Chinese Journal of Applied Chemistry ›› 2020, Vol. 37 ›› Issue (11): 1221-1235.DOI: 10.11944/j.issn.1000-0518.2020.11.200208
• Review • Previous Articles Next Articles
CHEN Jiaqi, ZHOU Yan, SUN Jingwen, ZHU Junwu, WANG Xin*, FU Yongsheng*
Received:
2020-07-10
Revised:
2020-08-05
Accepted:
2020-08-24
Published:
2020-11-01
Online:
2020-11-04
Contact:
FU Yongsheng, professor; Tel/Fax:025-84315054; E-mail:fuyongsheng@163.com; Research interests:synthesis of functional materials and the applications in energy storage and conversionSupported by:
CLC Number:
CHEN Jiaqi, ZHOU Yan, SUN Jingwen, ZHU Junwu, WANG Xin, FU Yongsheng. Recent Progress of Metal Organic Frameworks-Based Hollow Materials[J]. Chinese Journal of Applied Chemistry, 2020, 37(11): 1221-1235.
Add to citation manager EndNote|Ris|BibTeX
URL: http://yyhx.ciac.jl.cn/EN/10.11944/j.issn.1000-0518.2020.11.200208
[1] Zheng S,Li X,Yan B,et al. Transition-Metal (Fe, Co, Ni) Based Metal-Organic Frameworks for Electrochemical Energy Storage[J]. Adv Energy Mater,2017,7(18):1602733. [2] Li X,Ma D D,Cao C,et al. Inlaying Ultrathin Bimetallic MOF Nanosheets into 3D Ordered Macroporous Hydroxide for Superior Electrocatalytic Oxygen Evolution[J]. Small,2019,15(35):1902218. [3] Hwang Y K,Hong, D Y,Chang J S,et al. Amine Grafting on Coordinatively Unsaturated Metal Centers of MOFs:Consequences for Catalysis and Metal Encapsulation[J]. Angew Chem Int Ed,2008,120(22):4212-4216. [4] Wu S,Min H,Shi W,et al. Multicenter Metal-Organic Framework-Based Ratiometric Fluorescent Sensors[J]. Adv Mater,2020,32(3):1805871. [5] Yuan H,Tao J,Li N,et al. On-chip Tailorability of Capacitive Gas Sensors Integrated with Metal-Organic Framework Films[J]. Angew Chem Int Ed,2019,58(40):14089-14094. [6] Li L,Guo L,Pu S,et al. A Calcium-Based Microporous Metal-Organic Framework for Efficient Adsorption Separation of Light Hydrocarbons[J]. Chem Eng J,2019,358:446-455. [7] Ye Y,Ma Z,Lin R B,et al. Pore Space Partition within a Metal-Organic Framework for Highly Efficient C2H2/CO2 Separation[J]. J Am Chem Soc,2019,141(9):4130-4136. [8] YU Wenting,ZHANG Hui,SUN Yuzhen,et al. Efficient Removal of Arsenic by Metal Organic Framework UTSA-74 from Aqueous Solutions[J]. Chinese J Appl Chem,2020,37(2):205-210(in Chinese). 余文婷,张慧,孙玉珍,等. 金属有机框架材料UTSA-74高效去除水溶液中的砷[J]. 应用化学,2020,37(2):205-210. [9] YU Hang,WANG Xizi,ZHU Xuya,et al. Research Progress on Metal Organic Framework Material (MIL-101) and Its Functionalized Modification Materials for Environmental Pollution[J]. Chinese J Appl Chem,2019,36(11):1221-1236(in Chinese). 于航,王茜子,朱绪娅,等. 金属有机骨架材料MIL-101及其改性材料去除环境污染物的研究进展[J]. 