Chinese Journal of Applied Chemistry ›› 2022, Vol. 39 ›› Issue (02): 205-222.DOI: 10.19894/j.issn.1000-0518.210059
• Review • Next Articles
Ying ZHAO1, Yi-Jia SHAO1, Luo-Qian LI1, Jian-Wei REN2(), Shi-Jun LIAO1()
Received:
2021-02-02
Accepted:
2021-06-09
Published:
2022-02-10
Online:
2022-02-09
Contact:
Jian-Wei REN,Shi-Jun LIAO
Supported by:
CLC Number:
Ying ZHAO, Yi-Jia SHAO, Luo-Qian LI, Jian-Wei REN, Shi-Jun LIAO. Research Progress on the Degradation Mechanism and Cycle Stability Improvement of Lithium-Rich Cathode Materials[J]. Chinese Journal of Applied Chemistry, 2022, 39(02): 205-222.
Add to citation manager EndNote|Ris|BibTeX
URL: http://yyhx.ciac.jl.cn/EN/10.19894/j.issn.1000-0518.210059
Fig.4 (a)Honeycomb-type cation arrangement in the TM layer of Li1.2Ni0.13Co0.13Mn0.54O2;(b)Oxygen in the honeycomb structure coordinated by Mn4+and Li+;(c)O-/O2-Energy and state density diagram[47]
Fig.5 Figures of the fitting results of PDF spectra at different states of OCV,pristine,charged to 4.4 V,and charged to 4.8 V(left);Figures of the local structure around the center Mn atom. Purple:Mn,red:O(right)[49]
Fig.9 (a)First charge-discharge characteristics of NM-LRM and PD-LRM at 0.1 C;(b)Rate performance of NM-LRM and PD-LRM;(c)Cycle performance of NM-LRM and PD-LRM at 1 C[79]
Fig.10 (a)First charge-discharge characteristics of LMNC,Na-LMNC,F-LMNC,and NaF-LMNC at 0.1 C;(b)Rate performance of LMNC,Na-LMNC,F-LMNC,and NaF-LMNC;(c)Cycle performance of LMNC,Na-LMNC,F-LMNC,and NaF-LMNC at 1 C;(d)Voltage fading of LMNC,Na-LMNC,F-LMNC,and NaF-LMNC[86]
Fig.12 (a)First charge-discharge characteristics of materials before and after modification at 0.1 C;(b)Cycling performance of materials before and after modification at 1 C;(c)Rate performance of materials before and after modification at 0.1 C[104]
Fig.14 (a)First charge-discharge performance of materials before and after modification at 0.1 C;(b)rate performance of materials before and after modification;cycling performance of materials before and after modification at(c)1 C,(d)5 C[120]
Fig.15 (a)first charge-discharge performance of LLO@MDZ and LLO at 0.1 C;(b)Rate performance of LLO@MDZ and LLO;(c)Cycling performance and coulombic efficiency of LLO@MDZ at 1 C;(d)Cycling performance and coulombic efficiency of LLO at 1 C[131]
[1] | CROGUENNEC L, PALACIN M R. Recent achievements on inorganic electrode materials for lithium-ion batteries[J]. J Am Chem Soc, 2015, 137(9):3140-3156. |
[2] | ETACHERI V, MAROM R, ELAZARI R, et al. Challenges in the development of advanced Li-ion batteries: a review[J]. Energy Environ Sci, 2011, 4(9):3243-3262. |
[3] | NITTA N, WU F, LEE J T, et al. Li-ion battery materials: present and future[J]. Mater Today, 2015, 18(5):252-264. |
[4] | DUNN B, KAMATH H, TARASCON J M. Electrical energy storage for the grid: a battery of choices[J]. Science, 2011, 334(6058):928. |
[5] | ARMSTRONG A R, LYNESS C, PANCHMATIA P M, et al. The lithium intercalation process in the low-voltage lithium battery anode Li1+x V1-x O2 [J]. Nat Mater, 2011, 10:223. |
[6] | HU Y, GAO Y, FAN L, et al. Electrochemical study of poly (2, 6-anthraquinonyl sulfide) as cathode for alkali-metal-ion batteries[J]. Adv Energy Mater, 2020, 10(48):2002780. |
[7] | SU C, HAN B, MA J, et al. A novel anthraquinone-containing poly (triphenylamine) derivative: preparation and electrochemical performance as cathode for lithium-ion batteries[J]. Chem Electro Chem, 2020, 7(19):4101-4107. |
[8] | KOBAYASHI H, TSUKASAKI T, OGASAWARA Y, et al. Cation-disorder-assisted reversible topotactic phase transition between antifluorite and rocksalt toward high-capacity lithium-ion batteries[J]. ACS Appl Mater Interfaces, 2020, 12(39):43605-43613. |
