020, 57(2): 135-151. |
| 16 | FUTAMURA S, MURAMOTO A, TACHIKAWA Y, et al. SOFC anodes impregnated with noble metal catalyst nanoparticles for high fuel utilization[J]. Int J Hydrog Energy, 2019, 44(16): 8502-8518. |
| 17 | HANIF M B, MOTOLA M, RAUF S, et al. Recent advancements, doping strategies and the future perspective of perovskite-based solid oxide fuel cells for energy conversion[J]. Chem Eng J, 2022, 428: 132603. |
| 18 | QIN M, XIAO Y, YANG H, et al. Ru/Nb co-doped perovskite anode: achieving good coking resistance in hydrocarbon fuels via core-shell nanocatalysts exsolution[J]. Appl Catal B, 2021, 299: 120613. |
| 19 | SUN Y F, ZHANG Y Q, HUA B, et al. Molybdenum doped Pr0.5Ba0.5MnO3- δ (Mo-PBMO) double perovskite as a potential solid oxide fuel cell anode material[J]. J Power Sources, 2016, 301: 237-241. |
| 20 | CAI W, CAO D, ZHOU M, et al. Sulfur-tolerant Fe-doped La0.3Sr0.7TiO3 perovskite as anode of direct carbon solid oxide fuel cells[J]. Energy, 2020, 211: 118958. |
| 21 | LI J, WEI B, CAO Z, et al. Niobium doped lanthanum strontium ferrite as a redox-stable and sulfur-tolerant anode for solid oxide fuel cells[J]. ChemSusChem, 2018, 11(1): 254-263. |
| 22 | XIAO G, WANG S, LIN Y, et al. Ni-doped Sr2Fe1.5Mo0.5O6- δ as anode materials for solid oxide fuel cells[J]. J Electrochem Soc, 2014, 161(3): F305-F310. |
| 23 | LI R, LIU F, ZHANG C, et al. Electrical properties of Fe-doped SrTiO3 with B-site-deficient for SOFC anodes[J]. Ceram Int, 2019, 45(17): 21684-21687. |
| 24 | YOSHIYA M, FISHER C A J, IWAMOTO Y, et al. Phase stability of BaCo1- yFeyO3- δ by first principles calculations[J]. Solid State Ionics, 2004, 172(1): 159-163. |
| 25 | HE W, WU X, YANG G, et al. BaCo0.7Fe0.22Y0.08O3- δ as an active oxygen reduction electrocatalyst for low-temperature solid oxide fuel cells below 600 °C[J]. ACS Energy Lett, 2017, 2(2): 301-305. |
| 26 | DU Z H, ZHAO H L, YI S, et al. High-performance anode material Sr2FeMo0.65Ni0.35O6-delta with in situ exsolved nanoparticle catalyst[J]. ACS Nano, 2016, 10(9): 8660-8669. |
| 27 | ZHANG Z, ZHU Y, ZHONG Y, et al. Anion doping: a new strategy for developing high-performance perovskite-type cathode materials of solid oxide fuel cells[J]. Adv Funct Mater, 2017, 7(17): 1700242. |
| 28 | CHEN D, CHEN C, BAIYEE Z M, et al. Nonstoichiometric oxides as low-cost and highly-efficient oxygen reduction/evolution catalysts for low-temperature electrochemical devices[J]. Chem Rev, 2015, 115(18): 9869-9921. |
| 29 | MINESHIGEA, IZUYSU J, NAKAMURA M, et al. Introduction of a-site deficiency into La0.6Sr0.4Co0.2Fe0.8O3- δ and its effect on structure and conductivity[J]. Solid State Ionics, 2005, 176(11-12): 1145-1149 |
| 30 | CAI W, ZHOU M, CAO D, et al. Ni-doped a-site-deficient La0.7Sr0.3Cr0.5Mn0.5O3- δ perovskite as anode of direct carbon solid oxide fuel cells[J]. Int J Hydrogen Energy, 2020, 45(41): 21873-21880. |
| [1] | Bing-Shuai CHEN, Hai-Tao ZHUO, Shu HUANG, Shao-Jun CHEN. Advances of High-Performance Polymer Binders for Silicon-Based Anodes [J]. Chinese Journal of Applied Chemistry, 2023, 40(5): 625-639. |
