
应用化学 ›› 2025, Vol. 42 ›› Issue (2): 149-167.DOI: 10.19894/j.issn.1000-0518.240243
• 综合评述 •
金念1,2, 高春莉1,2, 葛全倩1,2, 徐迈2(), 梁铣2, 朱传高2, 王凤武2(
)
收稿日期:
2024-08-01
接受日期:
2025-01-20
出版日期:
2025-02-01
发布日期:
2025-03-14
通讯作者:
徐迈,王凤武
基金资助:
Nian JIN1,2, Chun-Li GAO1,2, Quan-Qian GE1,2, Mai XU2(), Xian LIANG2, Chuan-Gao ZHU2, Feng-Wu WANG2(
)
Received:
2024-08-01
Accepted:
2025-01-20
Published:
2025-02-01
Online:
2025-03-14
Contact:
Mai XU,Feng-Wu WANG
About author:
xumai2215@163.comSupported by:
摘要:
光/光电催化引起了全球研究人员的极大关注,通过光/光电催化可以进行水处理、水分解制氢和有机合成,从而解决能源和环境问题。 用于能源和环境应用的半导体二氧化钛(TiO2)纳米材料光电催化剂引起了广泛的研究兴趣,然而,主要的应用瓶颈是其较大的带隙。 在基于TiO2的光催化材料中引入缺陷是改善光/光电催化性能的一种有前途的策略,对TiO2的缺陷进行工程改造可以拓宽光电响应并提高电荷分离效率。 本综述先从光/光电催化反应机理上展开,提出了缺陷型TiO2的引入可以提高其光/光电催化活性,并系统总结了一些用于制备缺陷或黑色TiO2的常用合成方法和缺陷工程策略,随后,详细阐述了缺陷TiO2在光/光电催化应用方面的最新进展。 最后,对缺陷TiO2在光/光电催化方面的研究简要总结,并提出了潜在的发展前景。
中图分类号:
金念, 高春莉, 葛全倩, 徐迈, 梁铣, 朱传高, 王凤武. 缺陷型二氧化钛的构建及在光/光电催化应用的研究进展[J]. 应用化学, 2025, 42(2): 149-167.
Nian JIN, Chun-Li GAO, Quan-Qian GE, Mai XU, Xian LIANG, Chuan-Gao ZHU, Feng-Wu WANG. Research Progress on the Construction of Defective Titanium Dioxide and Its Application in Photocatalysis/Photoelectrocatalysis[J]. Chinese Journal of Applied Chemistry, 2025, 42(2): 149-167.
图4 晶体中常见缺陷的类型: (A)无缺陷、(B)表面替代杂质原子(掺杂剂)、(C)表面空位、(D)间隙杂质原子、(E)杂质原子替代(掺杂剂)、(F)空位、(G)自间隙原子、(H)杂质原子沉淀(簇)、(I)空位簇[37]
Fig.4 The types of defects commonly found in TiO2 crystals are: (A) no defects, (B) surface substitution of impurity atoms (dopant), (C) surface vacancies, (D) interstitial impurity atoms, (E) substitution of impurity atoms (dopant), (F) vacancies, (G) self-interstitial atoms, (H) precipitation of impurity atoms (clusters), (I) vacancy clusters[37]
图5 (A)核壳结构的黑色缺陷TiO2的结构示意图[42]、(B)结构模拟图和(C) TEM图像[43]
Fig.5 (A) Schematic diagram of the structure of the black defect TiO2 of the core-shell structure [42], (B) the structural simulation diagram and (B) the TEM image[43]
Preparation method | Classification | Morphology | Advantages | Drawbacks | Ref. |
---|---|---|---|---|---|
High-temperature hydrogen reduction | Reduction | Nanoparticles | Controlled hydrogenation reaction | High temperature and high pressure | [ |
Solid-phase reaction method | Reduction | Nanoparticles | Chemical reaction is more rapid and complete | High temperature and high pressure | [ |
Plasma method | Reduction | TiO2 film | Avoid the high pressure and high temperature | - | [ |
Electrochemical reduction | Reduction | TiO2 film | Precise control of the reaction | Needs a substrate to form the electrode | [ |
Hydrothermal method | Oxidation | Nanoparticles | The reaction conditions are mild | Long reaction time | [ |
Vacuum sintering | Other | Nanoparticles | Good reusability and stability | High temperature and high pressure | [ |
Microwave method | Other | Nanoparticles | The response is quick and easy | - | [ |
Ultraviolet irradiation | Other | Nanoparticles | High efficiency and environmental friendliness | High energy consumption | [ |
Ultrasonic-induced surface disordering | Other | Nanoparticles | The response is thorough | - | [ |
Decomposition/condensation of titanium isopropoxide | Other | Nanoparticles | The reaction conditions are mild and quick | - | [ |
表1 缺陷TiO2的制备方法
Table 1 Preparation method of defective TiO2
Preparation method | Classification | Morphology | Advantages | Drawbacks | Ref. |
---|---|---|---|---|---|
High-temperature hydrogen reduction | Reduction | Nanoparticles | Controlled hydrogenation reaction | High temperature and high pressure | [ |
Solid-phase reaction method | Reduction | Nanoparticles | Chemical reaction is more rapid and complete | High temperature and high pressure | [ |
Plasma method | Reduction | TiO2 film | Avoid the high pressure and high temperature | - | [ |
Electrochemical reduction | Reduction | TiO2 film | Precise control of the reaction | Needs a substrate to form the electrode | [ |
Hydrothermal method | Oxidation | Nanoparticles | The reaction conditions are mild | Long reaction time | [ |
Vacuum sintering | Other | Nanoparticles | Good reusability and stability | High temperature and high pressure | [ |
Microwave method | Other | Nanoparticles | The response is quick and easy | - | [ |