[9] | CHANG Q, LUO Z, FU L, et al. A new cathode material of NiF2for thermal batteries with high specific power[J]. Electrochim Acta, 2020, 361:137051. |
[10] | LUO L W, ZHANG C, XIONG P, et al. A redox-active conjugated microporous polymer cathode for high-performance lithium/potassium-organic batteries[J]. Sci China Chem, 2020, 64(1):72-81. |
[11] | YU Z, WANG X, WAN P, et al. Li1.233Mo0.467Fe0.3O2as an advanced cathode material for high-performance lithium-ion battery[J]. Mater Lett, 2019, 249:45-48. |
[12] | SHAO Y, HUANG B, LU Z, et al. High-performance 3D pinecone-like LiNi1/3Co1/3Mn1/3O2cathode for lithium-ion batteries[J]. Energy Technol, 2019, 7(4):1800769. |
[13] | KALLURI S, YOON M, JO M, et al. Surface engineering trategies of layered LiCoO2cathode material to realize high-energy and high-voltage Li-ion cells[J]. Adv Energy Mater, 2017, 7(1):1601507. |
[14] | WEI Y, ZHENG J, CUI S, et al. Kinetics tuning of Li-ion diffusion in layered Li (Ni x Mn y Coz) O2 [J]. J Am Chem Soc, 2015, 137(26):8364-8367. |
[15] | LU Z H, MACNEIL D D, DAHN J R. Layered cathode materials Li Ni x Li(1/3-2x/3)Mn(2/3-x/3)O2for lithium-ion batteries[J]. Electrochem Solid State Lett, 2001, 4(11):A191-A194. |
[16] | LU Z H, BEAULIEU L Y, DONABERGER R A, et al. Synthesis, structure, and electrochemical behavior of Li Ni x Li1/3-2x/3Mn2/3-x/3O2 [J]. J Electrochem Soc, 2002, 149(6):A778-A791. |
[17] | LU Z H, DAHN J R. Understanding the anomalous capacity of Li/Li Ni x Li(1/3-2x/3)Mn(2/3-x/3)O2cells using in situ X-ray diffraction and electrochemical studies[J]. J Electrochem Soc, 2002, 149(7):A815-A822. |
[18] | SHUNMUGASUNDARAM R, SENTHIL ARUMUGAM R, DAHN J R. High capacity Li-rich positive electrode materials with reduced first-cycle irreversible capacity loss[J]. Chem Mater, 2015, 27(3):757-767. |
[19] | JOHNSON C S, KIM J S, LEFIEF C, et al. The significance of the Li2MnO3component in‘composite’xLi2MnO3·(1-x) LiMn0.5Ni0.5O2electrodes[J]. Electrochem Commun, 2004, 6(10):1085-1091. |
[20] | KIM J S, JOHNSON C S, VAUGHEY J T, et al. Electrochemical and structural properties of xLi2M′O3·(1-x) LiMn0.5Ni0.5O2electrodes for lithium batteries (M′=Ti, Mn, Zr;0≤x-0.3)[J]. Chem Mater, 2004, 16(10):1996-2006. |
[21] | ZHANG M, CHEN M, SHAO Y, et al. Enhanced performance of LiNi0.03Mo0.01Mn1.96O4cathode materials coated with biomass-derived carbon layer[J]. Ionics, 2018, 25(3):917-925. |
[22] | 邵奕嘉, 黄斌, 刘全兵, 等. 三元镍钴锰正极材料的制备及改性[J]. 化学进展, 2018, 30(4):410-419. |
SHAO Y J, HUANG B, LIU Q B, et al. Preparation and Modification of Ni-Co-Mn ternary cathode materials[J]. Chem Ind Eng Prog, 2018, 30(4):410-419. | |
[23] | 廖世军, 卲奕嘉, 叶跃坤, 等. 一种溶剂热法制备三元正极材料及其制备方法[P]. 广东:CN107959022A, 2018-04-24. |
LIAO S J, SHAO Y J, YE Y, K, et al. A solvothermal method for preparing ternary cathode material and its preparation method[P]. Guangdong:CN107959022A, 2018-04-24. | |
[24] | 廖世军, 张和, 张梦诗, 等. 一种碳包覆的富锂多元锂离子电池正极材料及其制备方法[P]. 广东:CN107369817A, 2017-11-21. |
LIAO S J, ZHAO H, ZHANG M S, et al. A Carbon-coated lithium-rich multi-element lithium-ion battery cathode material and its preparation method[P]. Guangdong:CN107369817A, 2017-11-21. | |
[25] | CHEN M, REN W, SHAO Y, et al. Lithium-rich layered nickel-manganese oxides as high-performance cathode materials: the effects of composition and PEG on performance[J]. Ionics, 2016, 22(11):2067-2073. |
[26] | 鲁志远, 刘燕妮, 廖世军. 锂离子电池富锂锰基层状正极材料的稳定性[J]. 化学进展, 2020, 32(10):1504-1514. |
LU Z Y, LIU Y N, LIAO S J. Enhancing the stability of lithium-rich manganese-based layered cathode materials for Li-ion batteries application[J]. Chem Ind Eng Prog, 2020, 32(10):1504-1514. | |
[27] | 张和, 张梦诗, 廖世军. 富锂三元层状正极材料的研究进展[J]. 应用化学, 2018, 35(11):1277-1288. |
ZHANG H, ZHANG M S, LIAO S J. Research progress of lithium-rich ternary layered cathode materials[J]. Chinese J Appl Chem, 2018, 35(11):1277-1288. | |