应用化学,2019,36(11):1221-1236. [10] Cai W,Wang J,Chu C,et al. Metal-Organic Framework-Based Stimuli-Responsive Systems for Drug Delivery[J]. Adv Sci,2019,6(1):1801526. [11] Suresh K,Matzger A J. Enhanced Drug Delivery by Dissolution of Amorphous Drug Encapsulated in a Water Unstable Metal-Organic Framework(MOF)[J]. Angew Chem Int Ed,2019,131(47):16946-16950. [12] Qin J,Wang S,Wang X. Visible-Light Reduction CO2 with Dodecahedral Zeolitic Imidazolate Framework ZIF-67 as an Efficient Co-catalyst[J]. Appl Catal B,2017,209:476-482. [13] Cui W G,Zhang G Y,Hu T L,et al. Metal-Organic Framework-Based Heterogeneous Catalysts for the Conversion of C1 Chemistry:CO, CO2 and CH4[J]. Coord Chem Rev,2019,387:79-120. [14] LIU Ting,LI Jingwei,LIU Yongxin,et al. CuO Hollow Tubular Superstructure Fabricated from Cu2O@HKUST-1 Nanowire for CO Oxidation[J]. Chinese J Appl Chem,2018,35(6):687-691(in Chinese). 刘婷,李经纬,刘永鑫,等. Cu2O@HKUST-1前驱物法合成CuO中空管状超级结构及其CO催化氧化性能[J]. 应用化学,2018,35(6):687-691. [15] Cai D,Liu B,Wang D,et al. Rational Synthesis of Metal-Organic Framework Composites, Hollow Structures and Their Derived Porous Mixed Metal Oxide Hollow Structures[J]. J Mater Chem A,2016,4(1):183-192. [16] Liu B,Shioyama H,Akita T,et al. Metal-Organic Framework as a Template for Porous Carbon Synthesis[J]. J Am Chem Soc,2008,130(16):5390-5391. [17] Chen Y Z,Wang C,Wu Z Y,et al. From Bimetallic Metal-Organic Framework to Porous Carbon: High Surface Area and Multicomponent Active Dopants for Excellent Electrocatalysis[J]. Adv Mater,2015,27(34):5010-5016. [18] Xia W,Zou R,Li A,et al. A Metal-Organic Framework Route to in Situ Encapsulation of Co@Co3O4@C Core@Bishell Nanoparticles into a Highly Ordered Porous Carbon Matrix for Oxygen Reduction[J]. Energy Environ Sci,2015,8(2):568-576. [19] Hu L,Huang Y,Zhang F,et al. CuO/Cu2O Composite Hollow Polyhedrons Fabricated from Metal-Organic Framework Templates for Lithium-Ion Battery Anodes with a Long Cycling Life[J]. Nanoscale,2013,5(10):4186-4190. [20] Cai Z X,Wang Z L,Kim J,et al. Hollow Functional Materials Derived from Metal-Organic Frameworks:Synthetic Strategies, Conversion Mechanisms, and Electrochemical Applications[J]. Adv Mater,2019,31(11):1804903. [21] Chen J,Zhang L,Bai W,et al. Unique Hollow-Concave CoMoSx Boxes with Abundant Mesoporous Structure for High-Performance Hybrid Supercapacitors[J]. Electrochim Acta,2020,337:135824. [22] Caruso F,Caruso R A,Mohwald H. Nanoengineering of Inorganic and Hybrid Hollow Spheres by Colloidal Templating[J]. Science,1998,282(5391):1111-1114. [23] Jiang Z,Li Z,Qin Z,et al. LDH Nanocages Synthesized with MOF Templates and Their High Performance as Supercapacitors[J]. Nanoscale,2013,5(23):11770-11775. [24] Liu D,Wan J,Pang G,et al. Hollow Metal-Organic-Framework Micro/Nanostructures and Their Derivatives:Emerging Multifunctional Materials[J]. Adv Mater,2019,31(38):1803291. [25] Guan B Y,Yu L,Lou X W. Formation of Single-Holed Cobalt/N-Doped Carbon Hollow Particles with Enhanced Electrocatalytic Activity Toward