Ultraviolet irradiation | Other | Nanoparticles | High efficiency and environmental friendliness | High energy consumption | [ |
Ultrasonic-induced surface disordering | Other | Nanoparticles | The response is thorough | - | [ |
Decomposition/condensation of titanium isopropoxide | Other | Nanoparticles | The reaction conditions are mild and quick | - | [ |
图6 (A)自浮式、双亲和力、大介孔结构黑色缺陷TiO2泡沫的制备过程示意图; (B) SEM图像、(C)实物图和(D)光降解图[72]
Fig.6 (A) Schematic diagram of the preparation process of self-floating, bi-affinity, large mesoporous structure black defective TiO2 foam; (B) SEM images, (C) physical images and (D) photodegradation[72]
图7 (A)黑色介孔缺陷Ti3+/N-TiO2球的制备示意图、(B) Ti3+/N-TiO2球的SEM图像和(C)黑色Ti3+/N-TiO2光催化机理示意图[75]
Fig.7 (A) Schematic diagram of the preparation of black mesoporous defect Ti3+/N-TiO2 particles, (B) SEM images of Ti3+/N-TiO2 particles, and (C) photocatalytic mechanism schematic of black Ti3+/N-TiO2[75]
Morphology | Counter electrode | Reference electrode | Electrolyte | Applied voltage, time | Ref. |
---|---|---|---|---|---|
Film | Pt | Ag/AgCl | NaOH(concentration: 1 mol/L) | 2 V, 20 s | [ |
Nanotubes | Pt | Ag/AgCl | (NH4)2SO4(concentration: 1 mol/L) | 1.5 V, 150 s | [ |
Nanotubes | - | - | Na2SO4(solvents: water, ethylene glycol) | 10 V; 20 V; 40 V; 3 min | [ |
Nanotubes | - | Ag/AgCl | K2SO4(concentration: 0.5 mol/L) | 0.8 V, 30 s | [ |
Nanotubes | - | - | KH2PO4 (concentration: 0.1 mol/L) | 16.7 mA/cm2(current density), 90 s | [ |
表2 电化学还原法制备缺陷TiO2的研究
Table 2 Study on the preparation of defective TiO2 by electrochemical reduction method
Morphology | Counter electrode | Reference electrode | Electrolyte | Applied voltage, time | Ref. |
---|---|---|---|---|---|
Film | Pt | Ag/AgCl | NaOH(concentration: 1 mol/L) | 2 V, 20 s | [ |
Nanotubes | Pt | Ag/AgCl | (NH4)2SO4(concentration: 1 mol/L) | 1.5 V, 150 s | [ |
Nanotubes | - | - | Na2SO4(solvents: water, ethylene glycol) | 10 V; 20 V; 40 V; 3 min | [ |
Nanotubes | - | Ag/AgCl | K2SO4(concentration: 0.5 mol/L) | 0.8 V, 30 s | [ |
Nanotubes | - | - | KH2PO4 (concentration: 0.1 mol/L) | 16.7 mA/cm2(current density), 90 s | [ |
图11 N,P-BTNAs光阳极可能的能带结构及其协同PEC活化硫酸盐的机理示意图[101]
Fig.11 Schematic diagram of the possible band structure of N,P-BTNAs photoanodes and their synergistic PEC activation of sulfate[101]
图12 Ⅰ型(A)、Ⅱ型(B)、Z型(C)和S型(D)异质结载流子传递示意图[102-105]
Fig.12 Schematic diagram of carrier transport of type Ⅰ (A), type Ⅱ (B), Z (C) and S (D) heterojunctions[102-105]
图13 (A) Co2P/PC-黑色缺陷TiO2催化剂的制备流程、(B)产物的颗粒尺寸分布和(C)产物的TEM图像[105]
Fig.13 (A) Preparation flow of Co2P/PC-black defective TiO2 catalyst, (B) particle size distribution of the product and (C) TEM image of the product[105]
图15 (A) MOFs负载的黑色缺陷TiO2纳米管制备流程图; (B)黑色缺陷TiO2纳米管的SEM图; (C)负载MOF和空心Cu1.8S纳米球的黑色TiO2纳米管的SEM图; (D)所制备样品的带隙计算; (E)所制备样品光电流-时间曲线; (F)所制备样品的阻抗组; (G)所制备样品所制备样品对2,4-二氯苯酚的降解[83]
Fig.15 (A) Flow chart for the preparation of black defective TiO2 nanotubes loaded with MOFs; (B) SEM image of black defective TiO2 nanotubes; (C) SEM image of black TiO2 nanotubes loaded with MOF and hollow Cu1.8S nanospheres; (D) Band gap calculation of the prepared sample; (E) Photocurrent-time curves of prepared samples; (F) The impedance set of the prepared sample; (G) Degradation of 2,4-dichlorophenol by prepared samples[83]
Modified substances | Modification method | Application | Ref. |
---|---|---|---|
Carbon quantum dots | Alkali-assisted ultrasound | Photoelectrocatalytic performance testation | [ |
NH2-La MOFs | Hydrothermal method | Photoelectrocatalytic degradation of 2,4-dichlorophenol | [ |
Polyaniline | Electrochemical method | Photoelectrocatalytic degradation of tetrabromobisphenol A | [ |
N | High-temperature calcination | Photoelectrocatalytic degradation of sulfadidiumdimethylpyrimidine | [ |
MIL-100(Fe) | Pulse deposition, self-assembly | Photoelectrocatalytic degradation of antibiotics | [ |
Ti3CN MXene | Hydrothermal method | Photoelectrocatalytic CO2 reduction | [ |
Peryl molecules, Pt | Spin coating method, spin magnetron sputtering | Photoelectrocatalytic water oxidation | [ |
rGO | Liquid phase method | Photoelectrocatalytic water splitting | [ |
RuO, BiVO4 | Sedimentation | Photoelectrocatalytic degradation of acetaminophen | [ |
