Chinese Journal of Applied Chemistry ›› 2024, Vol. 41 ›› Issue (10): 1481-1490.DOI: 10.19894/j.issn.1000-0518.240131
• Full Papers • Previous Articles Next Articles
Sai-Nan YANG1, Ping LI1, Yuan LYU1, Hai-Yong LUO1, Ling-Ling ZHANG2, Bin DAI1(), Xiao WANG2()
Received:
2024-04-18
Accepted:
2024-08-20
Published:
2024-10-01
Online:
2024-10-29
Contact:
Bin DAI,Xiao WANG
About author:
wangxiao@ciac.ac.cnSupported by:
CLC Number:
Sai-Nan YANG, Ping LI, Yuan LYU, Hai-Yong LUO, Ling-Ling ZHANG, Bin DAI, Xiao WANG. The Inter-station Difference of Image Colorimetry for Smart Phones[J]. Chinese Journal of Applied Chemistry, 2024, 41(10): 1481-1490.
Add to citation manager EndNote|Ris|BibTeX
URL: http://yyhx.ciac.jl.cn/EN/10.19894/j.issn.1000-0518.240131
iPhone 6s | iPhone 11 | iPhone 13 | iPhone 13 Pro | iQOO Z3 | vivo Y79 | Mi 12 | |
---|---|---|---|---|---|---|---|
Number of cameras | 2 | 3 | 4 | 4 | 4 | 2 | 4 |
Pixels (10 000) | 500 | 1 200 | 1 200 | 1 200 | 6 400 | 1 600 | 5 000 |
Slope value(K) | 169.38 | 263.23 | 264.23 | 243.76 | 300.54 | 277.88 | 460.36 |
Coefficient of determination(R2) | 0.985 8 | 0.992 2 | 0.980 7 | 0.993 4 | 0.994 5 | 0.974 1 | 0.995 2 |
Table 1 Parameters and linear detection results of seven mobile phones
iPhone 6s | iPhone 11 | iPhone 13 | iPhone 13 Pro | iQOO Z3 | vivo Y79 | Mi 12 | |
---|---|---|---|---|---|---|---|
Number of cameras | 2 | 3 | 4 | 4 | 4 | 2 | 4 |
Pixels (10 000) | 500 | 1 200 | 1 200 | 1 200 | 6 400 | 1 600 | 5 000 |
Slope value(K) | 169.38 | 263.23 | 264.23 | 243.76 | 300.54 | 277.88 | 460.36 |
Coefficient of determination(R2) | 0.985 8 | 0.992 2 | 0.980 7 | 0.993 4 | 0.994 5 | 0.974 1 | 0.995 2 |
Fig.6 The purple gradient color card corrects the characteristic absorbance deviations observed in the six mobile phones relative to the Mi 12 reference
Fig.7 The purple gradient color card (intercept is 0) corrects the characteristic absorbance deviations observed in the six mobile phones relative to the Mi 12 reference
T1/% | T2/% | T3/% | |
---|---|---|---|
Mi 12 | 5.2 | 3.9 | 3.0 |
iPhone 6s | 2.8 | 3.6 | 3.5 |
iPhone 11 | 4.4 | 2.1 | 1.1 |
iPhone 13 | 3.5 | 1.5 | 1.3 |
iPhone 13Pro | 6.0 | 2.3 | 1.4 |
iQOO Z3 | 5.3 | 3.9 | 2.5 |
vivo Y79 | 2.9 | 3.9 | 2.5 |
Table 2 Test repeatability of 7 mobile phones
T1/% | T2/% | T3/% | |
---|---|---|---|
Mi 12 | 5.2 | 3.9 | 3.0 |
iPhone 6s | 2.8 | 3.6 | 3.5 |
iPhone 11 | 4.4 | 2.1 | 1.1 |
iPhone 13 | 3.5 | 1.5 | 1.3 |
iPhone 13Pro | 6.0 | 2.3 | 1.4 |
iQOO Z3 | 5.3 | 3.9 | 2.5 |
vivo Y79 | 2.9 | 3.9 | 2.5 |
Fig.8 (A) Inter-station variation observed in bilirubin samples detected by the 34 uncorrected mobile phones; (B) Inter-station differences in bilirubin samples detected by the 34 mobile phones calibrated in real-time; (C) Range of bilirubin test results before and after calibration across the 34 mobile phones
1 | ZAYED B A, ALI A N, ELGEBALY A A, et al. Smartphone-based point-of-care testing of the SARS-CoV-2: a systematic review[J]. Sci Afr, 2023, 21: e01757. |
2 | CHEN J, SONG N, ZHANG N, et al. Smartphone-controlled portable photoelectrochemical immunosensor for point-of-care testing of carcinoembryonic antigen[J]. Chem Eng J, 2023, 473: 145276. |