Oxygen Reduction Reaction in Alkaline Media[J]. Adv Sci,2017,4(10):1700247. [26] Lee G,Na W,Kim J,et al. Improved Electrochemical Performances of MOF-Derived Ni-Co Layered Double Hydroxide Complexes Using Distinctive Hollow-in-Hollow Structures[J]. J Mater Chem A,2019,7(29):17637-17647. [27] Sun Z,Luo Y. Fabrication of Non-Collapsed Hollow Polymeric Nanoparticles with Shell Thickness in the Order of Ten Nanometres and Anti-reflection Coatings[J]. Soft Matter,2011,7(3):871-875. [28] Yang Y,Wang F,Yang Q,et al. Hollow Metal-Organic Framework Nanospheres via Emulsion-Based Interfacial Synthesis and Their Application in Size-Selective Catalysis[J]. ACS Appl Mater Interfaces,2014,6(20):18163-18171. [29] Jeong G Y,Ricco R,Liang K,et al. Bioactive MIL-88A Framework Hollow Spheres via Interfacial Reaction In-Droplet Microfluidics for Enzyme and Nanoparticle Encapsulation[J]. Chem Mater,2015,27(23):7903-7909. [30] ZHANG Lina,SU Qi,YANG Gaoling,et al. Preparation and Formation Mechanism of Hollow Ammonium Metatungstate Spheres by Spray Drying Method[J]. Powder Metall Ind,2017,27(4):12-16(in Chinese). 张丽娜,苏琪,杨高玲,等. 喷雾干燥法制备中空偏钨酸铵球及中空结构形成机理[J]. 粉末冶金工业,2017,27(4):12-16. [31] Wang T,Hu Q,Zhou M,et al. Preparation of Ultra-Fine Powders from Polysaccharide-Coated Solid Lipid Nanoparticles and Nanostructured Lipid Carriers by Innovative Nano Spray Drying Technology[J]. Int J Pharm,2016,511(1):219-222. [32] Carné-Sánchez A,Imaz I,Cano-Sarabia M,et al. A Spray-Drying Strategy for Synthesis of Nanoscale Metal-Organic Frameworks and Their Assembly into Hollow Superstructures[J]. Nat Chem,2013,5(3):203-211. [33] Alemán J V,Chadwick A V,He J,et al. Definitions of Terms Relating to the Structure and Processing of Sols, Gels, Networks, and Inorganic-Organic Hybrid Materials (IUPAC Recommendations 2007)[J]. Pure Appl Chem,2007,79(10):1801-1829. [34] Huo J,Wang L,Irran E,et al. Synthesis, Characterization and Magnetic Properties of Hollow Microspheres with Micro-Mesoporous Shells Assembled from Cobalt-Based Ferrocenyl Coordination Polymers[J]. J Colloid Interface Sci,2012,367(1):92-100. [35] Li J,Zeng H C. Hollowing Sn-Doped TiO2 Nanospheres via Ostwald Ripening[J]. J Am Chem Soc,2007,129(51):15839-15847. [36] Qiao R,Zhang X L,Qiu R,et al. Preparation of Magnetic Hybrid Copolymer-Cobalt Hierarchical Hollow Spheres by Localized Ostwald Ripening[J]. Chem Mater,2007,19(26):6485-6491. [37] Wang W,Dahl M,Yin Y. Hollow Nanocrystals Through the Nanoscale Kirkendall Effect[J]. Chem Mater,2013,25(8):1179-1189. [38] Zhang G,Wang W,Yu Q,et al. Facile One-Pot Synthesis of PbSe and NiSe2 Hollow Spheres: Kirkendall-Effect-Induced Growth and Related Properties[J]. Chem Mater,2009,21(5):969-974. [39] Guan C,Sumboja A,Wu H,et al. Hollow Co3O4 Nanosphere Embedded in Carbon Arrays for Stable and Flexible Solid-State