Chinese Journal of Applied Chemistry ›› 2025, Vol. 42 ›› Issue (12): 1649-1660.DOI: 10.19894/j.issn.1000-0518.250251
• Full Papers • Previous Articles Next Articles
Yong-Feng CHANG1,2, Ming-Feng HE3, Kai-Jun LEI3, Fang-Hao ZHENG3, Xiao-Song ZHOU1,2, Zhen-Xu WU2(
), Zi-Xue JIAO2(
), Pei-Biao ZHANG2(
)
Received:2025-06-20
Accepted:2025-09-11
Published:2025-12-01
Online:2025-12-30
Contact:
Zhen-Xu WU,Zi-Xue JIAO,Pei-Biao ZHANG
Supported by:CLC Number:
Yong-Feng CHANG, Ming-Feng HE, Kai-Jun LEI, Fang-Hao ZHENG, Xiao-Song ZHOU, Zhen-Xu WU, Zi-Xue JIAO, Pei-Biao ZHANG. Preparation and Properties of Epidermal Growth Factor/Shangkehuangshui/Polyvinyl Alcohol Hydrogel Wound Dressing[J]. Chinese Journal of Applied Chemistry, 2025, 42(12): 1649-1660.
Add to citation manager EndNote|Ris|BibTeX
URL: http://yyhx.ciac.jl.cn/EN/10.19894/j.issn.1000-0518.250251
| MOD | PVA | PVA/EGF1 | PVA/EGF10 | PVA/EGF100 | HP/EGF | HP/EGF1 | HP/EGF10 | HP/EGF100 | |
|---|---|---|---|---|---|---|---|---|---|
| 10-9·L·WBC | 12.8 | 6.6 | 16.1 | 13.3 | 6.3 | 7.7 | 7.4 | 8.3 | 10.4 |
| 10-9·L·LYM | 11.1 | 4.8 | 13.0 | 9.6 | 5.0 | 6.4 | 6.0 | 6.2 | 8.5 |
| 10-9·L·MO | 0.3 | 0.2 | 0.3 | 0.5 | 0.2 | 0.1 | 0.1 | 0.3 | 0.2 |
| 10-9·L·GRAN | 1.4 | 1.6 | 2.8 | 3.2 | 1.1 | 1.2 | 1.3 | 1.8 | 1.7 |
| LYM/% | 86.6 | 73.0 | 80.5 | 72.4 | 79.1 | 82.4 | 80.1 | 74.3 | 81.4 |
| MO/% | 2.7 | 3.2 | 2.1 | 3.9 | 2.8 | 1.9 | 2.0 | 3.5 | 2.0 |
| GRAN/% | 10.7 | 23.8 | 17.4 | 23.7 | 18.1 | 15.7 | 17.9 | 22.2 | 16.6 |
| 10-12·L·RBC | 5.66 | 6.61 | 4.98 | 4.13 | 4.99 | 6.27 | 5.52 | 6.09 | 5.81 |
| HGB/(g?L-1) | 124 | 146 | 139 | 89 | 104 | 129 | 120 | 121 | 119 |
| HCT/% | 32.9 | 38.5 | 30.6 | 26.0 | 27.9 | 34.6 | 32.5 | 32.3 | 32.7 |
| MCV/fL | 58.3 | 58.3 | 61.6 | 63.1 | 56.0 | 55.3 | 59.0 | 53.1 | 56.4 |
| MCH/pg | 21.9 | 22.0 | 27.9 | 21.5 | 20.8 | 20.5 | 21.7 | 19.8 | 20.4 |
| MCHC/(g?L-1) | 376 | 379 | 454 | 342 | 372 | 372 | 369 | 374 | 363 |
| RDW/% | 12.1 | 12.5 | 16.1 | 14.3 | 12.4 | 12.6 | 12.2 | 12.5 | 11.7 |
| 10-9·L·PLT | 1184 | 439 | 740 | 906 | 534 | 791 | 584 | 823 | 694 |
| MPV/fL | 6.2 | 7.4 | 6.3 | 7.8 | 7.8 | 6.9 | 6.7 | 7.0 | 6.2 |
| PDW | 16.6 | 17.3 | 17.3 | 17.4 | 17.6 | 16.6 | 17.0 | 17.0 | 16.6 |
| PCT/% | 0.32 | 0.324 | 0.001 | 0.001 | 0.416 | 0.545 | 0.391 | 0.576 | 0.430 |
Table 1 Routine blood count of mice with skin trauma in different groups
| MOD | PVA | PVA/EGF1 | PVA/EGF10 | PVA/EGF100 | HP/EGF | HP/EGF1 | HP/EGF10 | HP/EGF100 | |
|---|---|---|---|---|---|---|---|---|---|
| 10-9·L·WBC | 12.8 | 6.6 | 16.1 | 13.3 | 6.3 | 7.7 | 7.4 | 8.3 | 10.4 |