3 | XIAO M, TIAN F, LIU X, et al. Virus detection: from state-of-the-art laboratories to smartphone-based point-of-care testing[J]. Adv Sci, 2022, 9(17): 2105904. |
4 | KHALAF E M, JABBAR H S, ROMERO-PARRA R M, et al. Smartphone-assisted microfluidic sensor as an intelligent device for on-site determination of food contaminants: developments and applications[J]. Microchem J, 2023, 190: 108692. |
5 | ABDELBASSET W K, SAVINA S V, MAVALURU D, et al. Smartphone based aptasensors as intelligent biodevice for food contamination detection in food and soil samples: recent advances[J]. Talanta, 2023, 252: 123769. |
6 | UPADHYAY S, KUMAR A, SRIVASTAVA M, et al. Recent advancements of smartphone-based sensing technology for diagnosis, food safety analysis, and environmental monitoring[J]. Talanta, 2024, 275: 126080. |
7 | ZHU H, LIU M, LIU C, et al. Portable ratiometric fluorescence analytical device for copper ions based on smartphone in environment and living organisms[J]. Sci Total Environ, 2023, 857: 159488. |
8 | KI J, KWON I H, LEE J, et al. A portable smartphone-based colorimetric sensor that utilizes dual amplification for the on-site detection of airborne bacteria[J]. J Hazard Mater, 2023, 460: 132398. |
9 | LIN Y, LI Y, CHANG H, et al. Rapid testing of Δ 9-tetrahydrocannabinol and its metabolite on-site using a label-free ratiometric fluorescence assay on a smartphone[J]. Anal Chem, 2023, 95(18): 7363-7371. |
10 | YU K, LI M, CHAI H, et al. MOF-818 nanozyme-based colorimetric and electrochemical dual-mode smartphone sensing platform for in situ detection of H2O2 and H2S released from living cells[J]. Chem Eng J, 2023, 451: 138321. |
11 | TEEKAYUPAK K, AUMNATE C, LOMAE A, et al. Portable smartphone integrated 3D-Printed electrochemical sensor for nonenzymatic determination of creatinine in human urine[J]. Talanta, 2023, 254: 124131. |
12 | KAUR H, KUMARI N, SHARMA A, et al. Optical and electrochemical microfluidic sensors for water contaminants: a short review[J]. Mater Today: Proc, 2022, 48: 1673-1679. |
13 | DUAN W, CHENG J, GUO J. Smartphone-based photochemical sensor for multiplex determination of glucose, uric acid, and total cholesterol in fingertip blood[J]. Analyst, 2022, 147(14): 3285-3290. |
14 | DUAN S, CAI T, ZHU J, et al. Deep learning-assisted ultra-accurate smartphone testing of paper-based colorimetric ELISA assays[J]. Anal Chim Acta, 2023, 1248: 340868. |
15 | FRANCO M D O K, SUAREZ W T, PEREIRA G R P, et al. Using colorimetric spot test and digital imaging-based technique for volatile acidity determination in cachaça with the aid of a smartphone[J]. Microchem J, 2023, 187: 108416. |
16 | DELANEY J L, DOEVEN E H, HARSANT A J, et al. Use of a mobile phone for potentiostatic control with low cost paper-based microfluidic sensors[J]. Anal Chim Acta, 2013, 790: 56-60. |
17 | L PEZ M, MARTINEZ S, GOMEZ J, et al. Wireless monitoring of the pH, NH 4 + and temperature in a fish farm[J]. Procedia Chem, 2009, 1(1): 445-448. |