Zinc-Air Batteries[J]. Adv Mater,2017,29(44):1704117. [40] Park S K,Kim J K,Kang Y C. Electrochemical Properties of Uniquely Structured Fe2O3 and FeSe2/Graphitic-Carbon Microrods Synthesized by Applying a Metal-Organic Framework[J]. Chem Eng J,2018,334:2440-2449. [41] Park G D,Cho J S,Lee J K,et al. Na-Ion Storage Performances of FeSex and Fe2O3 Hollow Nanoparticles-Decorated Reduced Graphene Oxide Balls Prepared by Nanoscale Kirkendall Diffusion Process[J]. Sci Rep,2016,6(1):1-10. [42] Lee I,Choi S,Lee H J,et al. Hollow Metal-Organic Framework Microparticles Assembled via a Self-templated Formation Mechanism[J]. Cryst Growth Des,2015,15(11):5169-5173. [43] Xu X,Nosheen F,Wang X. Ni-Decorated Molybdenum Carbide Hollow Structure Derived from Carbon-Coated Metal-Organic Framework for Electrocatalytic Hydrogen Evolution Reaction[J]. Chem Mater,2016,28(17):6313-6320. [44] Wu L L,Wang Z,Long Y,et al. Multishelled NixCo3-xO4 Hollow Microspheres Derived from Bimetal-Organic Frameworks as Anode Materials for High-Performance Lithium-Ion Batteries[J]. Small,2017,13(17):1604270. [45] Hu H,Guan B Y,Lou X W D. Construction of Complex CoS Hollow Structures with Enhanced Electrochemical Properties for Hybrid Supercapacitors[J]. Chemersity,2016,1(1):102-113. [46] Guan C,Liu X,Ren W,et al. Rational Design of Metal-Organic Framework Derived Hollow NiCo2O4 Arrays for Flexible Supercapacitor and Electrocatalysis[J]. Adv Energy Mater,2017,7(12):1602391. [47] Wu R,Wang D P,Rui X,et al. In-Situ Formation of Hollow Hybrids Composed of Cobalt Sulfides Embedded within Porous Carbon Polyhedra/Carbon Nanotubes for High-Performance Lithium-Ion Batteries[J]. Adv Mater,2015,27(19):3038-3044. [48] Xu W,Xie W,Wang Y. Co3O4-x-Carbon@Fe2-yCoyO3 Heterostructural Hollow Polyhedrons for the Oxygen Evolution Reaction[J]. ACS Appl Mater Interfaces,2017,9(34):28642-28649. [49] Yang H,Kruger P E,Telfer S G. Metal-Organic Framework Nanocrystals as Sacrificial Templates for Hollow and Exceptionally Porous Titania and Composite Materials[J]. Inorg Chem,2015,54(19):9483-9490. [50] Yu X Y,Yu L,Wu H B,et al. Formation of Nickel Sulfide Nanoframes from Metal-Organic Frameworks with Enhanced Pseudocapacitive and Electrocatalytic Properties[J]. Angew Chem Int Ed,2015,127(18):5421-5425. [51] Zhang Q,Zhang T,Ge J,et al. Permeable Silica Shell Through Surface-Protected Etching[J]. Nano Lett,2008,8(9):2867-2871. [52] Hu M,Furukawa S,Ohtani R,et al. Synthesis of Prussian Blue Nanoparticles with a Hollow Interior by Controlled Chemical Etching[J]. Angew Chem Int Ed,2012,51(4):984-988. [53] Zhou Y,Zeng H C. Simultaneous Synthesis and Assembly of Noble Metal Nanoclusters with Variable Micellar Templates[J]. J Am Chem Soc,2014,136(39):13805-13817. [54] Tan Y C,Zeng H C. Defect Creation in HKUST-1 via Molecular Imprinting:Attaining