表3 黑色TiO2改性掺杂的在光电催化方面的研究汇总
Table 3 A summary of the research on photoelectric catalysis of black TiO2 modified doping
Modified substances | Modification method | Application | Ref. |
---|---|---|---|
Carbon quantum dots | Alkali-assisted ultrasound | Photoelectrocatalytic performance testation | [ |
NH2-La MOFs | Hydrothermal method | Photoelectrocatalytic degradation of 2,4-dichlorophenol | [ |
Polyaniline | Electrochemical method | Photoelectrocatalytic degradation of tetrabromobisphenol A | [ |
N | High-temperature calcination | Photoelectrocatalytic degradation of sulfadidiumdimethylpyrimidine | [ |
MIL-100(Fe) | Pulse deposition, self-assembly | Photoelectrocatalytic degradation of antibiotics | [ |
Ti3CN MXene | Hydrothermal method | Photoelectrocatalytic CO2 reduction | [ |
Peryl molecules, Pt | Spin coating method, spin magnetron sputtering | Photoelectrocatalytic water oxidation | [ |
rGO | Liquid phase method | Photoelectrocatalytic water splitting | [ |
RuO, BiVO4 | Sedimentation | Photoelectrocatalytic degradation of acetaminophen | [ |
1 | YUAN C F, SHEN Y L, ZHU C Y, et al. Ru single-atom decorated black TiO2 nanosheets for efficient solar-driven hydrogen production[J]. ACS Sustainable Chem Eng, 2022, 10(31): 10311-10317. |
2 | WANG C Y, KANG X, LIU J C, et al. Ultrathin black TiO2 nanosheet-assembled microspheres with high stability for efficient solar-driven photocatalytic hydrogen evolution[J]. Inorg Chem Front, 2023, 10: 1153-1163. |
3 | YU M H, WANG N, LIN K, et al. Controllable fabrication of a Cs2AgBiBr6 nanocrystal/mesoporous black TiO2 hollow sphere composite for photocatalytic benzyl alcohol oxidation[J]. J Mater Chem A, 2023, 11: 4302-4309. |
4 | HOSSAIN S M, PARK H, KANG H J, et al. Synthesis and NOx removal performance of anatase S-TiO2/g-CN heterojunction formed from dye wastewater sludge[J]. Chemosphere, 2021, 275: 130020. |
5 | GAN W, FU X C, GUO J, et al. Facile synthesis of mesoporous hierarchical TiO2 micro-flowers serving as the scaffolding of 0D Ag3PO4 nanoparticles for the ultra-fast degradation of organic pollutants[J]. J Alloys Compd, 2022, 909: 164737. |
6 | LIU J Q, WAN J, LIU L, et al. Synergistic effect of oxygen defect and doping engineering on S-scheme O-ZnIn2S4/TiO2- x heterojunction for effective photocatalytic hydrogen production by water reduction coupled with oxidative dehydrogenation[J]. Chem Eng J, 2022, 430(3): 133125. |
7 | DONG P Y, WANG C X, TAN J J, et al. Solar-driven photocatalytic removal of NO over a concrete paving eco-block containing black TiO2[J]. J Mater Chem A, 2023, 11: 25429-25440. |
8 | 万冰洁, 刘小雪, 齐林光, 等. TiO2基光催化CO2还原研究进展[J]. 应用化学, 2024, 41(5): 637-658. |
WAN B J, LIU X X, QI L G, et al. Research progress of TiO2-based photocatalytic CO2 reduction[J]. Chin J Appl Chem, 2024, 41(5): 637-658. | |
9 | WANG X Y, LI S N, CHEN P, et al. Photocatalytic and antifouling properties of TiO2-based photocatalytic membranes[J]. Mater Today Chem, 2022, 23: 100650. |
10 | FLEISCHER C, CHATZITAKIS A, NORBY T. Intrinsic photoelectrocatalytic activity in oriented, photonic TiO2 nanotubes[J]. Mat Sci Semicon Proc, 2018, 88: 186-191. |
11 | SARIK J, RAMANA C, TAN S H, et al. Synergetic effect of in situ formed TiO2 in MXene for enhanced energy storage in high-performance supercapacitors[J]. ACS Appl Energy Mater, 2025, 8(2): 1308-1321. |
12 | YAO D W, HU Z Y, ZHENG L S, et al. Laser-engineered black rutile TiO2 photoanode for CdS/CdSe-sensitized quantum dot solar cells with a significant power conversion efficiency of 9.1%[J]. Appl Surf Sci, 2023, 608: 155230. |
13 | WANG Y Z, ZU M, ZHOU X S, et al. Designing efficient TiO2-based photoelectrocatalysis systems for chemical engineering and sensing[J]. Chem Eng J, 2020, 381: 122605. |
14 | WANG R, BAI J, LI Y P, et al. BiVO4/TiO2(N2) nanotubes heterojunction photoanode for highly efficient photoelectrocatalytic applications[J]. Nanomicro Lett, 2017, 9: 14. |
15 | XING C C, YANG L L, MARIA C S, et al. Controllable synthesis of defective TiO2 nanorods for efficient hydrogen production[J]. ACS Appl Electron Mater, 2024, 6(8): 5833-584. |