18 | LIN H, WANG Z, AHMAD W, et al. Identification of rice storage time based on colorimetric sensor array combined hyperspectral imaging technology[J]. J Stored Prod Res, 2020, 85: 101523. |
19 | YOO W S, KIM J G, KANG K, et al. Development of static and dynamic colorimetric analysis techniques using image sensors and novel image processing software for chemical, biological and medical applications[J]. Technologies, 2023, 11(1): 23. |
20 | FAN Y, LI J, GUO Y, et al. Digital image colorimetry on smartphone for chemical analysis: a review[J]. Measurement, 2021, 171: 108829. |
21 | SIRISATHITKUL C, SIRISATHITKUL Y. Smart scientific instruments based on smartphones: a brief review[J]. Int J Comput Electr Eng, 2023, 13(1): 651. |
22 | DI NONNO S, ULBER R. Smartphone-based optical analysis systems[J]. Analyst, 2021, 146(9): 2749-2768. |
23 | SONI A, SURANA R K, JHA S K. Smartphone based optical biosensor for the detection of urea in saliva[J]. Sens Actuators B: Chem, 2018, 269: 346-353. |
24 | 戴斌, 彭琳, 罗继全, 等. 基于智能手机定量测定蛋白质的方法研究[J]. 分析测试学报, 2018, 37(12): 1463-1468. |
DAI B,PENG L,LUO J Q, et al. Research on quantitative detection of protein using smart phone[J]. J Instrumental Anal, 2018, 37(12): 1463-1468. | |
25 | 向宪昕, 孙华悦, 柴会宁, 等. 基于智能手机的可视化生物传感器在即时检测中的研究进展[J]. 分析化学, 2024, 52(2): 145-156. |
XIANG X X, SUN H Y, CHAI H N, et al. Research advance on smartphone-based visual biosensor in point-of-care testing[J]. Chin J Anal Chem, 2024, 52(2): 145-156. | |
26 | GOH K S, HO Y K, CHIONG T. Development of chromatic aberration correction factor method and algorithm for low-cost imaging optics[J]. J Eng Sci Technol, 2023, 18(3): 1427-1437. |
27 | OCHOA N A. Lateral chromatic aberration: a tool for retrieving the fringes phase[J]. Appl Opt, 2022, 61(7): 1797-1805. |
28 | SUN C, SHRIVASTAVA A, SINGH S, et al. Revisiting unreasonable effectiveness of data in deep learning era[C]. Proc IEEE Int Conf Comput Vis, 2017. |
29 | 李修华, 卢显杰, 奚金阳, 等. 智能手机 RGB 图像检测植物叶片叶绿素含量的方法[J]. 农业工程学报, 2021, 37(22): 145-151. |
LI X H, LU X J, XI J Y,et al. Univeisal method to detect the chlorophyll content in plant leaves with RGB images captured by smart phones[J]. Transactions CSAE, 2021, 37(22): 145-151. | |
30 | 王尉荧, 王璐, 徐怀瑾, 等. 基于手机终端的舌诊色差校正函数模型研究[J]. 中华中医药杂志, 2021, 36(2): 1020-1024. |
WANG W Y, WANG L, XU H J, et al. Study on the functional model of color calibration of tongue diagnosis based on mobile phone terminal[J]. Chin J Tradit Chin Med Pharm, 2021, 36(2): 1020-1024. | |
31 | GUERRA RUIZ A R, CRESPO J, LÓPEZ MARTÍNEZ R M, et al. Measurement and clinical usefulness of bilirubin in liver disease[J]. Adv Lab Med, 2021, 2(3): 352-361. |
[1] | Sai CUI, Ya-Ting MENG, Song-Bai WANG, Chuan DONG, Shao-Min SHUANG. Preparation of Solvent-Dependent Carbon Dots for Water Content Detection and Anti-Counterfeiting [J]. Chinese Journal of Applied Chemistry, 2024, 41(7): 937-947. |
[2] | Guo-Ying GUO, Mo-Xuan ZHAO, Wen-Ting LIANG, Tao GONG, Chuan DONG. Preparation and Anti‑Cancer Properties of Gold Nanosphere‑Graphene Oxide Nanodrug Carriers [J]. Chinese Journal of Applied Chemistry, 2024, 41(7): 976-986. |