[28] | 廖世军, 鲁志远, 赵莹. 一种提升富锂三元材料循环稳定性及容量的方法及其材料[P]. 广东省:CN110518210A, 2019-11-29. |
LIAO S J, LU Z Y, ZHAO Y. A method and material for improving the cycling stability and capacity of lithium-rich ternary materials[P]. Guangdong Province:CN110518210A, 2019-11-29. | |
[29] | 廖世军, 鲁志远, 赵莹. 一种富锂三元正极材料及其绿色制备方法[P]. 广东省:CN109768272A, 2019-05-17. |
LIAO S J, LU Z Y, ZHAO Y. A lithium-rich ternary cathode material and its green preparation method[P]. Guangdong Province:CN109768272A, 2019-05-17. | |
[30] | ZHENG J, MYEONG S, CHO W, et al. Li-and Mn-rich cathode materials: challenges to commercialization[J]. Adv Energy Mater, 2016, 7(6):1601284. |
[31] | LEE W, MUHAMMAD S, SERGEY C, et al. Advances in the cathode materials for lithium rechargeable batteries[J]. Angew Chem Int Ed Engl, 2020, 59(7):2578-2605. |
[32] | YU H, ZHOU H. High-energy cathode materials (Li2MnO3-LiMO2) for lithium-ion batteries[J]. J Phys Chem Lett, 2013, 4(8):1268-1280. |
[33] | BOULINEAU A, SIMONIN L, COLIN J F, et al. Evolutions of Li1.2Mn0.61Ni0.18Mg0.01O2during the initial charge/discharge cycle studied by advanced electron microscopy[J]. Chem Mater, 2012, 24(18):3558-3566. |
[34] | YUH, ISHIKAWAR, SOYG, et al. Direct atomic-resolution observation of two phases in the Li1.2Mn0.567Ni0.166Co0.067O2cathode material for lithium-ion batteries[J]. Angew Chem Int Ed Engl, 2013, 52(23):5969-5973. |
[35] | OHZUKU T, NAGAYAMA M, TSUJI K, et al. High-capacity lithium insertion materials of lithium nickel manganese oxides for advanced lithium-ion batteries: toward rechargeable capacity more than 300 mA·h·g-1 [J]. J Mater Chem, 2011, 21(27):10179-10188. |
[36] | AMMUNDSEN B, PAULSEN J, DAVIDSON I, et al. Local structure and first cycle redox mechanism of layered Li1.2Cr0.4Mn0.4O2cathode material[J]. J Electrochem Soc, 2002, 149(4):A431-A436. |
[37] | MOHANTY D, KALNAUS S, MEISNER R A, et al. Structural transformation of a lithium-rich Li1.2Co0.1Mn0.55Ni0.15O2 cathode during high voltage cycling resolved by in situ X-ray diffraction[J]. J Power Sources, 2013, 229:239-248. |
[38] | WU Y, MANTHIRAM A. Effect of Al3+and F-doping on the irreversible oxygen loss from layered Li Li0.17Mn0.58Ni0.25O2 cathodes[J]. Electrochem Solid State Lett, 2007, 10(6):A151-A154. |
[39] | WU F, LI W, CHEN L, et al. Renovating the electrode-electrolyte interphase for layered lithium- &manganese-rich oxides[J]. Energy Storage Mater, 2020, 28:383-392. |
[40] | ZHAO S, YAN K, ZHANG J, et al. Reaction mechanisms of layered lithium-rich cathode materials for high-energy lithium-ion batteries[J]. Angew Chem Int Ed Engl, 2021, 60(5):2208-2220. |
[41] | KONISHI H, HIRANO T, TAKAMATSU D, et al. Electrochemical reaction mechanism of two components in xLi2MnO3-(1-x)LiNi0.5Mn0.5O2and effect of x on the electrochemical performance in lithium-ion battery[J]. J Electroanal Chem, 2020, 873:114402. |
[42] | ARMSTRONG A R, HOLZAPFEL M, NOVAK P, et al. Demonstrating oxygen loss and associated structural reorganization in the lithium battery cathode LiNi0.2Li0.2Mn0.6O2 [J]. J Am Chem Soc, 2006, 128(26):8694-8698. |
[43] | TANG Z K, XUE Y F, TEOBALDI G, et al. The oxygen vacancy in Li-ion battery cathode materials[J]. Nanoscale Horiz, 2020, 5(11):1453-1466. |
[44] | CUI S L, ZHANG X, WU X W, et al. Understanding the structure-performance relationship of lithium-rich cathode materials from an oxygen-vacancy perspective[J]. ACS Appl Mater Interfaces, 2020, 12(42):47655-47666. |
[45] | DING X, LI Y X, WANG S, et al. Towards improved structural stability and electrochemical properties of a Li-rich material by a strategy of double gradient surface modification[J]. Nano Energy, 2019, 61:411-419. |