| 10-9·L·LYM | 11.1 | 4.8 | 13.0 | 9.6 | 5.0 | 6.4 | 6.0 | 6.2 | 8.5 |
| 10-9·L·MO | 0.3 | 0.2 | 0.3 | 0.5 | 0.2 | 0.1 | 0.1 | 0.3 | 0.2 |
| 10-9·L·GRAN | 1.4 | 1.6 | 2.8 | 3.2 | 1.1 | 1.2 | 1.3 | 1.8 | 1.7 |
| LYM/% | 86.6 | 73.0 | 80.5 | 72.4 | 79.1 | 82.4 | 80.1 | 74.3 | 81.4 |
| MO/% | 2.7 | 3.2 | 2.1 | 3.9 | 2.8 | 1.9 | 2.0 | 3.5 | 2.0 |
| GRAN/% | 10.7 | 23.8 | 17.4 | 23.7 | 18.1 | 15.7 | 17.9 | 22.2 | 16.6 |
| 10-12·L·RBC | 5.66 | 6.61 | 4.98 | 4.13 | 4.99 | 6.27 | 5.52 | 6.09 | 5.81 |
| HGB/(g?L-1) | 124 | 146 | 139 | 89 | 104 | 129 | 120 | 121 | 119 |
| HCT/% | 32.9 | 38.5 | 30.6 | 26.0 | 27.9 | 34.6 | 32.5 | 32.3 | 32.7 |
| MCV/fL | 58.3 | 58.3 | 61.6 | 63.1 | 56.0 | 55.3 | 59.0 | 53.1 | 56.4 |
| MCH/pg | 21.9 | 22.0 | 27.9 | 21.5 | 20.8 | 20.5 | 21.7 | 19.8 | 20.4 |
| MCHC/(g?L-1) | 376 | 379 | 454 | 342 | 372 | 372 | 369 | 374 | 363 |
| RDW/% | 12.1 | 12.5 | 16.1 | 14.3 | 12.4 | 12.6 | 12.2 | 12.5 | 11.7 |
| 10-9·L·PLT | 1184 | 439 | 740 | 906 | 534 | 791 | 584 | 823 | 694 |
| MPV/fL | 6.2 | 7.4 | 6.3 | 7.8 | 7.8 | 6.9 | 6.7 | 7.0 | 6.2 |
| PDW | 16.6 | 17.3 | 17.3 | 17.4 | 17.6 | 16.6 | 17.0 | 17.0 | 16.6 |
| PCT/% | 0.32 | 0.324 | 0.001 | 0.001 | 0.416 | 0.545 | 0.391 | 0.576 | 0.430 |
| Blood parameter | 10-12 RBC/L | 10-9 PLT/L | 10-9 WBC/L | LYM/% | MO/% |
|---|---|---|---|---|---|
| Reference range | 6.36~9.42 | 592~2972 | 1.8~10.7 | 55.8~91.6 | 6.6~38.9 |
Table 2 Reference range of blood parameters in normal mice
| Blood parameter | 10-12 RBC/L | 10-9 PLT/L | 10-9 WBC/L | LYM/% | MO/% |
|---|---|---|---|---|---|
| Reference range | 6.36~9.42 | 592~2972 | 1.8~10.7 | 55.8~91.6 | 6.6~38.9 |
| MOD | PVA | PVA/EGF1 | PVA/EGF10 | PVA/EGF100 | HP/EGF | HP/EGF1 | HP/EGF10 | HP/EGF100 | |
|---|---|---|---|---|---|---|---|---|---|
| UREA/(mol?L-1) | 2.728 | 7.581 | 5.774 | 8.920 | 6.806 | 6.491 | 6.258 | 6.297 | 8.126 |
| CREA/(μmol?L-1) | 19.776 | 48.790 | 35.739 | 35.194 | 48.265 | 41.917 | 38.441 | 41.370 | 36.679 |
| UA/(μmol?L-1) | 72.830 | 42.397 | 105.011 | 60.451 | 72.492 | 51.843 | 42.836 | 66.561 | 64.561 |
| AST/(U?L-1) | 75.756 | 97.828 | 72.874 | 73.987 | 111.194 | 99.854 | 98.395 | 119.196 | 70.174 |
| ALT/(U?L-1) | 14.452 | 22.385 | 26.184 | 34.680 | 39.945 | 33.075 | 31.484 | 35.652 | 32.171 |
| ALP/(U?L-1) | 45.145 | 148.724 | 98.412 | 149.387 | 116.321 | 132.186 | 137.857 | 146.472 | 163.149 |
| TBA/(μmol?L-1) | 24.806 | 23.440 | 9.656 | 14.849 | 11.812 | 15.310 | 33.232 | 17.144 | 174.140 |
| ALB/(U?L-1) | 14.946 | 30.967 | 30.856 | 25.255 | 27.999 | 29.573 | 30.700 | 31.072 | 27.772 |
| γ-GT/(U?L-1) | 3.153 | 0.090 | 0.758 | 0.881 | 6.191 | 1.022 | 2.889 | 2.532 | 5.901 |
