Please wait a minute...
应用化学
Chinese Journal of Applied Chemistry    2018, Vol. 35 Issue (8) : 902-915     DOI: 10.11944/j.issn.1000-0518.2018.08.180177
Review |
Research Progress of Hollow Micro/Nano-Structured Photoanode Materials for Dye-Sensitized Solar Cells
YANG Meia*(),SHI Zhenlingb,XU Nana,MAO Dana,WANG Dana
aState Key Laboratory of Biochemical Engineering,Institute of Process Engineering,Chinese Academy of Sciences,Beijing 100190,China
bSchool of Metallurgical and Ecological Engineering,University of Science and Technology Beijing,Beijing 100083,China
Download: PDF(4538 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

The dye-sensitized solar cell(DSSC) has attracted a great attention in the solar energy conversion fields owing to its advantages including low cost, simple fabrication process, and relatively high efficiency. The component and microstructure of semiconductor photoanode as an important part of DSSC have direct roles on the photoelectrochemical performance of solar cell. Hollow micro/nano-structure can provide large surface area and high loading capacity of dyes, improve the light harvesting and promote the charge transport in photovoltaic devices. Therefore, the photoanode materials with hollow micro/nano-structures became a hot topic in recent years. This review addresses the progress of hollow micro/nano-structured photoanode materials, including hollow microsphere, hollow box,core-shell structure, hierarchical hollow microspheres, multi-shelled structure besides the pure or hybrid components. The relationships between each structure and power conversion efficiency(PCE) are analyzed especially. The facing challenge and prospect of hollow micro/nano-structured photoanode in the future are also discussed.

Keywords hollow micro/nano-structure      multi-shelled structure      dye-sensitized solar cells(DSSC)      photoanode      power conversion efficiency(PCE)     
Fund:Supported by the National Natural Science Foundation of China(No.51472244, No.51672274)
Corresponding Authors: YANG Mei     E-mail: myang@ipe.ac.cn
Received: 2018-05-16           Accepted: 2018-06-26
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
YANG Mei
SHI Zhenling
XU Nan
MAO Dan
WANG Dan
Cite this article:   
YANG Mei,SHI Zhenling,XU Nan, et al. Research Progress of Hollow Micro/Nano-Structured Photoanode Materials for Dye-Sensitized Solar Cells[J]. Chinese Journal of Applied Chemistry, 2018, 35(8): 902-915.
URL:  
http://yyhx.ciac.jl.cn/EN/10.11944/j.issn.1000-0518.2018.08.180177     OR     http://yyhx.ciac.jl.cn/EN/Y2018/V35/I8/902
Fig.1Principle of operation and energy level scheme of the dye-sensitized solar cell[14]
Photoanode Dye Electrolyte PCE/% Ref.
nanocrystalline porous TiO2 film(~4 μm) ADEKA-1 andLEG4 [Co(phen)3]3+/2+ 14.5 [15]
14 μm thick TiO2 film
composed of three layers
SM315 porphyrin iodide/triiodide or Co(Ⅱ)/Co(Ⅲ)
redox mediator
13.0 [17]
TiO2 film(5 μm transparent layer+
5 μm scattering layer)
YD2-o-C8 zinc porphyrin Co(Ⅱ)/Co(Ⅲ)
redox mediator
12.3 [18]
Mesoporous TiO2 Yolk-Shell
Microspheres
- DMII- GuNCS 11.03 [19]
Multilayered AHTNW-MPT-HTS-Branched TiO2 N719 iodide/triiodide redox mediator 11.01 [20]
Nano-embossed hollow spherical TiO2 N719 BMII- GSCN- TBP 10.34 [21]
Multilayer TiO2 N719 iodide/triiodide redox mediator 10.23 [22]