[46] | MUHAMMAD S, KIM H, KIM Y, et al. Evidence of reversible oxygen participation in anomalously high capacity Li-and Mn-rich cathodes for Li-ion batteries[J]. Nano Energy, 2016, 21:172-184. |
[47] | LUO K, ROBERTS M R, HAO R, et al. Charge-compensation in 3D-transition-metal-oxide intercalation cathodes through the generation of localized electron holes on oxygen[J]. Nat Chem, 2016, 8(7):684-691. |
[48] | NAKAYAMA K, ISHIKAWA R, KOBAYASHI S, et al. Dislocation and oxygen-release driven delithiation in Li2MnO3 [J]. Nat Commun, 2020, 11(1):4452. |
[49] | WANG L, DAI A, XU W, et al. Structural distortion induced by manganese activation in a lithium-rich layered cathode[J]. J Am Chem Soc, 2020, 142(35):14966-14973. |
[50] | HONG J, LIM H D, LEE M, et al. Critical role of oxygen evolved from layered Li-excess metal oxides in lithium rechargeable batteries[J]. Chem Mater, 2012, 24(14):2692-2697. |
[51] | YU X Y, YU L, LOU X W. Metal sulfide hollow nanostructures for electrochemical energy storage[J]. Adv Energy Mater, 2016, 6(3):1501333. |
[52] | SINGER A, ZHANG M, HY S, et al. Nucleation of dislocations and their dynamics in layered oxide cathode materials during battery charging[J]. Nat Energy, 2018, 3(8):641-647. |
[53] | LIU H, HARRIS K J, JIANG M, et al. Unraveling the rapid performance decay of layered high-energy cathodes: from nanoscale degradation to drastic bulk evolution[J]. ACS Nano, 2018, 12(3):2708-2718. |
[54] | DING X, LI Y X, DENG M M, et al. Cesium doping to improve the electrochemical performance of layered Li1.2Ni0.13Co0.13Mn0.54O2cathode material[J]. J Alloys Compd, 2019, 791:100-108. |
[55] | ZHANG K, SHENG H, WU X, et al. Improving electrochemical properties by Sodium doping for lithium-rich layered oxides[J]. ACS Appl Energ Mater, 2020, 3(9):8953-8959. |
[56] | CHEN B, ZHAO B, ZHOU J, et al. Enhanced electrochemical performance of Li1.2Ni0.2Mn0.6O2cathode materials through facile layered/spinel phase tuning[J]. J Solid State Electrochem, 2018, 22(8):2587-2596. |
[57] | LIU Y, LIU D, WU H H, et al. Improved cycling stability of Na-doped cathode materials Li1.2Ni0.2Mn0.6O2 via a facile synthesis[J]. ACS Sustainable Chem Eng, 2018, 6(10):13045-13055. |
[58] | XUE Z, QI X, LI L, et al. Sodium doping to enhance electrochemical performance of overlithiated oxide cathode materials for Li-ion batteries via Li/Na ion-exchange method[J]. ACS Appl Mater Interfaces, 2018, 10(32):27141-27149. |
[59] | LIU Z, ZHANG Z, LIU Y, et al. Facile and scalable fabrication of K+-doped Li1.2Ni0.2Co0.08Mn0.52O2cathode with ultra high capacity and enhanced cycling stability for lithium-ion batteries[J]. Solid State Ion, 2019, 332:47-54. |
[60] | YANG M, HU B, GENG F, et al. Mitigating voltage decay in high-capacity Li1.2Ni0.2Mn0.6O2cathode material by surface K+doping[J]. Electrochim Acta, 2018, 291:278-286. |
[61] | JIN Y, XU Y, REN F, et al. Mg-doped Li1.133Ni0.2Co0.2Mn0.467O2in Li site as high-performance cathode material for Li-ion batteries[J]. Solid State Ion, 2019, 336:87-94. |
[62] | MENG F, GUO H, WANG Z, et al. Magnesium-doped Li[Li0.2Mn0.54Ni0.13Co0.13]O2cathode with high rate capability and improved cyclic stability[J]. Ionics, 2018, 25(5):1967-1977. |
[63] | LOU M, FAN S S, YU H T, et al. Mg-doped Li1.2Mn0.54Ni0.13Co0.13O2nano flakes with improved electrochemical performance for lithium-ion battery application[J]. J Alloys Compd, 2018, 739:607-615. |
[64] | XU G, XUE Q, LI J, et al. Understanding the enhanced electrochemical performance of Samarium substituted Li[Li0.2Mn0.54-x Sm x Co0.13Ni0.13]O2cathode material for lithium ion batteries[J]. Solid State Ion, 2016, 293:7-12. |
[65] | ETEFAGH R, ROZATI S M, ARABI H. Al-doped Li1.21[Mn0.54Ni0.125Co0.125]O2cathode material with enhanced electrochemical properties for lithium-ion battery[J]. Appl Phys A, 2020, 126(10):814. |