[3] | Yao-Yao WANG, Ming-Yang SUN, Zuan YANG, Shao-Kai DU, Yu-Xuan HE, Yue SUN. Fabrication of an Electrochemical Sensor for Phospholipase C Detection Based on Flexible Electrodes and Signal Amplification Technology [J]. Chinese Journal of Applied Chemistry, 2024, 41(7): 987-997. |
[4] | Xiao-Jing CHAI, Rui-Rui ZHAO, Yuan ZHANG, Chuan DONG, Shao-Min SHUANG. Colorimetric/Fluorometric Detection of Adenosine-5′-Triphosphate Based on Metal-Organic Framework Cu@Sc-MOF Nanozyme [J]. Chinese Journal of Applied Chemistry, 2024, 41(5): 728-738. |
[5] | Yang SHU, Man YANG, Zhi-Hao LI, Jian-Hua WANG. MicroRNA Sensing Based on Gold Nanoparticle Aggregation and Hybridization Chain Amplification [J]. Chinese Journal of Applied Chemistry, 2024, 41(1): 109-117. |
[6] | Yue ZHANG, Rui LIANG, Can-Nan ZHAO, Chun-Mei LI. Construction of Graphene Oxide-DNA Nanoprobe for Adenosine 5-Triphosphate Detection and Drug Delivery [J]. Chinese Journal of Applied Chemistry, 2024, 41(1): 118-127. |
[7] | Xue-Min ZHOU, Shu-Zhen LYU, Guo-Fang ZHANG, Zhu-Mei CUI, Sai BI. A Near-Infrared-Driven Signal Amplification Fluorescence Biosensor Based on Upconversion Beacon Probe for microRNA Detection [J]. Chinese Journal of Applied Chemistry, 2024, 41(1): 137-146. |
[8] | Ling-Bo LIU, Shuang LI, Kang-Bing WU. Laser-Induced Graphene-Based Integrated Arrays for the Determination of Trimetazidine [J]. Chinese Journal of Applied Chemistry, 2024, 41(1): 147-155. |
[9] | Pan YU, Guang-Hui WANG, Jian-Hua GUO, Qiao-Zhi GUO, Chuan DONG. Yellow Fluorescent Carbon Dots for Sensitive Detection of Chlortetracycline Hydrochloride [J]. Chinese Journal of Applied Chemistry, 2023, 40(7): 1017-1023. |
[10] | Yue-Xia ZHANG, Xiao-Peng FAN, Yu-Juan CAO, Xin-Tong YANG, Zhong-Ping LI, Zhen-Hua YANG, Chuan DONG. Synthesis of Oil-soluble Carbon Quantum Dots by Pyrolysis Method for the Detection of Oxytetracycline [J]. Chinese Journal of Applied Chemistry, 2023, 40(4): 509-517. |
[11] | Jing YAO, Ming-Ming DAI. Preparation and Properties of Reclaimed Rubber Based on Passenger Car Tire Tread Powder [J]. Chinese Journal of Applied Chemistry, 2023, 40(1): 52-58. |
[12] | Mei-Ling YAN, Hong-Zhen PENG, Ting-Ting ZUO, Tian TIAN, Ying ZHU, Yan-Hong SUN. Controllable Assembly and Properties of Brain Targeting Peptides with Tetrahedral Framework Nucleic Acids [J]. Chinese Journal of Applied Chemistry, 2022, 39(10): 1501-1509. |
[13] | Wen-Dong WANG, Zai-Jun LI. Synthesis of Ruthenium‑Graphene Quantum Dots Artificial Oxidase and Its Application in Colorimetric Detection of Phoxim in Carrots [J]. Chinese Journal of Applied Chemistry, 2022, 39(8): 1285-1293. |
[14] | Qing-Fang NIU, Xin AI, Yi-Xuan WANG, Fang-Jiu HE, Bi LUO, Wen-Ting LIANG, Chuan DONG. Synthesis of Three‑Dimensional Reduced Graphene Oxide/β‑Cyclodextrin Complex and Its Electrochemical Detection of Levofloxacin in Water [J]. Chinese Journal of Applied Chemistry, 2022, 39(7): 1129-1137. |
[15] | Jin-Zhi LYU, Xin-Hao ZHANG. Preparation of Room⁃Temperature Phosphorescence Quantum Dots Functionalized with Choline Oxidase and Quantitative Determination of Choline Chloride [J]. Chinese Journal of Applied Chemistry, 2022, 39(5): 828-836. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||