Anionic Framework Property and Mesoporosity for Cation Exchange Applications[J]. Adv Funct Mater,2017,27(42):1703765. [55] Chen Y M,Yu L,Lou X W. Hierarchical Tubular Structures Composed of Co3O4 Hollow Nanoparticles and Carbon Nanotubes for Lithium Storage[J]. Angew Chem Int Ed,2016,55(20):5990-5993. [56] Kuo C H,Tang Y,Chou L Y,et al. Yolk-Shell Nanocrystal@ZIF-8 Nanostructures for Gas-Phase Heterogeneous Catalysis with Selectivity Control[J]. J Am Chem Soc,2012,134(35):14345-14348. [57] Wang J,Tang J,Ding B,et al. Self-Template-Directed Metal-Organic Frameworks Network and the Derived Honeycomb-Like Carbon Flakes via Confnement Pyrolysis[J]. Small,2018,14(14):1704461. [58] Wang X,Huang F,Rong F,et al. Unique MOF-derived Hierarchical MnO2 Nanotubes@NiCo-LDH/CoS2 Nanocage Materials as High Performance Supercapacitors[J]. J Mater Chem A,2019,7(19):12018-12028. [59] Chen H,Wang M Q,Yu Y,et al. Assembling Hollow Cobalt Sulfide Nanocages Array on Graphene-Like Manganese Dioxide Nanosheets for Superior Electrochemical Capacitors[J]. ACS Appl Mater Interfaces,2017,9(40):35040-35047. [60] Fu Y,Zhou Y,Peng Q,et al. Hollow Mesoporous Carbon Spheres Enwrapped by Small-Sized and Ultrathin Nickel Hydroxide Nanosheets for High-Performance Hybrid Supercapacitors[J]. J Power Sources,2018,402:43-52. [61] Yu X Y,Yu L,Lou X W. Metal Sulfide Hollow Nanostructures for Electrochemical Energy Storage[J]. Adv Energy Mater,2016,6(3):1501333. [62] Bai X,Liu Q,Lu Z,et al. Rational Design of Sandwiched Ni-Co Layered Double Hydroxides Hollow Nanocages/Graphene Derived from Metal-Organic Framework for Sustainable Energy Storage[J]. ACS Sustainable Chem Eng,2017,5(11):9923-9934. [63] Guo D,Song X,Tan L,et al. Metal-Organic Framework Template-Directed Fabrication of Well-Aligned Pentagon-Like Hollow Transition-Metal Sulfides as the Anode and Cathode for High-Performance Asymmetric Supercapacitors[J]. ACS Appl Mater Interfaces,2018,10(49):42621-42629. [64] He Q,Liu J,Li Z,et al. Solvent-Free Synthesis of Uniform MOF Shell-Derived Carbon Confned SnO2/Co Nanocubes for Highly Reversible Lithium Storage[J]. Small,2017,13(37):1701504. [65] Zhang J,Wan J,Wang J,et al. Hollow Multi-Shelled Structure with Metal-Organic-Framework-Derived Coatings for Enhanced Lithium Storage[J]. Angew Chem Int Ed,2019,58(16):5266-5271. [66] Shi Y,Wang J,Wang C,et al. Hot Electron of Au Nanorods Activates the Electrocatalysis of Hydrogen Evolution on MoS2 Nanosheets[J]. J Am Chem Soc,2015,137(23):7365-7370. [67] Nie Y,Li L,Wei Z. Recent Advancements in Pt and Pt-Free Catalysts for Oxygen Reduction Reaction[J]. Chem Soc Rev,2015,44(8):2168-2201. [68] Wang C,Jiang J,Ding T,et al. Monodisperse Ternary NiCoP Nanostructures as a Bifunctional Electrocatalyst for both Hydrogen and Oxygen Evolution Reactions with Excellent