Nanoporous TiO2 N719 CsSnI2.95F0.05 doped with SnF2 10.2 [23]
Table 1Dye-sensitized solar cells systems with high power conversion efficiency(PCE)(η>10%)
Component TiO2 ZnO SnO2 Nb2O5 CeO2 SrTiO3 Zn2SnO4 BaTiO3
Band gap/eV 3.2 3.2 3.5 3.4 3.2 3.4 3.6 3.3
Table 1Band Gap of common photoanode materials[34]
Fig.2Schematic film morphologies of studied TiO2 photoanodes:N(23 nm), M'(23 nm, 50 nm), M(23 nm, 100 nm), S(100 nm)[22]
Fig.3Schematic diagram of hollow micro/nano-structures in this review
Fig.4SEM and TEM images of several typical hollow microspheres
(a,b)quasi-ordered hollow TiO2 hemispheres[38]; (c,d)nano-embossed hollow spherical TiO2[21] ; (e,f,g)Hollow anatase TiO2 porous spheres with V-shaped channels and exposed (101) facets[40]
Fig.5Schematic of dual-functional UC-TiO2 photoanode and energy-level diagram of Er3 + /Yb3 + [41]
(a)the light scattering effect and upconversion function of UC-TiO2 based photoanode; (b)energy-level diagram of Er3+/Yb3+
Fig.6(a)Cross-sectional SEM image of three-layer stacking of TiO2 photoanode. SEM images(b,c,d) and corresponding schematic sketches(e,f,g) of the each layer of TiO2 nano/microstructures:(b,e)HTS branches; (c,f)MPT branches; (d,g)AHTNW branches[20]
Fig.7Illustration of the sequential templating approach to multiple-shelled structure[73]
Fig.8Evolution process of the family of multishelled ZnO hollow microspheres[86]
Fig.9UV/Vis diffuse reflectance spectra(a) and corresponding J-V curves(b) of DSSCs based on ZnO hollow microspheres[86]
[1] Service R F.Is It Time to Shoot for the Sun[J]. Science,2005,309(5734):548-551.
url: http://dx.doi.org/10.1126/science.309.5734.548
[2] Potocnik J.Renewable Energy Sources and the Realities of Setting an Energy Agenda[J]. Science,2007,315(5813):810-811.
url: http://dx.doi.org/10.1126/science.1139086
[3] Schiermeier Q,Tollefson J,Scully T,et al. Energy Alternatives:Electricity without Carbon[J]. Nature,2008,454(7206):816-823.
url: http://dx.doi.org/10.1038/454816a
[4] Hagfeldt A,Boschloo G,Sun L,et al. Dye-Sensitized Solar Cells[J]. Chem Rev,2010,110(11):6595-6663.
url: http://dx.doi.org/10.1021/cr900356p
[5] O'Regan B,Grätzel M. A Low-Cost, High-Efficient Solar Cell Based on Dye-Sensitized Colloidal TiO2 Films[J]. Nature,1991,353(6346):737-740.
url: http://dx.doi.org/10.1038/353737a0
[6] Grätzel M.Solar Energy Conversion by Dye-Sensitized Photovoltaic Cells[J]. Inorg Chem,2005,44(20): 6841-6851.
url: http://dx.doi.org/10.1021/ic0508371
[7] Zhang S,Yang X,Numata Y,et al. Highly Efficient Dye-Sensitized Solar Cells:Progress and Future Challenges[J]. Energy Environ Sci,2013,6(5):1443-1464.
url: http://dx.doi.org/10.1039/c3ee24453a
[8] Chen M,Ye C,Zhou S,et al. Recent Advances in Applications and Performance of Inorganic Hollow Spheres in Devices[J]. Adv Mater,2013,44(49):5343-5351.
[9] Qi J,Lai X,Wang J,et al. Multi-Shelled Hollow Micro-/Nanostructures[J]. Chem Soc Rev,2015,44(19):6749-6773.
url: http://dx.doi.org/10.1039/C5CS00344J
[10] Zhou L,Zhuang Z,Zhao H,et al. Intricate Hollow Structures:Controlled Synthesis and Applications in Energy Storage and Conversion[J]. Adv Mater,2017,29(20):1602914.
url: http://dx.doi.org/10.1002/adma.201602914
[11] Mishra A,Fischer M K,Bäuerle P.Metal-Free Organic Dyes for Dye-Sensitized Solar Cells:From Structure: Property Relationships to Design Rules[J]. Angew Chem Int Ed,2009,48(14):2474-2499.