16 | WANG X, YUAN S C, GENG M Y, et al. Combination of alkali treatment and Ag3PO4 loading effectively improves the photocatalytic activity of TiO2 nanoflowers[J]. New J Chem, 2024, 48: 6789-6795. |
17 | ZHU Z Q, SHEN YX,PU Z Y, et al. Convenient preparation of TiO2- x/MXene composites and their performance as anodes for all-climate lithium-ion batteries[J]. J Power Sources, 2025, 630: 236112. |
18 | WANG Y Z, ZU M, ZHOU X S, et al. Designing efficient TiO2-based photoelectrocatalysis systems for chemical engineering and sensing[J]. Chem Eng J, 2020, 381: 122605. |
19 | XIU Z Y, GUO M J, ZHAO T Y, et al. Recent advances in Ti3+ self-doped nanostructured TiO2 visible light photocatalysts for environmental and energy applications[J]. Chem Eng J, 2020, 382: 123011. |
20 | FUJISHIMA A, HONDA K. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature, 1972, 238: 37-38. |
21 | LIU Y X, YE Z Y, LI D, et al. Tuning CuOx-TiO2 interaction and photocatalytic hydrogen production of CuOx/TiO2 photocatalysts via TiO2 morphology engineering[J]. Appl Surf Sci, 2019, 473: 500-510. |
22 | KIM H, KIM M, KIM W, et al. Photocatalytic enhancement of cesium removal by prussian blue-deposited TiO2[J]. J Hazard Mater, 2018, 357: 449-456. |
23 | ALIMARD P, GONG C, ITSKOU I, et al. Achieving high photocatalytic NOx removal activity using a Bi/BiOBr/TiO2 composite photocatalyst[J]. Chemosphere, 2024, 368: 143728. |
24 | WONGYONGNOI P, SERIVALSATIT K, HUNSOM M, et al. Simultaneous green synthesis of H2 and decolorization of distillery effluent by photocatalysis via gold-decorated TiO2 photocatalysts[J]. Int J Hydrogen Energ, 2024, 80: 646-658. |
25 | MU X W, XU M J, WANG Y Q, et al. Efficient photocatalytic hydrogen generation by CeCO3OH/TiO2 composites[J]. Int J Hydrogen Energ, 2024, 63: 1174-1181. |
26 | 贾贞健, 韩曦, 张杰. RuO2/TiO2复合催化剂制备及光催化性能[J]. 应用化学, 2024, 41(9): 1324-1332. |
JIA Z J, HAN X, ZHANG J. Preparation and photocatalytic performance of ruthenium dioxide/titanium dioxide composite catalyst[J]. Chin J Appl Chem, 2024, 41(9): 1324-1332. | |
27 | AKBARZADEH R, FARHADIAN N, ASAD A, et al. Highly efficient visible-driven reduction of Cr(Ⅵ) by a novel black TiO2 photocatalyst[J]. Environ Sci Pollut, 2021, 28: 9417-9429. |
28 | CHEN X B, LIU L, YU P Y, et al. Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals[J]. Science, 2011, 331(6018): 746-750. |
29 | NAWAZ R, KAIT C F, CHIA H Y, et al. Manipulation of the Ti3+/Ti4+ ratio in colored titanium dioxide and its role in photocatalytic degradation of environmental pollutants[J]. Surf Interfaces, 2022, 32: 102146. |
30 | HOSSEINI R, ARASH F, KARBASI M, et al. Tailoring surface defects in plasma electrolytic oxidation (PEO) treated 2-D black TiO2: post-treatment role, and intensification by peroxymonosulfate activation in visible light-driven photocatalysis[J]. Appl Catal B Environ, 2024, 340: 123197. |
31 | KUTORGLO E M, SCHWARZE M, NGUYEN A D, et al. Efficient full solar spectrum-driven photocatalytic hydrogen production on low bandgap TiO2/conjugated polymer nanostructures[J]. RSC Adv, 2023,13: 24038-24052. |
32 | SINGH A K, VISHWAKARMA P K, PANDEY S K, et al. A comparative study of band gap engineered in-situ and ex-situ MWCNTs/TiO2 heterostructures for their enhanced photocatalytic activity under visible light[J]. Inorg Chem Commun, 2023, 150: 110540. |
33 | KANOUN M B, AHMED F, AWADA C, et al. Band gap engineering of Au doping and Au-N codoping into anatase TiO2 for enhancing the visible light photocatalytic performance[J]. Int J Hydrogen Energ, 2024, 51: 907-913. |
34 | KUMARI M L A, DEVI L G, MAIA G, et al. Mechanochemical synthesis of ternary heterojunctions TiO2(A)/TiO2(R)/ZnO and TiO2(A)/TiO2(R)/SnO2 for effective charge separation in semiconductor photocatalysis: a comparative study[J]. Environ Res, 2022, 203: 111841. |
35 | YU M H, WANG N, LIN K, et al. Controllable fabrication of a Cs2AgBiBr6 nanocrystal/mesoporous black TiO2 hollow sphere composite for photocatalytic benzyl alcohol oxidation[J]. J Mater Chem A, 2023, 11: 4302-4309. |
36 | ZHOU W, FU H G. Defect-mediated electron-hole separation in semiconductor photocatalysis[J]. Inorg Chem Front, 2018, 5: 1240-1254. |