Performance[J]. Adv Mater Interfaces,2016,3(4):1500454. [69] Bai Y,Zhang H,Feng Y,et al. Sandwich-Like CoP/C Nanocomposites as Efficient and Stable Oxygen Evolution Catalysts[J]. J Mater Chem A,2016,4(23):9072-9079. [70] Hu E,Feng Y,Nai J,et al. Construction of Hierarchical Ni-Co-P Hollow Nanobricks with Oriented Nanosheets for Efficient Overall Water Splitting[J]. Energy Environ Sci,2018,11(4):872-880. [71] Deng D,Yu L,Chen X,et al. Iron Encapsulated within Pod-Like Carbon Nanotubes for Oxygen Reduction Reaction[J]. Angew Chem Int Ed,2013,125(1):389-393. [72] Guan B Y,Lu Y,Wang Y,et al. Porous Iron-Cobalt Alloy/Nitrogen-Doped Carbon Cages Synthesized via Pyrolysis of Complex Metal-Organic Framework Hybrids for Oxygen Reduction[J]. Adv Funct Mater,2018,28(10):1706738. [73] Hu H,Han L,Yu M,et al. Metal-Organic-Framework-Engaged Formation of Co Nanoparticle-Embedded Carbon@Co9S8 Double-Shelled Nanocages for Efficient Oxygen Reduction[J]. Energy Environ Sci,2016,9(1):107-111. [74] Yu Z,Bai Y,Zhang N,et al. Metal-Organic Framework-Derived Heterostructured ZnCo2O4@FeOOH Hollow Polyhedrons for Oxygen Evolution Reaction[J]. J Alloys Compd,2020,832:155067. [75] Wang X,Li F,Li W,et al. Hollow Bimetallic Cobalt-Based Selenide Polyhedrons Derived from Metal-Organic Framework:An Efficient Bifunctional Electrocatalyst for Overall Water Splitting[J]. J Mater Chem A,2017,5(34):17982-17989. [76] Liu Y,Hua X,Xiao C,et al. Heterogeneous Spin States in Ultrathin Nanosheets Induce Subtle Lattice Distortion to Trigger Efficient Hydrogen Evolution[J]. J Am Chem Soc,2016,138(15):5087-5092. [77] Lin Y,Sun K,Liu S,et al. Construction of CoP/NiCoP Nanotadpoles Heterojunction Interface for Wide pH Hydrogen Evolution Electrocatalysis and Supercapacitor[J]. Adv Energy Mater,2019,9(36):1901213. [78] Shi Y,Zhang B. Recent Advances in Transition Metal Phosphide Nanomaterials:Synthesis and Applications in Hydrogen Evolution Reaction[J]. Chem Soc Rev,2016,45(6):1529-1541. [79] Zhang Y,Wang T,Wang Y,et al. Metal Organic Frameworks Derived Hierarchical Hollow Ni0.85Se|P Composites for High-Performance Hybrid Supercapacitor and Efficient Hydrogen Evolution[J]. Electrochim Acta,2019,303:94-104. |
[1] | Jia-Zheng LI, Shu-Zhong HE. Research Progress of Total Synthesis of Polygalolides [J]. Chinese Journal of Applied Chemistry, 2023, 40(5): 615-624. |
[2] | Bing-Shuai CHEN, Hai-Tao ZHUO, Shu HUANG, Shao-Jun CHEN. Advances of High-Performance Polymer Binders for Silicon-Based Anodes [J]. Chinese Journal of Applied Chemistry, 2023, 40(5): 625-639. |
[3] | Zhen-Bang LIU, Shuo ZHANG, Yu BAO, Ying-Ming MA, Wei-Qi LIANG, Wei WANG, Ying HE, Li NIU. Progress of Application Research on Cheminformatics in Deep Learning [J]. Chinese Journal of Applied Chemistry, 2023, 40(3): 360-373. |