url: http://dx.doi.org/10.1002/anie.200804709
[12] Chung I,Lee B,He J,et al. All-Solid-State Dye-Sensitized Solar Cells with High Efficiency[J]. Nature,2012,485(7399):486-489.
url: http://dx.doi.org/10.1038/nature11067
[13] Lee C T,Peng J D,Li C T,et al. Ni3Se4 Hollow Architectures as Catalytic Materials for the Counter Electrodes of Dye-Sensitized Solar Cells[J]. Nano Energy,2014,10:201-211.
url: http://dx.doi.org/10.1016/j.nanoen.2014.09.017
[14] Grätzel M.Dye-Sensitized Solar Cells[J]. J Photochem Photobiol C,2003,4:145-153.
url: http://dx.doi.org/10.1016/S1389-5567(03)00026-1
[15] Kakiage K,Aoyama Y,Yano T,et al. Highly-Efficient Dye-Sensitized Solar Cells with Collaborative Sensitization by Silyl-anchor and Carboxy-anchor Dyes[J]. Chem Commun,2015,51(88):15894.
url: http://dx.doi.org/10.1039/C5CC06759F
[16] Ning Z,Fu Y,Tian H.Improvement of Dye-Sensitized Solar Cells:What We Know and What We Need to Know[J]. Energy Environ Sci,2010,3(9):1170-1181.
url: http://dx.doi.org/10.1039/c003841e
[17] Mathew S,Yella A,Gao P,et al. Dye-Sensitized Solar Cells with 13% Efficiency Achieved Through the Molecular Engineering of Porphyrin Sensitizers[J]. Nat Chem,2014,(3):242-247.
[18] Yella A,Lee H W,Tsao H N.Porphyrin-Sensitized Solar Cells with Cobalt(Ⅱ/Ⅲ)-based Redox Electrolyte Exceed 12 Percent Efficiency[J]. Science,2011,334(6056):629-634.
url: http://dx.doi.org/10.1126/science.1209688
[19] Li Z Q,Chen W C,Guo F L,et al. Mesoporous TiO2 Yolk-Shell Microspheres for Dye-Sensitized Solar Cells with a High Efficiency Exceeding 11%[J]. Sci Rep,2015,5:14178.
url: http://dx.doi.org/10.1038/srep14178
[20] Wu W Q,Xu Y F,Rao H S,et al. Multistack Integration of Three-Dimensional Hyperbranched Anatase Titania Architectures for High-Efficiency Dye-Sensitized Solar Cells[J]. J Am Chem Soc,2014,136(17):6437-6445.
url: http://dx.doi.org/10.1021/ja5015635
[21] Koo H J,Kim Y J,Lee Y H,et al. Nano-embossed Hollow Spherical TiO2 as Bifunctional Material for High-Efficiency Dye-Sensitized Solar Cells[J]. Adv Mater,2008,20(1):195-199.
url: http://dx.doi.org/10.1002/adma.200700840
[22] Wang Z S,Kawauchi H,Kashima T,et al. Significant Influence of TiO2 Photoelectrode Morphology on the Energy Conversion Efficiency of N719 Dye-Sensitized Solar Cell[J]. Coord Chem Rev,2004,248(13):1381-1389.
url: http://dx.doi.org/10.1016/j.ccr.2004.03.006
[23] Bach U,Lupo D,Comte P,et al. Solid-state Dye-Sensitized Mesoporous TiO2 Solar Cells with High Photon-to-Electron Conversion Efficiencies[J]. Nature,1998,395(6702):583-585.
url: http://dx.doi.org/10.1038/26936
[24] Nazeeruddin M K,Pechy P,Renouard T,et al. Engineering of Efficient Panchromatic Sensitizers for Nanocrystalline TiO2-based Solar Cells[J]. J Am Chem Soc,2001,123(8):1613-1624.
url: http://dx.doi.org/10.1021/ja003299u
[25] Jose R,Thavasi V,Ramakrishna S.Metal Oxides for Dye-Sensitized Solar Cells[J]. J Am Ceram Soc,2009,92(2):289-301.
url: http://dx.doi.org/10.1111/j.1551-2916.2008.02870.x
[26] Quintana M,Edvinsson T,Hagfeldt A,et al. Comparison of Dye-Sensitized ZnO and TiO2 Solar Cells:Studies of Charge Transport and Carrier Lifetime[J]. J Phys Chem C,2007,111(2):1035-1041.
