1 |
ZENG Q K, QI X L, SHI G Y, et al. Wound dressing: from nanomaterials to diagnostic dressings and healing evaluations[J]. ACS Nano, 2022, 16(2): 1708-1733.
|
2 |
ALJGHAMI M E, SABOOR S, AMINI-NIK S. Emerging innovative wound dressings[J]. Ann Biomed Eng, 2019, 47: 659-675.
|
3 |
NUUTILA K, ERIKSSON E. Moist wound healing with commonly available dressings[J]. Adv Wound Care, 2021, 10(12): 685-698.
|
4 |
GLISZCZYŃSKA A, NOWACZYK M. Lipid formulations and bioconjugation strategies for indomethacin therapeutic advances[J]. Molecules, 2021, 26(6): 1576.
|
5 |
刘静, 胡金芳, 刘兆凤, 等. 吲哚美辛对大鼠胃功能的影响及作用机制研究[J]. 中国现代应用药学, 2011, 28(12): 1074-1076.
|
|
LIU J, HU J F, LIU Z F, et al. Effects of indomethacin on function of stomach in rats and its mechanism[J]. Chin J Mod Appl Pharm, 2011, 28(12): 1074-1076.
|
6 |
HE Y M, QIN L N, HUANG Y G, et al. Advances of nano-structured extended-release local anesthetics[J]. Nanoscale Res Lett, 2020, 15(1): 1-18.
|
7 |
LURAGHI A, PERI F, MORONI L. Electrospinning for drug delivery applications: a review[J]. J Control Release, 2021, 334: 463-484.
|
8 |
杨冰洁, 赵志慧, 陈为超, 等. 静电纺丝纳米纤维多功能敷料的研究进展[J]. 毛纺科技, 2023, 51(3): 117-122.
|
|
YANG B J, ZHAO Z H, CHEN W C, et al. Advances in multifunctional electrospun nanofiber dressing[J]. Wool Text J, 2023, 51(3): 117-122.
|
9 |
MELE E. Electrospinning of honey and propolis for wound care[J]. Biotechnol Bioeng, 2023, 120(5): 1229-1240.
|
10 |
李霖, 张旭, 曲飏, 等. 静电纺丝技术与装置的研究进展[J]. 材料导报, 2019, 33(S1): 89-93.
|
|
LI L, ZHANG X, QU Y, et al. Research progress of electrospinning technology and device[J]. Mater Rev, 2019, 33(S1): 89-93.
|
11 |
PANT B, PARK M, PARK S J. Drug delivery applications of core-sheath nanofibers prepared by coaxial electrospinning: a review[J]. Pharmaceutics, 2019, 11(7): 305.
|
12 |
XIAO M, YANG F, IM S, et al. Characterizing surface porosity of porous membranes via contact angle measurements[J]. J Membrane Sci Lett, 2022, 2(1): 100022.
|
13 |
RAJEEV M, HELMS C C. A study of the relationship between polymer solution entanglement and electrospun PCL fiber mechanics[J]. Polymers, 2023, 15(23): 4555.
|
14 |
KRIFA M, HAMMAMI M A, WU H. Occurrence and morphology of bead-on-string structures in centrifugal forcespun PA6 fibers[J]. J Text Inst, 2015, 106(3): 284-294.
|
15 |
PEREZ-GONZALEZ G L, VILLARREAL-GOMEZ L J, SERRANO-MEDINA A, et al. Mucoadhesive electrospun nanofibers for drug delivery systems: applications of polymers and the parameters' roles[J]. Int J Nanomed, 2019, 14: 5271-5285.
|
16 |
VU L V N. Electrospray method: processing parameters influence on morphology and size of PCL particles[J]. Vietnam J Sci Technol, 2017, 55(1B): 209-215.
|
17 |
ZHU T H, YANG C Y, CHEN S H, et al. A facile approach to prepare shell/core nanofibers for drug controlled release[J]. Mater Lett, 2015, 150: 52-54.
|
18 |
JIAO H, ZHANG X Y, ZHAO K, et al. An investigation of the hydrophilicity, biocompatibility and biodegradability properties of BT/HA/PHBV micro-nanofibers composite film[J]. Mat Sci Eng B-Adv, 2022, 284: 115892.
|
19 |
KIM E, KIM D, KWAK K, et al. Wettability of graphene, water contact angle, and interfacial water structure[J]. Chem, 2022, 8(5): 1187-1200.
|
20 |
SONG J W, FAN L W. Temperature dependence of the contact angle of water: a review of research progress, theoretical understanding, and implications for boiling heat transfer[J]. Adv Colloid Interface Sci, 2021, 288: 102339.
|
21 |
LI H W, YANG W, WU N, et al. Highly-dispersed carboxymethyl cellulose and polyvinylpyrrolidone functionalized boron nitride for enhanced thermal conductivity and hydrophilicity[J]. Appl Surf Sci, 2023, 617: 156485.
|
22 |
KURAKULA M, RAO G. Pharmaceutical assessment of polyvinylpyrrolidone (PVP): as excipient from conventional to controlled delivery systems with a spotlight on COVID-19 inhibition[J]. J Drug Deliv Sci Tec, 2020, 60: 102046.
|