| TBIL/(μmol?L-1) | 18.377 | 9.836 | 12.194 | 10.784 | 9.527 | 12.395 | 10.637 | 7.307 | 3.299 |
| DBIL/(μmol?L-1) | 11.913 | 2.313 | 5.328 | 1.538 | 3.033 | 4.015 | 2.989 | 2.575 | 1.418 |
Table 3 Liver and kidney function in different groups of mice with skin trauma
| MOD | PVA | PVA/EGF1 | PVA/EGF10 | PVA/EGF100 | HP/EGF | HP/EGF1 | HP/EGF10 | HP/EGF100 | |
|---|---|---|---|---|---|---|---|---|---|
| UREA/(mol?L-1) | 2.728 | 7.581 | 5.774 | 8.920 | 6.806 | 6.491 | 6.258 | 6.297 | 8.126 |
| CREA/(μmol?L-1) | 19.776 | 48.790 | 35.739 | 35.194 | 48.265 | 41.917 | 38.441 | 41.370 | 36.679 |
| UA/(μmol?L-1) | 72.830 | 42.397 | 105.011 | 60.451 | 72.492 | 51.843 | 42.836 | 66.561 | 64.561 |
| AST/(U?L-1) | 75.756 | 97.828 | 72.874 | 73.987 | 111.194 | 99.854 | 98.395 | 119.196 | 70.174 |
| ALT/(U?L-1) | 14.452 | 22.385 | 26.184 | 34.680 | 39.945 | 33.075 | 31.484 | 35.652 | 32.171 |
| ALP/(U?L-1) | 45.145 | 148.724 | 98.412 | 149.387 | 116.321 | 132.186 | 137.857 | 146.472 | 163.149 |
| TBA/(μmol?L-1) | 24.806 | 23.440 | 9.656 | 14.849 | 11.812 | 15.310 | 33.232 | 17.144 | 174.140 |
| ALB/(U?L-1) | 14.946 | 30.967 | 30.856 | 25.255 | 27.999 | 29.573 | 30.700 | 31.072 | 27.772 |
| γ-GT/(U?L-1) | 3.153 | 0.090 | 0.758 | 0.881 | 6.191 | 1.022 | 2.889 | 2.532 | 5.901 |
| TBIL/(μmol?L-1) | 18.377 | 9.836 | 12.194 | 10.784 | 9.527 | 12.395 | 10.637 | 7.307 | 3.299 |
| DBIL/(μmol?L-1) | 11.913 | 2.313 | 5.328 | 1.538 | 3.033 | 4.015 | 2.989 | 2.575 | 1.418 |
| [1] | GU X. Biodegradable materials and the tissue engineering of nerves[J]. Engineering, 2021, 7(12): 1700-1703. |
| [2] | GAO J, YU X, WANG X, et al. Biomaterial-related cell microenvironment in tissue engineering and regenerative medicine[J]. Engineering, 2022, 13: 31-45. |
| [3] | DAS R, CURRY E J, LE T T, et al. Biodegradable nanofiber bone-tissue scaffold as remotely-controlled and self-powering electrical stimulator[J]. Nano Energy, 2020, 76: 105028. |
| [4] | ASIRI A, AL-ASHWAL R H, SALLEH A, et al. Effect of electrospun epidermal and fibroblast growth factors/polyvinyl alcohol nanofibers on full-thickness burn model; proceedings of the 6th International Conference on Biomedical Engineering, Malaysia, F Sep 04-05, 2023[C]. 2025, 115: 486-493. |
| [5] | PARANGUSAN K, SUBRAMANIAM V, BABU A, et al. Biocompatible neem gum-modified polyvinyl alcohol composite as dielectric material for flexible energy devices[J]. Heliyon, 2024, 10(7): e28379. |
| [6] | SASMAZEL H T, ALAZZAWI M, SADHU V, et al. Biocompatibility of electrospun PVA-based nanocomposite with chemical vapor deposition-derived graphene monolayer[J]. Polimery, 2024, 69(7/8): 657-667. |