url: http://dx.doi.org/10.1021/jp065948f
[27] Zhang Q,Dandeneau C S,Zhou X,et al. ZnO Nanostructures for Dye-Sensitized Solar Cells[J]. Adv Mater,2009,21(41):4087-4108.
url: http://dx.doi.org/10.1002/adma.200803827
[28] Gubbala S,Chakrapani V,Kumar V,et al. Band-edge Engineered Hybrid Structures for Dye-Sensitized Solar Cells based on SnO2 Nanowires[J]. Adv Funct Mater,2008,18(16):2411-2418.
url: http://dx.doi.org/10.1002/adfm.200800099
[29] Chen J,Li C,Xu F,et al. Hollow SnO2 Microspheres for High-Efficiency Bilayered Dye Sensitized Solar Cell[J]. RSC Adv,2012,2(19):7384-7387.
url: http://dx.doi.org/10.1039/c2ra20909h
[30] Sayama K,Sugihara H,Arakawa H.Photoelectrochemical Properties of a Porous Nb2O5 Electrode Sensitized by a Ruthenium Dye[J]. Chem Mater,1998,10(12):3825-3832.
url: http://dx.doi.org/10.1021/cm980111l
[31] Law M,Greene L E,Johnson J C,et al. Nanowire Dye-Sensitized Solar Cells[J]. Nat Mater,2005,4:455-459.
url: http://dx.doi.org/10.1038/nmat1387
[32] Deepak T G,Anjusree G S,Thomas S,et al. A Review on Materials for Light Scattering in Dye-sensitized Solar Cells[J]. RSC Adv,2014,4:17615.
url: http://dx.doi.org/10.1039/C4RA01308E
[33] Wang Y F,Li K N,Xu Y F,et al. Hydrothermal Fabrication of Hierarchically Macroporous Zn2SnO4 for Highly Efficient Dye-Sensitized Solar Cells[J]. Nanoscale,2013,5:5940-5948.
url: http://dx.doi.org/10.1039/c3nr01133j
[34] Xu Y,Schoonen M A A. The Absolute Energy Positions of Conduction and Valence Bands of Selected Semiconducting Minerals[J]. Am Mineral,2000,85(3/4):543-556.
url: http://dx.doi.org/10.2138/am-2000-0416
[35] Concina I,Vomiero A.Metal Oxide Semiconductors for Dye- and Quantum-Dot-Sensitized Solar Cells[J]. Small,2015,11(15):1744-1774.
url: http://dx.doi.org/10.1002/smll.201402334
[36] Chen H Y,Kuang D B,Su C Y.Hierarchically Micro/nanostructured Photoanode Materials for Dye-Sensitized Solar Cells[J]. J Mater Chem,2012,22(31):15475-15489.
url: http://dx.doi.org/10.1039/c2jm32402d
[37] Hore S,Nitz P,Vetter C,et al. Scattering Spherical Voids in Nanocrystalline TiO2-enhancement of Efficiency in Dye-Sensitized Solar Cells[J]. Chem Commun,2005,15(15):2011-2013.
[38] Yang S C,Yang D J,Kim J,et al. Hollow TiO2 Hemispheres Obtained by Colloidal Templating for Application in Dye-Sensitized Solar Cells[J]. Adv Mater,2008,20(5):1059-1064.
url: http://dx.doi.org/10.1002/adma.200701808
[39] Khan J,Gu J,Meng Y,et al. Anatase TiO2 Single Crystal Hollow Nanoparticles:Their Facile Synthesis and High-performance in Dye-Sensitized Solar Cells[J]. CrystEngComm,2017,19:325-334.
url: http://dx.doi.org/10.1039/C6CE02062C
[40] Pan H,Qian J,Cui Y,et al. Hollow Anatase TiO2 Porous Microspheres with V-Shaped Channels and Exposed (101) Facets:Anisotropic Etching and Photovoltaic Properties[J]. J Mater Chem,2012,22(13):6002-6009.