37 | LI G, BLAKE G R, PALSTRA T M T. Vacancies in functional materials for clean energy storage and harvesting: the perfect imperfection[J]. Chem Soc Rev, 2017, 46: 1693-1706. |
38 | NOWOTNY J, ALIM M A, BAK T, et al. Defect chemistry and defect engineering of TiO2-based semiconductors for solar energy conversion[J]. Chem Soc Rev, 2015, 44: 8424-8442. |
39 | SU J, ZOU X, CHEN J S, et al. Self-modification of titanium dioxide materials by Ti3+ and/or oxygen vacancies: new insights into defect chemistry of metal oxides[J]. RSC Adv, 2014, 4: 13979-13988. |
40 | CHEN C, ZHANG H, ALI A M, et al. Correlation between tunable oxygen defects in TiO2 nanoflower and its photocatalytic performance for the degradation of organic waste[J]. Nano, 2020, 15: 2050018 |
41 | ANDRONIC L, ENESCA A. Black TiO2 synthesis by chemical reduction methods for photocatalysis applications[J]. Front Chem, 2020, 8: 565489. |
42 | VIJAYARANGAMUTHU K, YOUN J S, PARK C M, et al. Facile synthesis of core-shell-structured rutile TiO2 with enhanced photocatalytic properties[J]. Catalysis Today, 2020, 347: 18-22. |
43 | PAIDI V K, BYOUNG-HOON L, AHN D, et al. Oxygen-vacancy-driven orbital reconstruction at the surface of TiO2 core-shell nanostructures[J]. Nano Lett, 2021, 21(19): 7953-7959. |
44 | YANG C Y, WANG Z, LIN T Q, et al. Core-shell nanostructured “black” rutile titania as excellent catalyst for hydrogen production enhanced by sulfur doping[J]. J Am Chem Soc, 2013, 135: 17831-17838. |
45 | RAHIMI N, PAX R, GRAY E M A. Review of functional titanium oxides. Ⅱ: hydrogen-modified TiO2[J]. Prog Solid State Chem, 2019, 55: 1-19. |
46 | LIAO L J, WANG M T, LI Z Z, et al. Recent advances in black TiO2 nanomaterials for solar energy conversion[J]. Nanomaterials, 2023, 13(3): 468. |
47 | ZHOU Y H, CHENG X H, DUAN Z J, et al. Flame-assisted combustion preparation of highly efficient black TiO2 microspheres photocatalysts under visible light[J]. J Environ, 2023, 11: 111301. |
48 | WANG C Y, KANG X, LIU J C, et al. Ultrathin black TiO2 nanosheet-assembled microspheres with high stability for efficient solar-driven photocatalytic hydrogen evolution[J]. Inorg Chem Front, 2023, 10: 1153-1163. |
49 | LIU L, YU P Y, CHEN X B, et al. Hydrogenation and disorder in engineered black TiO2[J]. Phys Rev Lett, 2013, 111: 065505. |
50 | LU J B, DAI Y, JIN H, et al. Effective increasing of optical absorption and energy conversion efficiency of anatase TiO2 nanocrystals by hydrogenation[J]. Phys Chem Chem Phys, 2011, 13: 18063-18068. |
51 | SAENSOOK S, SIRISUK A. A factorial experimental design approach to obtain defect-rich black TiO2 for photocatalytic dye degradation[J]. J Water Process Eng, 2022, 45: 102495. |
52 | FAN C Y, CHEN C, WANG J, et al. Black hydroxylated titanium dioxide prepared via ultrasonication with enhanced photocatalytic activity[J]. Sci Rep, 2015, 5: 11712. |
53 | ULLATTIL S G, NARENDRANATH S B, PILLAI S C, et al. Black TiO2 nanomaterials: a review of recent advances[J]. Chem Eng J, 2018, 343: 708-736. |
54 | SABZEHPARVAR M, KIANI F, TABRIZI N S. Synthesis and characterization of black amorphous titanium oxide nanoparticles by spark discharge method[J]. AIP Conf Proc, 2018, 1920: 020046. |
55 | BI Q Y, HU K Y, CHEN J C, et al. Black phosphorus coupled black titania nanocomposites with enhanced sunlight absorption properties for efficient photocatalytic CO2 reduction[J]. Appl Catal B Environ, 2021, 295: 120211. |
56 | KATAI M, EDALATI P, HIDALGO-JIMENEZ J, et al. Black brookite rich in oxygen vacancies as an active photocatalyst for CO2 conversion: experiments and first-principles calculations[J]. J Photochem Photobiol A, 2024, 449: 115409. |
57 | LIANG Y, HUANG G H, XIN X Y, et al. Black titanium dioxide nanomaterials for photocatalytic removal of pollutants: a review[J]. J Mater Sci Technol, 2022, 112: 239-262. |
58 | KIM S, CHO Y, RHEE R, et al. Black TiO2: what are exact functions of disorder layer[J]. Carbon Energy, 2020, 2: 44-53. |
59 | FUENTES K M, VENUTI D, BETANCOURT P. Black titania with increased defective sites for phenol photodegradation under visible light[J]. React Kinet Mech Catal, 2020, 131: 423-435. |
60 | ZHAO H L, PAN F P, LI Y. A review on the effects of TiO2 surface point defects on CO2 photoreduction with H2O[J]. J Materiomics, 2017, 3: 17-32. |