| [7] | FATHOLLAHIPOUR S, KOOSHA M, TAVAKOLI J, et al. Erythromycin releasing PVA/sucrose and PVA/honey hydrogels as wound dressings with antibacterial activity and enhanced bio-adhesion[J]. Iranian J Pharm Res, 2020, 19(1): 448-464. |
| [8] | ULLAH F, OTHMAN M B H, JAVED F, et al. Classification, processing and application of hydrogels: a review[J]. Mater Sci Eng C-Mater Biol Appl, 2015, 57: 414-433. |
| [9] | BEHM B, BABILAS P, LANDTHALER M, et al. Cytokines, chemokines and growth factors in wound healing[J]. J Europ Academy Dermatol Venereol, 2012, 26(7): 812-820. |
| [10] | ROUSSELLE P, MONTMASSON M, GARNIER C. Extracellular matrix contribution to skin wound re-epithelialization[J]. Matrix Biol, 2019, 75/76: 12-26. |
| [11] | YILMAZ H, TUBA B, GUNDUZ O, et al. Producing biomimetic-biofunctional scaffold by adding antibiotics to gelatin methacrylate, producing layer, preparing solution of polyvinyl alcohol and epidermal growth factor biosignaling molecule, immobilizing, preparing polycaprolactone and collagen solution and forming membrane, WO2024136818-A2; WO2024136818-A3 [P/OL]. |
| [12] | HU H, XU F J. Rational design and latest advances of polysaccharide-based hydrogels for wound healing[J]. Biomater Sci, 2020, 8(8): 2084-2101. |
| [13] | LI Z, HUANG X, LIN L, et al. Polyphenol and Cu2+ surface-modified chitin sponge synergizes with antibacterial, antioxidant and pro-vascularization activities for effective scarless regeneration of burned skin[J]. Chem Eng J, 2021, 419: 129488. |
| [14] | PRASAD C, OH S H, MIN D J, et al. Nanoporous and biocompatible TEMPO-oxidized cellulose nanofibrils/sodium alginate/polyvinyl alcohol (CNF/SA/PVA) aerogel with potential applications in hydrophobic organic contaminants removal and cytotoxicity tests[J]. Mater Sci Eng B-Adv Funct Solid-State Mater, 2025, 322: 13. |
| [15] | LI B G, MA Q, LI J L, et al. Regulating hydrogen bonds within multi-crosslinking hydrogel electrolytes for improved water retention and frost resistance[J]. J Power Sources, 2025, 653: 8. |
| [16] | IQBAL N, KHAN A S, ASIF A, et al. Recent concepts in biodegradable polymers for tissue engineering paradigms: a critical review[J]. Int Mater Rev, 2019, 64(2): 91-126. |
| [17] | CHYZY A, PLONSKA-BRZEZINSKA M E. Hydrogel properties and their impact on regenerative medicine and tissue engineering[J]. Molecules, 2020, 25(24) :5795. |
| [18] | DAS R, CURRY E J, LE T T, et al. Biodegradable nanofiber bone-tissue scaffold as remotely-controlled and self-powering electrical stimulator[J]. Nano Energy, 2020, 76: 105028. |