url: http://dx.doi.org/10.1039/c2jm15925b
[41] Wu X,Lu G Q,Wang L.Dual-Functional Upconverter-Doped TiO2 Hollow Shells for Light Scattering and Near-Infrared Sunlight Harvesting in Dye-Sensitized Solar Cells[J]. Adv Energy Mater,2013,3(6):704-707.
url: http://dx.doi.org/10.1002/aenm.201200933
[42] Han G,Wang M,Li D,et al. Novel Upconversion Er,Yb-CeO2 Hollow Spheres as Scattering Layer Materials for Efficient Dye-sensitized Solar Cells[J]. Sol Energy Mater Sol Cells,2017,160:54-59.
url: http://dx.doi.org/10.1016/j.solmat.2016.10.021
[43] Li Y Y,Wang J G,Liu X R,et al. Au/TiO2 Hollow Spheres with Synergistic Effect of Plasmonic Enhancement and Light Scattering for Improved Dye-Sensitized Solar Cells[J]. ACS Appl Mater Interfaces,2017,9(37):31691-31698.
url: http://dx.doi.org/10.1021/acsami.7b04624
[44] Yun J,Hwang S H,Jang J.Fabrication of Au@Ag Core/Shell Nanoparticles Decorated TiO2 Hollow Structure for Efficient Light-Harvesting in Dye-Sensitized Solar Cells[J]. ACS Appl Mater Interfaces,2015,7(3):2055-2063.
url: http://dx.doi.org/10.1021/am508065n
[45] Lü X,Huang F,Mou X,et al. A General Preparation Strategy for Hybrid TiO2 Hierarchical Spheres and Their Enhanced Solar Energy Utilization Efficiency[J]. Adv Mater,2010,22(33):3719-3722.
url: http://dx.doi.org/10.1002/adma.201001008
[46] He C X,Lei B X,Wang Y F,et al. Sonochemical Preparation of Hierarchical ZnO Hollow Spheres for Efficient Dye-Sensitized Solar Cells[J]. Chem Eur J,2010,16(29):8757-8761.
url: http://dx.doi.org/10.1002/chem.201000264
[47] Wang G,Zhu X,Yu J.Bilayer Hollow/Spindle-like Anatase TiO2 Photoanode for High Efficiency Dye-Sensitized Solar Cells[J]. J Power Sources,2015,278:344-351.
url: http://dx.doi.org/10.1016/j.jpowsour.2014.12.091
[48] Zhao L,Li J,Shi Y,et al. Double Light-scattering Layer Film based on TiO2 Hollow Spheres and TiO2 Nanosheets:Improved Efficiency in Dye-Sensitized Solar Cells[J]. J Alloys Compd,2013,575(20):168-173
url: http://dx.doi.org/10.1016/j.jallcom.2013.02.045
[49] Chavaa R K,Lee W M,Oh S Y,et al. Improvement in Light Harvesting and Device Performance of Dye Sensitized Solar Cells Using Electrophoretic Deposited Hollow TiO2 NPs Scattering Layer[J]. Sol Energy Mater Sol Cells,2017,161:255-262.
url: http://dx.doi.org/10.1016/j.solmat.2016.11.037
[50] Yu J,Li Qn,Shu Z.Dye-sensitized Solar Cells based on Double-layered TiO2 Composite Films and Enhanced Photovoltaic Performance[J]. Electrochim Acta,2011,56(18):6293-6298.
url: http://dx.doi.org/10.1016/j.electacta.2011.05.045
[51] Zhang Y,Zhang J,Wang P,et al. Anatase TiO2 Hollow Spheres Embedded TiO2 Nanocrystalline Photoanode for Dye-Sensitized Solar Cells[J]. Mater Chem Phys,2010,123(2/3):595-600.
url: http://dx.doi.org/10.1016/j.matchemphys.2010.05.020
[52] Pang H,Yang H,Guo C X,et al. Nanoparticle Self-assembled Hollow TiO2 Spheres with well Matching Visible Light Scattering for High Performance Dye-Sensitized Solar Cells[J]. Chem Commun,2012,48(70):8832-8834.