61 | ZHANG K F, ZHOU W, ZHANG X C, et al. Large-scale synthesis of stable mesoporous black TiO2 nanosheets for efficient solar-driven photocatalytic hydrogen evolution earth-abundant low-cost biotemplate[J]. RSC Adv, 2016, 6(56): 50506-50512. |
62 | TAN H Q, ZHAO Z, NIU M, et al. A facile and versatile method for preparation of colored TiO2 with enhanced solar-driven photocatalytic activity[J]. Nanoscale, 2014, 6: 10216. |
63 | LIN L X, HUANG J T, LI X F, et al. Effective surface disorder engineering of metal oxide nanocrystals for improved photocatalysis[J]. Appl Catal B Environ, 2017, 203: 615-624. |
64 | YAN P L, LIU G J, DING C, et al. Photoelectrochemical water splitting promoted with a disordered surface layer created by electrochemical reduction[J]. ACS Appl Mater Inter, 2015, 7: 3791-3796. |
65 | LIU X, GAO S M, XU H, et al. Green synthetic approach for Ti3+ self-doped TiO2- x nanoparticles with efficient visible light photocatalytic activity[J]. Nanoscale, 2013, 5: 1870. |
66 | KATAL R, SALEHI M, FARAHANI M H D A, et al. Preparation of a new type of black TiO2 under a vacuum atmosphere for sunlight photocatalysis[J]. ACS Appl Mater Inter, 2018, 10: 35316-35326. |
67 | WU Z X, YANG P F, LI Q C, et al. Microwave synthesis of Pt clusters on black TiO2 with abundant oxygen vacancies for efficient acidic electrocatalytic hydrogen evolution[J]. Angew Chem Int Ed, 2023, 62: e202300406. |
68 | CHEN S H, WANG Y H, LI J, et al. Synthesis of black TiO2 with efficient visible-light photocatalytic activity by ultraviolet light irradiation and low temperature annealing[J]. Mater Res Bull, 2018, 98: 280-287. |
69 | LIU C Y, WANG C H, WANG R, et al. Ultrasonic-induced surface disordering promotes photocatalytic hydrogen evolution of TiO2[J]. ACS Appl Mater, 2024, 16(36): 48649-48659. |
70 | CHANG J J, YUAN B, MIGNUZZI S, et al. Colloidal TiO2 nanocrystals with engineered defectivity and optical properties[J]. Nanoscale Horiz, 2024, 9: 1568-1573 |
71 | NALDONI A, ALLIETA M, SANTANGELO S, et al. Effect of nature and location of defects on bandgap narrowing in black TiO2 nanoparticles[J]. J Am Chem Soc, 2012, 134: 7600-7603. |
72 | ZHANG K F, ZHOU W, ZHANG X C, et al. Self-floating amphiphilic black TiO2 foams with 3D macro-mesoporous architectures as efficient solar-driven photocatalysts[J]. Appl Catal B Environ, 2017, 206: 336-342. |
73 | ZHAO Z, ZHANG X Y, ZHANG G Q, et al. Effect of defects on photocatalytic activity of rutile TiO2 nanorods[J]. Nano Res, 2015, 8(12): 4061-4071. |
74 | HUANG Q H, ZHENG H, WANG X, et al. Construction of oxygen vacancy-rich TiO2 nanocrystals for boosting the ammonolysis of caprolactam to 6-aminocapronitrile[J]. ACS Appl Mater, 2024, 16(11): 13806-13814. |
75 | CAO Y, XING Z P, SHEN Y C, et al. Mesoporous black Ti3+/N-TiO2 spheres for efficient visible-light-driven photocatalytic performance[J]. Chem Eng J, 2017, 325: 199-207. |
76 | WANG Z, YANG C Y, LIN T Q, et al. Visible-light photocatalytic, solar thermal and photoelectrochemical properties of aluminium-reduced black titania[J]. Energy Environ Sci, 2013, 6: 3007-3014. |
77 | WANG X D, FU R, YIN Q Q, et al. Black TiO2 synthesized via magnesiothermic reduction for enhanced photocatalytic activity[J]. J Nanopart Res, 2018, 20: 89. |
78 | SENER M E, QUESADA-CABRERA R, PARKIN I P, et al. Facile formation of black titania films using an atmospheric-pressure plasma jet[J]. Green Chem, 2022, 24: 2499-2505. |
79 | ISLAM S Z, REED A, NAGPURE S, et al. Hydrogen incorporation by plasma treatment gives mesoporous black TiO2 thin films with visible photoelectrochemical water oxidation activity[J]. Micropor Mesopor Mat, 2018, 261: 35-43. |
80 | JEDSUKONTORN T, UENO T, SAITO N, et al. Narrowing band gap energy of defective black TiO2 fabricated by solution plasma process and its photocatalytic activity on glycerol transformation[J]. J Alloy Compd, 2018, 757: 188-199. |
81 | LIU N, HAUBLEIN V, ZHOU X, et al. “Black” TiO2 nanotubes formed by high energy proton implantation show noble-metal-co-catalyst free photocatalytic H2-evolution[J]. Nano Lett, 2015, 15: 6815-6820. |