[66] | SETENIB, RAPULENYANEN, NGILAJC, et al. Structural and electrochemical behavior of Li1.2Mn0.54Ni0.13Co0.13-x Al x O2(x=0.05) positive electrode material for lithium-ion battery[J]. Mater Today: Proc, 2018, 5(4):10479-10487. |
[67] | LIU S, LIU Z, SHEN X, et al. Surface doping to enhance structural integrity and performance of Li-rich layered oxide[J]. Adv Energy Mater, 2018, 8(31):1802105. |
[68] | LI H, JIAN Z, YANG P, et al. Niobium doping of Li1.2Mn0.54Ni0.13Co0.13O2cathode materials with enhanced sructural stability and electrochemical performance[J]. Ceram Int, 2020, 46(15):23773-23779. |
[69] | BAO L, YANG Z, CHEN L, et al. The effects of trace Yb doping on the electrochemical performance of Li-rich layered oxides[J]. ChemSusChem, 2019, 12(10):2294-2301. |
[70] | CHEN J, ZOU G, DENG W, et al. Pseudo-bonding and electric-field harmony for Li-rich Mn-based oxide cathode[J]. Adv Funct Mater, 2020, 30(46):2004302. |
[71] | LIU Y, LI J, YANG Z, et al. Suppressing the voltage decay of lithium-rich cathode for Li-ion batteries via Pt nanoparticles surface modification[J]. Ceram Int, 2020, 46(17):26564-26571. |
[72] | SORBONI Y G, ARABI H, KOMPANY A. Effect of Cu doping on the structural and electrochemical properties of lithium-rich Li1.25Mn0.50Ni0.125Co0.125O2nanopowders as a cathode material[J]. Ceram Int, 2019, 45(2):2139-2145. |
[73] | WANG Y, GU H T, SONG J H, et al. Suppressing Mn reduction of Li-rich Mn-based cathodes by F-doping for advanced lithium-ion batteries[J]. J Phys Chem C, 2018, 122(49):27836-27842. |
[74] | TENG R, YU H T, GUO C F, et al. Effect of F dopant on the structural stability, redox mechanism, and electrochemical performance of Li2MoO3cathode materials[J]. Adv Sustainable Syst, 2020, 4(12):2000104. |
[75] | LIUT, ZHAOSX, GOULL, et al. Electrochemical performance of Li-rich cathode material, 0.3Li2MnO3-0.7LiMn1/3Ni1/3Co1/3O2microspheres with F-doping[J]. Rare Met, 2018, 38(3):189-198. |
[76] | RICHARDS W D, DACEK S T, Kitchaev D A, et al. Fluorination of lithium-excess transition metal oxide cathode materials[J]. Adv Energy Mater, 2018, 8(5):1701533. |
[77] | LUN Z, OUYANG B, KITCHAEV D A, et al. Improved cycling performance of Li-excess cation-disordered cathode materials upon fluorine e substitution[J]. Adv Energy Mater, 2019, 9(2):1802959. |
[78] | KAPYLOU A, SONG J H, MISSIUL A, et al. Improved thermal stability of lithium-rich layered oxides by fluorine doping[J]. Chemphyschem, 2018, 19(1):116-122. |
[79] | WANG M J, YU F D, SUN G, et al. Co-regulating the surface and bulk structure of Li-rich layered oxides by a phosphor doping strategy for high-energy Li-ion batteries[J]. J Mater Chem A, 2019, 7(14):8302-8314. |
[80] | LIU D, FAN X, LI Z, et al. A cation/anion co-soped Li1.12Na0.08Ni0.2Mn0.6O1.95F0.05cathode for lithium-ion batteries[J]. Nano Energy, 2019, 58:786-796. |
[81] | PENG Z, MU K, CAO Y, et al. Enhanced electrochemical performance of layered Li-rich cathode materials for lithium-ion batteries via aluminum and boron dual-doping[J]. Ceram Int, 2019, 45(4):4184-4192. |
[82] | SUN Y, WU Q, ZHAO L. A new doping element to improve the electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 materials for Li-ion batteries[J]. Ceram Int, 2019, 45(1):1339-1347. |
[83] | VANAPHUTI P, BAI J, MA L, et al. Unraveling Na and F coupling effects in stabilizing Li, Mn-rich layered oxide cathodes via local ordering modification[J]. Energy Storage Mater, 2020, 31:459-469. |
[84] | LI M, WANG H, ZHAO L, et al. Improving the electrochemical performance of lithium-rich oxide layer material with Mg and La co-doping[J]. J Alloys Compd, 2019, 782:451-460. |
[85] | HU K, LV G, ZHANG J, et al. Na2S Treatment and coherent interface modification of the Li-rich cathode to address capacity and voltage decay[J]. ACS Appl Mater Interfaces, 2020, 12(38):42660-42668. |