| [19] | 雷凯君, 强润润, 李怀国, 等. 伤科黄水/聚乙烯醇静电纺丝纳米纤维创面敷料的制备及其性能[J]. 应用化学, 2023, 40(11): 1539-1549. |
| LEI K J, QIANG R R, LI H G, et al. Preparation and characterization of Shangkehuangshui/polyvinyl alcohol electrospinning nanofiber membranes as wound dressing[J]. Chin J Appl Chem, 2023, 40(11): 1539-1549. | |
| [20] | DENG Y, YANG C, ZHU Y, et al. Lamprey-teeth-inspired oriented antibacterial sericin microneedles for infected wound healing improvement[J]. Nano Lett, 2022, 22(7): 2702-2711. |
| [21] | ZHANG X, YAO D, ZHAO W, et al. Engineering platelet-rich plasma based dual-network hydrogel as a bioactive wound dressing with potential clinical translational value[J]. Adv Funct Mater, 2021, 31(8): 2009258. |
| [22] | YAO S, CHI J, WANG Y, et al. Zn-MOF encapsulated antibacterial and degradable microneedles array for promoting wound healing[J]. Adv Healthcare Mater, 2021, 10(12): 2100056. |
| [23] | WANG C, WANG M, XU T, et al. Engineering bioactive self-healing antibacterial exosomes hydrogel for promoting chronic diabetic wound healing and complete skin regeneration[J]. Theranostics, 2021, 11(20): 10174-10175. |
| [24] | LUO M, WANG M, NIU W, et al. Injectable self-healing anti-inflammatory europium oxide-based dressing with high angiogenesis for improving wound healing and skin regeneration[J]. Chem Eng J, 2021, 412: 128471. |
| [25] | HU H, SHENG Q, YANG F, et al. Enhanced skin wound healing through chemically modified messenger RNA encoding epidermal growth factor (EGF)[J]. Int Wound J, 2025, 22(5): e70143. |
| [1] | Qing-Hua SHANG, Meng-Yuan ZHANG, Hao-Tian ZHENG, Zheng ZHAO, Jiang-Tao LI, Yi-Long CHENG. Antibacterial Polymer Hydrogel Based on Cold Plasma-Activated Water for Infected Wound Regeneration [J]. Chinese Journal of Applied Chemistry, 2025, 42(11): 1461-1471. |
| [2] | Wang-Yao JI, Xiao-Xia JIAN, Pei-Yao HAN, Xiang ZHANG. Preparation and Properties of Poly(3,4-ethylenedioxythiophene)- Poly(styrenesulfonate)/Polyvinyl Alcohol Semi-Interpenetrating Polymer Network [J]. Chinese Journal of Applied Chemistry, 2025, 42(11): 1479-1490. |
| [3] | Shou-Ping XU, Li-Hua ZENG, Pi-Hui PI, Xiu-Fang WEN, Jiang CHENG. Comprehensive Polymer Chemistry Experimental Design: Preparation of Hydrophilic Sponge [J]. Chinese Journal of Applied Chemistry, 2025, 42(1): 117-123. |
| [4] | Hai-Xiang XU, Ju-Pei XIA. Preparation of High Strength Waterproof Gypsum by Modified Polyvinyl Alcohol and Portland Cement [J]. Chinese Journal of Applied Chemistry, 2024, 41(8): 1131-1145. |