| [2] | Fang-Zheng HU, Xing GAO, Lei LIU, Tian-Heng YUAN, Ning CAO, Kai LI, Ya-Tao WANG, Jian-Hua LI, Hui-Qin LIAN, Xiao-Dong WANG, Xiu-Guo CUI. Advances in Black Phosphorus Anode Advantages and Optimization in Li-ion Battery Anodes [J]. Chinese Journal of Applied Chemistry, 2023, 40(4): 571-582. |
| [3] | Xue-Jian SHI, Wan-Qiang LIU, Chun-Li WANG, Yong CHENG, Li-Min WANG. Research Progress of Sb-based Anode Materials for Potassium Ion Batteries [J]. Chinese Journal of Applied Chemistry, 2023, 40(2): 210-228. |
| [4] | Fu-Yang WANG, Wei-Ming SONG, Li SUN, Jian FENG, Jun YE, Zhi-Qi YANG. Controllable Construction of Porous Nanocube FeSe2/Graphene Composite for Efficient Na⁃Ion Storage [J]. Chinese Journal of Applied Chemistry, 2022, 39(5): 779-786. |
| [5] | Yu MENG, Qing ZHANG, Wen-Hao PENG, Xiao-Fei ZHU, De-Feng ZHOU. Preparation and Electrochemical Performance of Pr0.8Sr0.2Fe0.7Ni0.3O3-δ ⁃Pr1.2Sr0.8Ni0.6Fe0.4O4+δ Composite Cathode [J]. Chinese Journal of Applied Chemistry, 2022, 39(5): 797-808. |
| [6] | Xiao-Feng WU, De-Shun CHEN, Wei MA, Ke-Ke HUANG. WO3/Fe2TiO5 Composite Photoanode Deposited via Electrospray for Enhanced Photoelectrochemical Water Splitting [J]. Chinese Journal of Applied Chemistry, 2022, 39(4): 694-696. |
| [7] | CHENG Guang-Zeng, LIU Shuai, WANG Huan-Lei. Potential High-Performance Anode Material for Potassium Ion Batteries:Antimony [J]. Chinese Journal of Applied Chemistry, 2021, 38(2): 170-180. |
| [8] | WEI Zhenye, MENG Junling, WANG Haocong, ZHANG Wenwen, LIU Xiaojuan, MENG Jian. Improving the Electrocatalytic Activity of La2NiO4+δ Cathode by Surface Modification with Conformal Heterojunction [J]. Chinese Journal of Applied Chemistry, 2020, 37(8): 939-951. |
| [9] | WANG Jinying, QU Jiangying, LI Jielan, TANG Zhanlei, ZANG Yunhao, WANG Tao, GU Jianfeng, ZHOU Gang, GAO Feng. Two-Step Coating Synthesis of Silicon/Carbon Composite Based on Coal Tar Pitch and Its Lithium Battery Performance [J]. Chinese Journal of Applied Chemistry, 2020, 37(5): 562-569. |
| [10] | ZUO Zicheng,LI Yuliang. Applications of Graphdiyne in Li+/Na+ Battery Anodes [J]. Chinese Journal of Applied Chemistry, 2018, 35(9): 1057-1066. |
| [11] | YANG Mei,SHI Zhenling,XU Nan,MAO Dan,WANG Dan. Research Progress of Hollow Micro/Nano-Structured Photoanode Materials for Dye-Sensitized Solar Cells [J]. Chinese Journal of Applied Chemistry, 2018, 35(8): 902-915. |
| [12] | WANG Huanhuan,LU Songtao,QIN Wei,WU Xiaohong. Preparation and Electrochemical Performance of MoS2@Co9S8 Yolk-Shell Nanocomposites [J]. Chinese Journal of Applied Chemistry, 2018, 35(8): 956-962. |
| [13] | Zhaomin WANG, Zheng YI, Ming ZHONG, Yong CHENG, Limin WANG. Research Progress of Antimony-Based Anode Materials for Lithium Ion Batteries [J]. Chinese Journal of Applied Chemistry, 2018, 35(7): 745-755. |
| [14] | LI Bao,LIU Xiaoyang,LI Fan,Esmail Husein M. Salhabib,ZHAO Jilu,WANG Bao. Preparation and Performances of Nano-Micro Structural Ferric Oxide from Flower-Like Iron Alkoxides [J]. Chinese Journal of Applied Chemistry, 2018, 35(3): 356-365. |
| [15] | CHEN Guanghai, BAI Ying, WU Feng, WU Chuan. Two-Dimensional Layered Dicalcium Nitride as Anode Material for Sodium Ion Batteries [J]. Chinese Journal of Applied Chemistry, 2018, 35(3): 366-368. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||