82 | ZHOU T S, LI L, LI J H, et al. Electrochemically reduced TiO2 photoanode coupled with oxygen vacancy-rich carbon quantum dots for synergistically improving photoelectrochemical performance[J]. Chem Eng J, 2021, 425: 131770. |
83 | YU W K, XU M, LIANG X, et al. Construction of a novel Cu1.8S/NH2-La MOFs decorated black-TNTs photoanode electrode for high-efficiently photoelectrocatalytic degradation of 2,4-dichlorophenol[J]. Chemosphere, 2023, 313: 137591. |
84 | CHENG Y, GAO J Z, SHI Q W, et al. In situ electrochemical reduced Au loaded black TiO2 nanotubes for visible light photocatalysis[J]. J Alloy Compd, 2022, 901: 163562. |
85 | HE Z K, LU Y X, ZHAO J H, et al. Engineering carrier density at TiO2 nanotube metasurface with hole reservoir for enhanced photo-electrocatalysis[J]. Appl Surf Sci, 2023, 613: 155974. |
86 | YANG S M, WANG A, LI X, et al. Tuning structural colors of TiO2 thin films using an electrochemical process[J]. Molecules, 2022, 27(15): 4932. |
87 | SHAH M W, ZHU Y Q, FAN X Y, et al. Facile synthesis of defective TiO2- x nanocrystals with high surface area and tailoring bandgap for visible-light photocatalysis[J]. Sci Rep, 2015, 5: 15804. |
88 | WANG C, LI J W, PAINEAU E, et al. Pt atomically dispersed in black TiO2- x/CuxO with chiral-like nanostructure for visible-light H2 generation[J]. Solar RRL, 2023, 7: 2200929. |
89 | JIA C C, KAN X N, ZHANG X, et al. Construction of frustrated Lewis pairs on TiO2- x derived from perovskite for enhanced photocatalytic CO2 reduction[J]. Chem Eng J, 2022, 427: 131554. |
90 | LIAO L J, WANG M T, LI Z Z, et al. Recent advances in black TiO2 nanomaterials for solar energy conversion[J]. Nanomaterials, 2023, 13(3): 468. |
91 | ZHU X D, XU H Y, YAO Y, et al. Effects of Ag0-modification and Fe3+-doping on the structural, optical and photocatalytic properties of TiO2[J]. RSC Adv, 2019, 9: 40003. |
92 | ŽERJAV G, ALBREHT A, PINTAR A. The influence of Au loading and TiO2 support on the catalytic wet air oxidation of glyphosate over TiO2+Au catalysts[J]. Catalysts, 2024, 14(7): 448. |
93 | TANG X, YU A W, YANG Q Q, et al. Significance of epitaxial growth of PtO2 on rutile TiO2 for Pt/TiO2 catalysts[J]. J Am Chem Soc, 2024, 146(6): 3764-3772. |
94 | ZHANG L N, LIU T L, LIU T F, et al. Improving photocatalytic performance of defective titania for carbon dioxide photoreduction by Cu cocatalyst with SCN- ion modification[J]. Chem Eng J, 2023, 463: 142358. |
95 | YUAN S B, BAI P, HE Y, et al. Black TiO2-supported copper nanoparticles for efficient photocatalytic N-formylation of N-methylaniline with CO2[J]. J CO2 Util, 2023, 71: 102453. |
96 | BI Q Y, SONG E H, CHEN J C, et al. Nano gold coupled black titania composites with enhanced surface plasma properties for efficient photocatalytic alkyne reduction[J]. Appl Catal B Environ, 2022, 309: 121222. |
97 | CAO S X, DU M Q, LI Y J, et al. Nanosized carbonate-doped TiO2- x mesocrystals for visible-light-driven photocatalytic removal of water pollutants[J]. ACS Appl Nano Mater, 2020, 3(5): 4197-4208. |
98 | WANG Y W, XU K L, FAN L Q, et al. B-doped g-C3N4/black TiO2 Z-scheme nanocomposites for enhanced visible-light-driven photocatalytic performance[J]. Nanomaterials, 2023, 13(3): 518. |
99 | CHEN L, SONG X L, REN J T, et al. Precisely modifying Co2P/black TiO2 S-scheme heterojunction by in situ formed P and C dopants for enhanced photocatalytic H2 production[J]. Appl Catal B Environ, 2022, 315: 121546. |
100 | LI T, KONG L Y, BAI X, et al. Promoting amorphization of commercial TiO2 upon sodiation to boost the sodium storage performance[J]. J Energy Chem, 2023, 81: 379-388. |
101 | LI S, ZHANG G Q, MENG D, et al. Photoelectrocatalytic activation of sulfate for sulfamethoxazole degradation and simultaneous H2 production by bifunctional N, P co-doped black-blue TiO2 nanotube array electrode[J]. Chem Eng J, 2024, 485: 149828. |
102 | SPILAREWICZ K, URBANEK K, JAKIMINSKA A, et al. ZnFe2O4/TiO2 composites with type-Ⅰ heterojunction for photocatalytic reduction of CO2[J]. J CO2 Util, 2023, 75: 102574. |
103 | LIU C X, QIAN X X, WEI Q Y, et al. Construction of hydrostable cesium lead bromide-titania for visible-light degradation of tetracycline hydrochloride in water[J]. J Cleaner Prod, 2022, 365: 132830. |
