[1] PRODINGER S, VERSTREKEN M F K, LOBO R F. Selective and efficient production of biomass-derived vinylfurans[J]. ACS Sustainable Chem Eng, 2020, 8(32): 11930-11939.. [2] 陈伦刚, 张兴华, 张琦, 等. 木质纤维素解聚平台分子催化合成航油技术的进展[J]. 化工进展, 2019, 38(03): 129-142. CHEN L G, ZHANG X H, ZHANG Q, et al. Progress in aviation biofuel technology by catalysis synthesis of platform molecules from lignocelluloses depolymerization[J]. Chem Ind Eng Prog, 2019, 38(3): 1269-1282. [3] TANG X, ZENG X H, LI Z, et al. Production of γ-valerolactone from lignocellulosic biomass for sustainable fuels and chemicals supply[J]. Renew Sustainable Eng Rev, 2014, 40(1): 608-620. [4] KAI Y, LUO H. Production of γ-valerolactone from biomass. production of platform chemicals from sustainable resources[M]. Springer Singapore, 2017. [5] GUO Y, LI Y, CHEN J, et al. Hydrogenation of levulinic acid into γ-valerolactone over ruthenium catalysts supported on metal-organic frameworks in aqueous medium[J]. Catal Lett, 2016, 146(10): 2041-2052. [6] TAN J, CUI J, DENG T, et al. Water-promoted hydrogenation of levulinic acid to γ-valerolactone on supported ruthenium catalyst[J]. ChemCatChem, 2015, 7(3): 508-512. [7] ORTIZ-CERVANTES C, FLORES-ALAMO M, GARCIA J J. Hydrogenation of biomass-derived levulinic acid into γ-valerolactone catalyzed by palladium complexes[J]. ACS Catal, 2015, 5(3): 1424-1431. [8] AL-NAJI M, YEPEZ A, BALU A M, et al. Insights into the selective hydrogenation of levulinic acid to γ-valerolactone using supported mono-and bimetallic catalysts[J]. J Mol Catal A: Chem, 2016, 417: 145-152. [9] PISKUN AS, FTOUNI J, TANG Z, et al. Hydrogenation of levulinic acid to γ-valerolactone over anatase-supported Ru catalysts: effect of catalyst synthesis protocols on activity[J]. Appl Catal A: Gen, 2018, 549: 197-206. [10] GUO Y, LI Y, CHEN J, et al. Hydrogenation oflevulinic acid into γ-valerolactone over ruthenium catalysts supported on metal-organic frameworks in aqueous medium[J]. Catal Lett, 2016, 146(10): 2041-2052. [11] LI W, XIE J H, LIN H, et al. Highly efficient hydrogenation of biomass-derived levulinic acid to γ-valerolactone catalyzed by iridium pincer complexes[J]. Green Chem, 2012, 14(9): 2388-2390. [12] TESTA M L, CORBEL-DEMAILLY L, LA P V, et al. Effect of Au on Pd supported over HMS and Ti doped HMS as catalysts for the hydrogenation of levulinic acid to γ-valerolactone[J]. Catal Today, 2015, 257: 291-296. [13] MATTHEW J G, XU B J. Heterogeneous catalytic transfer hydrogenation as an effective pathway in biomass upgrading[J]. ACS Catal, 2016, 6(3): 1420-1436. [14] LOMATE S, SULTANA A, FUJITANI T. Vapor phase catalytic transfer hydrogenation (CTH) of levulinic acid to γ-valerolactone over copper supported catalysts using formic acid as hydrogen source[J]. Catal Lett, 2018, 148(1): 348-358. [15] KUWAHARA Y, KANGO H, YAMASHITA H. Catalytic transfer hydrogenation of biomass-derived levulinic acid and its esters to γ-valerolactone over sulfonic acid-functionalized UiO-66[J]. ACS Sustainable Chem Eng, 2016, 5(1): 1141-1152. [16] GUNDEKARIA S, SRINIVASANA K. Hydrous ruthenium oxide: a new generation remarkable catalyst precursor for energy efficient and sustainable production of γ-valerolactone from levulinic acid in aqueous medium[J]. Appl Catal A: Gen, 2019, 569: 117-125. [17] HSIAO C Y, CHIU H Y, LIN T Y, et al. A comparative study on microwave-assisted catalytic transfer hydrogenation of levulinic acid to γ-valerolactone using Ru/C, Pt/C, and Pd/C[J]. Chem Eng Commun, 2020, 208(11): 1-12. [18] LAI J, ZHOU S, LIU X, et al. Catalytic transfer hydrogenation of biomass-derived ethyl levulinate into gamma-valerolactone over graphene oxide-supported zirconia catalysts[J]. Catal Lett, 2019, 149(10): 2749-2757. [19] HENGNE A M, RODE C V. Cu-ZrO2 nanocomposite