[86] | ZHANG P, ZHAI X, HUANG H, et al. Synergistic Na+and F-co-doping modification strategy to improve the electrochemical performance of Li-rich Li1.20Mn0.54Ni0.13Co0.13O2cathode[J]. Ceram Int, 2020, 46(15):24723-24736. |
[87] | LIM SN, SEOJY, JUNGDS, et al. The crystal structure and electrochemical performance of Li1.167Mn0.548Ni0.18Co0.105O2composite cathodes doped and co-doped with Mg and F[J]. J Electroanal Chem, 2015, 740:88-94. |
[88] | ZENG Z, GAO D, YANG G, et al. Ultrathin interfacial modification of lithium-rich layered oxide electrode/sulfide solid electrolyte via atomic layer deposition for high electrochemical performance batteries[J]. Nanotechnology, 2020, 31(45):454001. |
[89] | MENG F, GUO H, WANG Z, et al. Modification of Li[Li0.2Mn0.54Ni0.13Co0.13]O2cathode with α-MoO3 via a simple wet chemical coating process[J]. Appl Surf Sci, 2019, 479:1277-1286. |
[90] | ZHANG C, FENG Y, WEI B, et al. Heteroepitaxial oxygen-buffering interface enables a highly stable cobalt-free Li-rich layered oxide cathode[J]. Nano Energy, 2020, 75:104995. |
[91] | HUANG Z, CAI M, SONG Z, et al. Surface modification of hierarchical Li1.2Mn0.56Ni0.16Co0.08O2with melting impregnation method for lithium-ion batteries[J]. J Alloys Compd, 2020, 840:155678. |
[92] | JAMES ABRAHAM J, NISAR U, MONAWWAR H, et al. Improved electrochemical performance of SiO2-coated lithium-rich layered oxides-Li1.2Ni0.13Mn0.54Co0.13O2 [J]. J Mater Sci-Mater El, 2020, 31(21):19475-19486. |
[93] | WANX, CHEW, ZHANGD, et al. Improved electrochemical behavior of Li-rich cathode Li1.4Mn0.61Ni0.18Co0.18Al0.03O2.4 via Y2O3surface coating[J]. Mater Charact, 2020, 169:110602. |
[94] | LI Y, HUANG H, YU J, et al. Improved high rate capability of Li[Li0.2Mn0.534Co0.133Ni0.133]O2cathode material by surface modification with Co3O4 [J]. J Alloys Compd, 2019, 783:349-356. |
[95] | WANG C C, LIN J W, YU Y H, et al. Nanolaminated ZnO-TiO2coated lithium-rich layered oxide cathodes by atomic layer deposition for enhanced electrochemical performances[J]. J Alloys Compd, 2020, 842:155845. |
[96] | RAN X, TAO J, CHEN Z, et al. Surface heterostructure induced by TiO2modification in Li-rich cathode materials for enhanced electrochemical performances[J]. Electrochim Acta, 2020, 353:135959. |
[97] | VIVEKANANTHA M, PARTHEEBAN T, KESAVAN T, et al. Alleviating the initial coulombic efficiency loss and enhancing the electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2using β-MnO2 [J]. Appl Surf Sci, 2019, 489:336-345. |
[98] | WEN X, LIANG K, TIAN L, et al. Al2O3coating on Li1.256Ni0.198Co0.082Mn0.689O2.25with spinel-structure interface layer for superior performance lithium-ion batteries[J]. Electrochim Acta, 2018, 260:549-556. |
[99] | ZUO Y, HUANG B, JIAO C, et al. Enhanced electrochemical properties of Li[Li0.2Mn0.54Ni0.13Co0.13]O2with ZrF4 surface modification as cathode for Li-ion batteries[J]. J Mater Sci-Mater Electron, 2017, 29(1):524-534. |
[100] | LI C D, YAO Z L, XU J, et al. Surface-modified Li[Li0.2Mn0.54Ni0.13Co0.13]O2nanoparticles with LaF3as cathode for Li-ion battery[J]. Ionics, 2016, 23(3):549-558. |
[101] | ZHU W, CHONG S, SUN J, et al. The enhanced electrochemical performance of Li1.2Ni0.2Mn0.6O2through coating MnF2 nano protective layer[J]. Energy Technol, 2019, 7(10):1900443. |
[102] | LIU B, ZHANG Z, WAN J, et al. Improved electrochemical properties of YF3-coated Li1.2Mn0.54Ni0.13Co0.13O2as cathode for Li-ion batteries[J]. Ionics, 2017, 23(6):1365-1374. |
[103] | ZHAO S, SUN B, YAN K, et al. Aegis of lithium-rich cathode material via heterostructured LiAlF4coating for high-performance lithium-ion batteries[J]. ACS Appl Mater Interfaces, 2018, 10(39):33260-33268. |