| [5] | Hao WANG, Xi-Yu WANG, Ying XIONG, Jun-Shuo CUI. Naphthalene-Based Reactive Dispersant and Its Application in Graphene-Reinforced Polyvinyl Alcohol Films [J]. Chinese Journal of Applied Chemistry, 2024, 41(12): 1712-1720. |
| [6] | Xiang HE, Jing WANG, Zi-Xin XING, Zhe-Peng LIU, Shu-Yi WANG, Li-Rong NIE. Preparation and Wound Healing Properties of Indomethacin-Loaded Nanofibers [J]. Chinese Journal of Applied Chemistry, 2024, 41(11): 1629-1638. |
| [7] | Li-Juan YAN, Tian-He GAO, Dong-Jian SHI, Ming-Qing CHEN. Preparation and Properties of Eugenol/Modified Polyvinyl Alcohol Antibacterial Composite Films [J]. Chinese Journal of Applied Chemistry, 2023, 40(4): 527-535. |
| [8] | Kai-Jun LEI, Run-Run QIANG, Huai-Guo LI, Fang-Hao ZHENG, Zi-Xue JIAO, Zong-Liang WANG, Yu WANG, Ming-Feng HE, Pei-Biao ZHANG. Preparation and Characterization of Shangkehuangshui/Polyvinyl Alcohol Electrospinning Nanofiber Membranes as Wound Dressing [J]. Chinese Journal of Applied Chemistry, 2023, 40(11): 1539-1549. |
| [9] | Bing-Gang CHEN, San-Rong LIU, Zi-Jiang JIANG, Xi-Fei YU. Preparation and Properties Characterization of Hydrophilic Polysiloxane and Polyvinyl Alcohol Composite as Skin Barrier Material [J]. Chinese Journal of Applied Chemistry, 2022, 39(8): 1224-1236. |
| [10] | SUN Qi, WANG Liqiu, LIU Yang, GUO Chenxiao, WANG Pengjun, LIU Xuelong, ZHANG Xiaobo, ZHENG Lihui, LIU Liping. Preparation and Properties of Near Infrared Polyvinyl Alcohol Fluorescent Polymer Materials [J]. Chinese Journal of Applied Chemistry, 2018, 35(1): 53-59. |
| [11] | LIU Yan, YU Dan, LI Weiya, GAO Cuicui, WANG Wei. Application of Chitosan/Polyvinyl Alcohol Complex Film in Fabrics' Electroless Plating [J]. Chinese Journal of Applied Chemistry, 2015, 32(2): 200-206. |
| [12] | DENG Xinwang, HU Huiyuan, LUO Zhongkuan, WU Maosheng, ZHOU Li. Preparation and Properties of Heparin Sodium/Polyvinyl Alcohol Composite Hydrogel [J]. Chinese Journal of Applied Chemistry, 2015, 32(12): 1358-1363. |
| [13] | FAN Zhiheng, ZHOU Li*, OUYANG Junjun, LUO Zhongkuan, LI Miaomiao. Preparation and Performance of Polyvinyl Alcohol/Chitosan/Nano-hydroxyapatite Composite Hydrogel via a Chem-physical Method [J]. Chinese Journal of Applied Chemistry, 2014, 31(01): 61-64. |
| [14] | OUYANG Junjun,ZHOU Li*. Preparation and Properties of Porous β-Tricalcium Phosphate/Chitosan/Polyvinyl Alcohol Composite Hydrogel [J]. Chinese Journal of Applied Chemistry, 2012, 29(09): 995-999. |
| [15] | HE Yuxin, ZHANG Yuqing. Thermoplastic Starch/Polyvinyl Alcohol/Montmorillonite Nanocomposites [J]. Chinese Journal of Applied Chemistry, 2011, 28(07): 764-769. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||