[4] | Yang LIU, Hai-Bao ZHANG, Qiang CHEN. Optimization of Process Parameters for Ammonia Synthesis by Nanosecond Pulsed Dielectric Barrier Discharge Plasma [J]. Chinese Journal of Applied Chemistry, 2023, 40(2): 268-276. |
[5] | Rong CAO, Jie-Zhen XIA, Man-Hua LIAO, Lu-Chao ZHAO, Chen ZHAO, Qi WU. Theoretical Research Progress of Single Atom Catalysts in Electrochemical Synthesis of Ammonia [J]. Chinese Journal of Applied Chemistry, 2023, 40(1): 9-23. |
[6] | En-Tong WANG, Lin-Fang YANG. Preparation and Properties of LiNi0.6Co0.2Mn0.2O2 Cathode Material for High Specific Capacity Lithium Ion Battery [J]. Chinese Journal of Applied Chemistry, 2022, 39(8): 1209-1215. |
[7] | Chao ZHANG. Research Prospect of Single Atom Catalysts Towards Electrocatalytic Reduction of Carbon Dioxide [J]. Chinese Journal of Applied Chemistry, 2022, 39(6): 871-887. |
[8] | Yan WANG, Shu-Cong ZHANG, Xing-Kun WANG, Zhi-Cheng LIU, Huan-Lei WANG, Ming-Hua HUANG. Research Progress on Transition Metal⁃Based Catalysts for Hydrogen Evolution Reaction via Seawater Electrolysis [J]. Chinese Journal of Applied Chemistry, 2022, 39(6): 927-940. |
[9] | Wei-Jin CAO, Lu BAI, Lan-Lan WU, Jing-De LI, Shu-Yan SONG. Multi⁃Shell Hollow Nickel⁃Cobalt Bimetallic Phosphide Nanospheres for Highly Efficient Oxygen Evolution Reaction [J]. Chinese Journal of Applied Chemistry, 2022, 39(4): 666-672. |
[10] | Lin-Jie SHANG, Jiang LIU, Ya-Qian LAN. Covalent Organic Framework Materials for Photo/ Electrocatalytic Carbon Dioxide Reduction [J]. Chinese Journal of Applied Chemistry, 2022, 39(4): 559-584. |
[11] | Li-Zhi SUN, Hao LYU, Xiao-Wen MIN, Ben LIU. Mesoporous Palladium⁃Boron Alloy Nanocatalysts: Synthesis and Performance in Methanol Oxidation Electrocatalysis [J]. Chinese Journal of Applied Chemistry, 2022, 39(4): 673-684. |
[12] | Xiao-Mei HUANG, Xiang DENG, Lang-Man XING, Wei CHEN, Li SUN, Xiao-Yu ZHU. Study of Electrochemical Non-enzyme Glucose Sensor Based on Cu(Ⅱ)Co(Ⅱ) Bimetallic Carbon Nanosheets [J]. Chinese Journal of Applied Chemistry, 2022, 39(12): 1891-1902. |
[13] | Dan MENG, Kai-Yuan ZHENG, Shan-Shan CHEN, Zhao-Long ZHUO, Li-Li WANG. Preparation and Luminescence Properties of Silicon and Nitrogen Co⁃doped Carbon Dots Phosphors [J]. Chinese Journal of Applied Chemistry, 2022, 39(11): 1766-1773. |
[14] | Jing TANG, Na ZHANG, Dong-Xu SHI, Fang-Hui ZHANG, Jian-Jie TANG. Synthesis of UiO-66-NH2Grafted Pyridineimine Cobalt Catalyst and Its Catalytic Performance in Ethylene Oligomerization [J]. Chinese Journal of Applied Chemistry, 2022, 39(02): 258-265. |
[15] | WU Zhi-Qiang, HAN Xin-Ning, LIU Yang, WANG Gang, ZHAN Hai-Juan, LIU Wan-Yi. Research Progress on Synthesis of Bis(indolyl)methanes under Aqueous or Solvent-free Catalysis [J]. Chinese Journal of Applied Chemistry, 2021, 38(8): 881-896. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||