[104] | JIANG B, LUO B, LI J, et al. Electrochemical effect of graphite fluoride modification on Li-rich cathode material in lithium-ion batteries[J]. Ceram Int, 2019, 45(1):160-167. |
[105] | WU F, XUE Q, LI L, et al. The positive role of (NH4)3AlF6coating on Li[Li0.2Ni0.2Mn0.6]O2oxide as the cathode material for lithium-ion batteries[J]. RSC Adv, 2017, 7(2):1191-1199. |
[106] | LEE H, LIM S B, KIM J Y, et al. Characterization and control of irreversible reaction in Li-rich cathode during the initial charge process[J]. ACS Appl Mater Interfaces, 2018, 10(13):10804-10818. |
[107] | YU Z. Electrochemical performances of carbon-coated Li[Li0.29Mn0.57Co0.14]O2cathode caterials for lithium-ion batteries[J]. Int J Electrochem Sci, 2019:4216-4225. |
[108] | LEE S J, KIM S J, SON J T. Evaluations of discharge capacity and cycle stability for a graphene-added Li1.9Ni0.35Mn0.65O2cathode fabricated by using carbonate co-precipitation[J]. J Korean Phys Soc, 2020, 77(11):1035-1039. |
[109] | PANG S, ZHU M, XU K, et al. The glucose-based treatment: a green and cost-efficient lithium-rich layered oxide modification strategy[J]. Ceram Int, 2019, 45(15):19268-19274. |
[110] | LI X, ZHENG L, ZANG Z, et al. Multiply depolarized composite cathode of Li1.2Mn0.54Ni0.13Co0.13O2embedded in a combinatory conductive network for lithium-ion battery with superior overall performances[J]. J Alloys Compd, 2018, 744:41-50. |
[111] | PARK K, KIM J, PARK J H, et al. Synchronous phase transition and carbon coating on the surface of Li-rich layered oxide cathode materials for rechargeable Li-ion batteries[J]. J Power Sources, 2018, 408:105-110. |
[112] | LIU D, WANG F, WANG G, et al. Well-wrapped Li-rich layered cathodes by reduced graphene oxide towards high-performance Li-ion batteries[J]. Molecules, 2019, 24(9):1680. |
[113] | CHEN J J, LI Z D, XIANG H F, et al. Bifunctional effects of carbon coating on high-capacity Li1.2Ni0.13Co0.13Mn0.54O2 cathode for lithium-ion batteries[J]. J Solid State Electrochem, 2014, 19(4):1027-1035. |
[114] | MA D, LI Y, WU M, et al. Enhanced cycling stability of Li-rich nanotube cathodes by 3D graphene gierarchical architectures for Li-ion batteries[J]. Acta Mater, 2016, 112:11-19. |
[115] | DING F, LI J, DENG F, et al. Surface heterostructure induced by PrPO4modification in Li1.2[Mn0.54Ni0.13Co0.13]O2 cathode material for high-performance lithium-ion batteries with mitigating voltage decay[J]. ACS Appl Mater Interfaces, 2017, 9(33):27936-27945. |
[116] | ZHOU L, YIN Z, TIAN H, et al. Spinel-embedded and Li3PO4modified Li[Li0.2Mn0.54Ni0.13Co0.13]O2cathode materials for high-performance Li-ion battries[J]. Appl Surf Sci, 2018, 456:763-770. |
[117] | XIAO B, WANG B, LIU J, et al. Highly stable Li1.2Mn0.54Co0.13Ni0.13O2enabled by novel atomic layer deposited AlPO4 coating[J]. Nano Energy, 2017, 34:120-130. |
[118] | LIU Y, FAN X, HUANG X, et al. Electrochemical performance of Li1.2Ni0.2Mn0.6O2coated with a facilely synthesized Li1.3Al0.3Ti1.7(PO4)3 [J]. J Power Sources, 2018, 403:27-37. |
[119] | CHEN D, ZHENG F, LI L, et al. Effect of Li3PO4coating of layered lithium-rich oxide on electrochemical performance[J]. J Power Sources, 2017, 341:147-155. |
[120] | HE L, XU J, HAN T, et al. SmPO4-coated Li1.2Mn0.54Ni0.13Co0.13O2as a cathode material with enhanced cycling stability for lithium-ion batteries[J]. Ceram Int, 2017, 43(6):5267-5273. |
[121] | SONG J, WANG Y, FENG Z, et al. Investigation on the electrochemical properties and stabilized surface/interface of nano-AlPO4-coated Li1.15Ni0.17Co0.11Mn0.57O2as the cathode for lithium-ion batteries[J]. ACS Appl Mater Interfaces, 2018, 10(32):27326-27332. |
[122] | ZHANG X, HAO J, WU L, et al. Enhanced electrochemical performance of perovskite LaNiO3coating on Li1.2Mn0.54Ni0.13Co0.13O2as cathode materials for Li-ion batteries[J]. Electrochim Acta, 2018, 283:1203-1212. |