url: http://dx.doi.org/10.1039/c2cc34355j
[53] Dadgostar S,Tajabadi F,Taghavinia N.Mesoporous Submicrometer TiO2 Hollow Spheres as Scatterers in Dye-Sensitized Solar Cells[J]. ACS Appl Mater Interfaces,2012,4(6):2964-2968.
url: http://dx.doi.org/10.1021/am300329p
[54] Yu J,Fan J,Zhao L.Dye-Sensitized Solar Cells Based on Hollow Anatase TiO2 Spheres Prepared by Self-transformation Method[J]. Electrochim Acta,2010,55(3):597-602.
url: http://dx.doi.org/10.1016/j.electacta.2009.09.021
[55] Niu L,Zhang Q,Liu J,et al. TiO2 Nanoparticles Embedded in Hollow Cube with Highly Exposed {001} Facets:Facile Synthesis and Photovoltaic Applications[J]. J Alloys Compd,2016,656:863-870.
url: http://dx.doi.org/10.1016/j.jallcom.2015.10.039
[56] Feng J,Hong Y,Zhang J,et al. Novel Core-Shell TiO2 Microsphere Scattering Layer for Dye-Sensitized Solar Cells[J]. J Mater Chem A,2014,2(5):1502-1508.
url: http://dx.doi.org/10.1039/C3TA13523C
[57] Bai J,Sun X,Han G,et al. Double-shell CeO2@TiO2 Hollow Spheres Composites with Enhanced Light Harvesting and Electron Transfer in Dye-Sensitized Solar Cells[J]. J Alloys Compd,2017,22:864-871.
[58] Kay A,Grätzel M.Dye-Sensitized Core-Shell Nanocrystals:Improved Efficiency of Mesoporous Tin Oxide Electrodes Coated with a Thin Layer of an Insulating Oxide[J]. Chem Mater,2002,14(7):2930-2935.
url: http://dx.doi.org/10.1021/cm0115968
[59] Xie F,Li Y,Dou J,et al. Facile Synthesis of SnO2 Coated Urchin-like TiO2 Hollow Microspheres as Efficient Scattering Layer for Dye-Sensitized Solar Cells[J]. J Power Sources,2016,336:143-149.
url: http://dx.doi.org/10.1016/j.jpowsour.2016.10.061
[60] Du J,Qi J,Wang D,et al. Facile Synthesis of Au@TiO2 Core-Shell Hollow Spheres for Dye-Sensitized Solar Cells with Remarkably Improved Efficiency[J]. Energy Environ Sci,2012,5(5):6914-6918.
url: http://dx.doi.org/10.1039/c2ee21264a
[61] Thapa A,Zai J,Elbohy H,et al. TiO2 Coated Urchin-like SnO2 Microspheres for Efficient Dye-Sensitized Solar Cells[J]. Nano Research,2014,7(8):1154-1163.
url: http://dx.doi.org/10.1007/s12274-014-0478-z
[62] Wu W Q,Xu Y F,Rao H S,et al. Constructing 3D Branched Nanowire Coated Macroporous Metal Oxide Electrodes with Homogeneous or Heterogeneous Compositions for Efficient Solar Cells[J]. Angew Chem Int Ed,2014,53(19):4816-4821.
url: http://dx.doi.org/10.1002/anie.201402371
[63] Pan J H,Xing Wang Z,Huang Q,et al. Large-scale Synthesis of Urchin-like Mesoporous TiO2 Hollow Spheres by Targeted Etching and Their Photoelectrochemical Properties[J]. Adv Funct Mater,2014,24(1):95-104.
url: http://dx.doi.org/10.1002/adfm.201300946
[64] Wang H,Li B,Gao J,et al. SnO2 Hollow Nanospheres Enclosed by Single Crystalline Nanoparticles for Highly Efficient Dye-Sensitized Solar Cells[J]. CrystEngComm,2012,14(16):5177-5181.
url: http://dx.doi.org/10.1039/c2ce06531b
[65] Ahn S H,Kim D J,Chi W S,et al. Hierarchical Double-Shell Nanostructures of TiO2 Nanosheets on SnO2 Hollow Spheres for High-Efficiency, Solid-State, Dye-Sensitized Solar Cells[J]. Adv Funct Mater,2014,24(32):5037-5044.