catalyst for selective hydrogenation of levulinic acid and its ester to γ-valerolactone[J]. Green Chem, 2012, 14(4): 1064-1072. [20] KUWAHARA Y, MAGATANI Y, YAMASHITA H. Ru nanoparticles confined in Zr-containing spherical mesoporous silica containers for hydrogenation of levulinic acid and its esters into γ-valerolactone at ambient conditions[J]. Catal Today, 2015, 258: 262-269. [21] ZHANG H, YANG W, ROSLAN I I, et al. A combo Zr-HY and Al-HY zeolite catalysts for the one-pot cascade transformation of biomass-derived furfural to γ-valerolactone[J]. J Catal, 2019, 375: 56-67. [22] CHIA M, DUMESIC J A. Liquid-phase catalytic transfer hydrogenation and cyclization of levulinic acid and its esters to γ-valerolactone over metal oxide catalysts[J]. Chem Commun, 2011, 47(44): 12233-12235. [23] KUWAHARA Y, KABURAGI W, OSADA Y, et al. Catalytic transfer hydrogenation of biomass-derived levulinic acid and its esters to γ-valerolactone over ZrO2 catalyst supported on SBA-15 silica[J]. Catal Today, 2017, 281: 418-428. [24] HU B, WANG K, WU L, et al. Engineering carbon materials from the hydrothermal carbonization process of biomass[J]. Adv Mater, 2010, 22(7): 813-828. [25] ZABEL J, NAIR R R, OTT A, et al. Raman spectroscopy of graphene and bilayer under biaxial strain: bubbles and balloons[J]. Nano Lett, 2012,12(2): 617. [26] OUYANG T, CHENG K, YANG F, et al. From biomass with irregular structures to 1D carbon nanobelts: a stripping and cutting strategy to fabricate high performance supercapacitor materials[J]. J Mater Chem A, 2017 28(5): 14551-14561. [27] WANG L C, LIU Q, CHEN M, et al. Structural evolution and catalytic properties of nanostructured Cu/ZrO2 catalysts prepared by oxalate gel-coprecipitation technique[J]. J Phy Chem C, 2007, 111(44): 16549-16557. [28] LIANG Q H, YE L, HUANG Z H, et al. A honeycomb-like porous carbon derived from pomelo peel for use in high-performance supercapacitors[J]. Nanoscale, 2014, 6(22): 13831-13837. [29] LI F L, FRANCE L J, CAI Z P, et al. Catalytic transfer hydrogenation of butyl levulinate to γ-valerolactone over zirconium phosphates with adjustable Lewis and Brønsted acid sites[J]. Appl Catal B: Env, 2017, 214: 67-77. [30] SONG J L, ZHOU B W, ZHOU H C, et al. Porous zirconium-phytic acid hybrid: a highly efficient catalyst for Meerwein-Ponndorf-Verley reductions[J]. Angew Chem Int Ed, 2015, 54 (32): 9399-9403. [31] GONZÁLEZ C O D, GARCÍA E A. An X-ray photoelectron spectroscopy study of the surface oxidation of zirconium[J]. Surf Sci, 1988, 193(3): 305-320. [32] HOWARD J, RACKEMANN D W, BARTLEY J P, et al. Conversion of sugar cane molasses to 5-hydroxymethylfurfural using molasses and bagasse-derived catalysts[J]. ACS Sustainable Chem Eng, 2018, 6(4): 4531-4538. [33] LOU W Y, GUO Q, CHEN W J, et al. A highly active bagasse-derived solid acid catalyst with properties suitable for production of biodiesel[J]. ChemSusChem, 2012, 5(8): 1533-1541. [34] ZHU Y, LIU S, JAENICKE S, et al. Zirconia catalysts in Meerwein-Ponndorf-Verley reduction of citral[J]. Catal Today, 2004, 97(4): 249-255. [35] PENG L, ZHANG J, LI J, et al. Surfactant-directed assembly of mesoporous metal-organic framework nanoplates in ionic liquids[J]. Chem Commun, 2012, 48(69): 8688-8690. [36] JOHNSTONE R A W, WILBY A H, ENTWISTLE I D. Heterogeneous catalytic transfer hydrogenation and its relation to other methods for reduction of organic compounds[J]. Chem Rev, 1985, 85(2): 129-170. [37] GILKEY M J, XU B J. Heterogeneous catalytic transfer hydrogenation as an effective pathway in biomass upgrading[J]. ACS Catal, 2016, 6(3): 1420-1436. [38] SAMEC J S M, BÄCKVALL J-E, ANDERSSON P G, et al. Mechanistic aspects of transition metal-catalyzed hydrogen transfer reactions[J]. Chem Soc Rev, 2006, 35(12): 237-248. |