[123] | WU F, LI Q, BAO L, et al. Role of LaNiO3in suppressing voltage decay of layered lithium-rich cathode materials[J]. Electrochim Acta, 2018, 260:986-993. |
[124] | XU Z, CI L, YUAN Y, et al. Potassium prussian blue-coated Li-rich cathode with enhanced lithium-ion storage property[J]. Nano Energy, 2020, 75:104942. |
[125] | LUO S, GUO H, FENG S, et al. Clearing surficial charge-transport obstacles to boost the performance of lithium-rich layered oxides[J]. Chem Eng J, 2020, 399:125142. |
[126] | WANG E, ZHAO Y, XIAO D, et al. Composite nanostructure construction on the grain surface of Li-rich layered oxides[J]. Adv Mater, 2020:e1906070. |
[127] | WANG D, ZHANG X, XIAO R, et al. Electrochemical performance of Li-rich Li[Li0.2Mn0.56Ni0.17Co0.07]O2cathode stabilized by metastable Li2SiO3surface modification for advanced Li-ion batteries[J]. Electrochim Acta, 2018, 265:244-253. |
[128] | ZHANG M, LI Z, YU L, et al. Enhanced long-term cyclability in Li-rich layered oxides by electrochemically constructing a Li x TM3-x O4-type spinel shell[J]. Nano Energy, 2020, 77:105188. |
[129] | SHEVTSOV A, HAN H, MOROZOV A, et al. Protective spinel coating for Li1.17Ni0.17Mn0.50Co0.17O2cathode for Li-ion batteries through sngle-source precursor approach[J]. Nanomaterials, 2020, 10(9):1870. |
[130] | TANG W, CHEN Z, HUANG H, et al. PVP-bridged γ-LiAlO2nanolayer on Li1.2Ni0.182Co0.08Mn0.538O2cathode materials for improving the rate capability and cycling stability[J]. Chem Eng Sci, 2021, 229:116126. |
[131] | XIEY, CHENS, LINZ, et al. Enhanced electrochemical performance of Li-rich layered oxide, Li1.2Mn0.54Co0.13Ni0.13O2, by surface modification derived from a MOF-assisted treatment[J]. Electrochem Commun, 2019, 99:65-70. |
[1] | Fang-Zheng HU, Xing GAO, Lei LIU, Tian-Heng YUAN, Ning CAO, Kai LI, Ya-Tao WANG, Jian-Hua LI, Hui-Qin LIAN, Xiao-Dong WANG, Xiu-Guo CUI. Advances in Black Phosphorus Anode Advantages and Optimization in Li-ion Battery Anodes [J]. Chinese Journal of Applied Chemistry, 2023, 40(4): 571-582. |
[2] | Lin-Hu SONG, Shi-You LI, Jie WANG, Jing-Jing ZHANG, Ning-Shuang ZHANG, Dong-Ni ZHAO, Fei XU. Research Progress of Additives for Acid and Water Removal in Electrolyte of Lithium Ion Battery [J]. Chinese Journal of Applied Chemistry, 2022, 39(5): 697-706. |
[3] | Yu-Le WANG, Ke-Li YANG, Yan-Fang GAO. Preparation and Electrochemical Properties of Molybdenum Carbide Modified Silica [J]. Chinese Journal of Applied Chemistry, 2022, 39(11): 1716-1725. |
[4] | HU Chen,JIN Yi,ZHU Shaoqing,XU Ye,SHUI Jianglan. Methods for Improving Low-Temperature Performance of Lithium Iron Phosphate Based Li-Ion Battery [J]. Chinese Journal of Applied Chemistry, 2020, 37(4): 380-386. |
[5] | LIU Lixin, DONG Jianhong, ZHANG Guanghui, ZHU Luyi, WANG Xinqiang, XU Dong, CHOW Yuktak. Preparation and Properties of Polyvinylidene Fluoride@Diatomite Fiber Membranes by Eletrospinning as Separator of Lithium-Ion Batteries [J]. Chinese Journal of Applied Chemistry, 2020, 37(12): 1441-1446. |
[6] | ZUO Zicheng,LI Yuliang. Applications of Graphdiyne in Li+/Na+ Battery Anodes [J]. Chinese Journal of Applied Chemistry, 2018, 35(9): 1057-1066. |
[7] | LIU Jianben1*, MO Rubao2, WU Xianming1. Preparation and Electrochemical Performances of Li(Ni1/3Co1/3Mn1/3)0.95Al0.05O2 Cathode Material for Lithium-ion Batteries [J]. Chinese Journal of Applied Chemistry, 2014, 31(04): 462-468. |
[8] | ZHANG Kai, BAI Hongmei, CHENG Fangyi, CHEN Jun*. Preparation of Sn Films by Vacuum Evaporation and Their Electrochemical Properties as Lithium-storage Materials [J]. Chinese Journal of Applied Chemistry, 2011, 28(08): 918-923. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||