url: http://dx.doi.org/10.1002/adfm.201400774
[66] Wang X,Feng J,Bai Y,et al. Synthesis, Properties, and Applications of Hollow Micro-/Nanostructures[J]. Chem Rev,2016,116(18):10983-11060.
url: http://dx.doi.org/10.1021/acs.chemrev.5b00731
[67] Wang J,Tang H,Wang H,et al. Multi-shelled Hollow Micro-/Nanostructures:Promising Platforms for Lithium-Ion Batteries[J]. Mater Chem Front,2017,1(3):414-430.
url: http://dx.doi.org/10.1039/C6QM00273K
[68] Xu H,Wang W.Template Synthesis of Multishelled Cu2O Hollow Spheres with a Single-Crystalline Shell Wall[J]. Angew Chem Int Ed,2007,46(9):1489-1492.
url: http://dx.doi.org/10.1002/anie.200603895
[69] Zhang H,Zhu Q,Zhang Y,et al. One-Pot Synthesis and Hierarchical Assembly of Hollow Cu2O Microspheres with Nanocrystals-Composed Porous Multishell and Their Gas-Sensing Properties[J]. Adv Funct Mater,2007,17(15): 2766-2771.
url: http://dx.doi.org/10.1002/adfm.200601146
[70] Wang X,Wu X L,Guo Y G,et al. Synthesis and Lithium Storage Properties of Co3O4 Nanosheet-Assembled Multishelled Hollow Spheres[J]. Adv Funct Mater,2010,20(10):1680-1686.
url: http://dx.doi.org/10.1002/adfm.200902295
[71] Liu J,Hartono S B,Jin Y G,et al. A Facile Vesicle Template Route to Multi-shelled Mesoporous Silica Hollow Nanospheres[J]. J Mater Chem,2010,20(22) 4595-4601.
url: http://dx.doi.org/10.1039/b925201k
[72] Xi G,Yan Y,Ma Q,et al. Synthesis of Multiple-Shell WO3 Hollow Spheres by a Binary Carbonaceous Template Route and Their Applications in Visible-Light Photocatalysis[J]. Chem Eur J,2012,18(44):13949-13953.
url: http://dx.doi.org/10.1002/chem.201202312
[73] Lai X Y,Li J,Korgel B A,et al. General Synthesis and Gas-Sensing Properties of Multiple-Shell Metal Oxide Hollow Microspheres[J]. Angew Chem Int Ed,2011,50(12):2738-2741.
url: http://dx.doi.org/10.1002/anie.201004900
[74] Li H,Ma H,Yang M,et al. Highly Controlled Synthesis of Multi-shelled NiO Hollow Microspheres for Enhanced Lithium Storage Properties[J]. Mater Res Bull,2017,87:224-229.
url: http://dx.doi.org/10.1016/j.materresbull.2016.12.005
[75] Ren H,Sun J,Yu R,et al. Controllable Synthesis of Mesostructures from TiO2 Hollow to Porous Nanospheres with Superior Rate Performance for Lithium Ion Batteries[J]. Chem Sci,2016,7(1):793-798.
url: http://dx.doi.org/10.1039/C5SC03203B
[76] Wang J,Tang H,Zhang L,et al. Multi-shelled Metal Oxides Prepared via an Anion-Adsorption Mechanism for Lithium-Ion Batteries[J]. Nat Energy,2016,1:16050.
url: http://dx.doi.org/10.1038/nenergy.2016.50
[77] Xu S,Hessel C,Ren H,et al. α-Fe2O3 Multi-shelled Hollow Microspheres for Lithium Ion Battery Anodes with Superior Capacity and Charge Retention[J]. Energy Environ Sci,2013,7(2):632-637.
[78] Wang J,Yang N,Tang H,et al. Accurate Control of Multi-shelled Co3O4 Hollow Microspheres for High-Performance Anode Materials in Lithium Ion Batteries[J]. Angew Chem Int Ed,2013,52(25):6417-6420.
url: http://dx.doi.org/10.1002/anie.201301622
[79] Ren H,Yu R,Wang J,et al. Multi-shelled TiO2 Hollow Microspheres as Anodes with Superior Reversible Capacity for Lithium Ion Batteries[J]. Nano Lett,2014,14(11):6679-6684.
url: http://dx.doi.org/10.1021/nl503378a
[80] Wang J,Tang H,Ren H,et al. pH-Regulated Synthesis of Multi-Shelled Manganese Oxide Hollow Microspheres as Supercapacitor Electrodes Using Carbonaceous Microspheres as Templates[J]. Adv Sci,2014,1(1):1719-1720.
[81] Zhao X,Yu R,Tang H,et al. Formation of Septuple-Shelled (Co2/3Mn1/3)(Co5/6Mn1/6)2O4 Hollow Spheres as Electrode Material for Alkaline Rechargeable Battery[J]. Adv Mater,2017,29(34):1700550.
url: http://dx.doi.org/10.1002/adma.201700550
[82] Lai X,Halperta J E,Wang D.Recent advances in Micro-/Nano-structured Hollow Spheres for Energy Applications:From Simple to Complex Systems[J]. Energy Environ Sci,2012,5(2):5604-5618.
url: http://dx.doi.org/10.1039/C1EE02426D
[83] Qian J,Liu P,Xiao Y,et al. TiO2-Coated Multilayered SnO2 Hollow Microspheres for Dye-Sensitized Solar Cells[J]. Adv Mater,2009,21(36):3663-3667.
url: http://dx.doi.org/10.1002/adma.200900525
[84] Wu X,Lu G Q,Wang L.Shell-in-Shell TiO2 Hollow Spheres Synthesized by One-Pot Hydrothermal Method for Dye-Sensitized Solar Cell Application[J]. Energy Environ Sci,2011,4(9):3565-3572.
url: http://dx.doi.org/10.1039/c0ee00727g
[85] Hwang S H,Yun J,Jang J.Multi-Shell Porous TiO2 Hollow Nanoparticles for Enhanced Light Harvesting in Dye-Sensitized Solar Cells[J]. Adv Funct Mater,2014,24(48):7619-7626.
url: http://dx.doi.org/10.1002/adfm.201401915
[86] Dong Z,Lai X,Halpert J E,et al. Accurate Control of Multishelled ZnO Hollow Microspheres for Dye-Sensitized Solar Cells with High Efficiency[J]. Adv Mater,2012,24(8):1046-1049.
url: http://dx.doi.org/10.1002/adma.201104626
[87] Xia W,Mei C,Zeng X,et al. Mesoporous Multi-shelled ZnO Microspheres for the Scattering Layer of Dye Sensitized Solar Cell with a High Efficiency[J]. Appl Phys Lett,2016,108:113902.
url: http://dx.doi.org/10.1063/1.4944532
[88] Dong Z,Ren H,Hessel C M,et al. Quintuple-Shelled SnO2 Hollow Microspheres with Superior Light Scattering for High-Performance Dye Sensitized Solar Cells[J]. Adv Mater,2014,26(6):905-909.
url: http://dx.doi.org/10.1002/adma.201304010
[89] Yang N L.The PrThe Preparation of Nano Composites and Their Applications in Solar Energy Conversion[M]. Springer Berlin Heidelberg,2017.
[90] N L.When Hierarchical Structure Meets the Solar Cell[J]. Sci Bull,2017,62(4):234-235.
url: http://dx.doi.org/10.1016/j.scib.2017.01.023
[91] Du J,Lai X,Yang N,et al. Hierarchically Ordered Macro-Mesoporous TiO2-Graphene Composite Films:Improved Mass Transfer, Reduced Charge Recombination, and Their Enhanced Photocatalytic Activities[J]. ACS Nano,2011,5(1):590-596.
url: http://dx.doi.org/10.1021/nn102767d
[92] Yang Y,Jin Q,Mao Dan,et al. Dually Ordered Porous TiO2-rGO Composites with Controllable Light Absorption Properties for Efficient Solar Energy Conversion[J]. Adv Mater,2017,29(4):1604795.
url: http://dx.doi.org/10.1002/adma.201604795
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
Chinese Journal of Applied Chemistry
Copyright © 2009 Chinese Journal of Applied Chemistry
Tel: 0431-85262016 85262330  Fax: 0431-85685653 E-mail: yyhx@ciac.ac.cn