104 | WU X, WANG X Y, LYNCH I, et al. Exceptional photo-elimination of antibiotic by a novel Z-scheme heterojunction catalyst composed of nanoscale zero valent iron embedded with carbon quantum dots (CQDs)-black TiO2[J]. J Hazard Mater, 2023, 460: 132323. |
105 | WANG Y Y, LIANG S, ZUO C J, et al. Construction of a heterojunction with fast charge transport channels for photocatalytic hydrogen evolution via a strategy of Co-doping and crystal plane modulation[J]. Nanoscale, 2023, 11: 5230-5240. |
106 | PARK S H, KIM T, KADAM A N, et al. Synergistic photocatalysis of Z-scheme type Fe2O3/g-C3N4 heterojunction coupled with reduced graphene oxide[J]. Surf, 2022, 30: 101910. |
107 | ZHAO Y, SHU Y, LINGHU X Y, et al. Modification engineering of TiO2-based nanoheterojunction photocatalysts[J]. Chemosphere, 2024, 346: 140595. |
108 | PENG K, YU S H, LUO Y P, et al. Enhancement TiO2 photocatalytic hydrogen production via using ABO3 to construct heterojunction[J]. Colloid Surf A, 2024, 682: 132822. |
109 |
JIANG J, DING Y Q. Hydrogenation of C![]() |
110 | CHOI J, KIM Y G, JO W K. Multiple photocatalytic applications of non-precious Cu-loaded g-C3N4/hydrogenated black TiO2 nanofiber heterostructure[J]. Appl Surf Sci, 2019, 473: 761-769. |
111 | ZHAO Y, LINGHU X Y, SHU Y, et al. Classification and catalytic mechanisms of heterojunction photocatalysts and the application of titanium dioxide (TiO2)-based heterojunctions in environmental remediation[J]. J Environ, 2022, 10: 108077. |
112 | WANG K X, LUO Z G, XIAO B, et al. S-scheme Cu3P/TiO2 heterojunction for outstanding photocatalytic water splitting[J]. J Colloid Interface Sci, 2023, 652: 1908-1916. |
113 | TU B Y, CHE R J, WANG F H, et al. New insights into the enhancement of TiO2/ZnIn2S4 heterojunction via cerium doping[J]. Appl Surf Sci, 2023, 629: 157451. |
114 | HAO L J, TENG D G, GUO X Y, et al. Construction of TiO2/BiOCl S-scheme heterojunction and photocatalytic degradation of norfloxacin[J]. J Photoch Photobio A, 2023, 444: 115004. |
115 | LI Y F, FENG Y C, BAI H, et al. Enhanced visible-light photocatalytic performance of black TiO2/SnO2 nanoparticles[J]. J Alloy Compd, 2023, 960: 170672. |
116 | KANG S, IM T, KOH M, et al. Facile fabrication of electrospun black titania nanofibers decorated with graphitic carbon nitride for the application of photocatalytic CO2 reduction[J]. J CO2 Util, 2020, 41: 101230. |
117 | TAN K T, GHOSH S, WANG Z Y, et al. Covalent organic frameworks[J]. Nat Rev Methods Primers, 2023, 3(1): 1-19. |
118 | WANG S, SUN Q, CHEN W, et al. Programming covalent organic frameworks for photocatalysis: investigation of chemical and structural variations[J]. Matter, 2020, 2: 416-427. |
119 | ZHANG Y P, HAN W, YANG Y, et al. S-scheme heterojunction of black TiO2 and covalent-organic framework for enhanced photocatalytic hydrogen evolution[J]. Chem Eng J, 2022, 446: 137213. |
120 | ZHAO D C, JIANG L S, YANG R C, et al. Photoelectrocatalytic activity of highly ordered TiO2 nanotube arrays modified with polyaniline for tetrabromobisphenol A degradation in water[J]. Chemosphere, 2022, 302: 134928. |
121 | LIANG R H, HU Z Z, WU H Z, et al. Ti3+ self-doped and nitrogen-annealed TiO2 nanocone arrays photoanode for efficient visible-LED-light-driven photoelectrocatalytic degradation of sulfamethazine[J]. Sep Purif, 2023, 314: 123591. |
122 | JIA M Y, LIU Q, XIONG W P, et al. Ti3+ self-doped TiO2 nanotubes photoelectrode decorated with Ar-Fe2O3 derived from MIL-100(Fe): enhanced photo-electrocatalytic performance for antibiotic degradation[J]. Appl Catal B-Environ, 2022, 310: 121344. |
123 | XU Y J, WANG F, LEI S L, et al. In situ grown two-dimensional TiO2/Ti3CN MXene heterojunction rich in Ti3+ species for highly efficient photoelectrocatalytic CO2 reduction[J]. Chem Eng J, 2023, 452: 139392. |
124 | KARMAKAR H S, SARKAR A, GHOSH N G, et al. Pt nanoparticles coupled with perylene-based small molecule deposited on Ti3+ self-doped TiO2 nanorods-An inorganic/organic type-Ⅱ nanoheterostructure for efficient visible-light photoelectrochemical water oxidation[J]. Chemosphere, 2022, 301: 134696. |
125 | YOON D H, BISWAS M R U D, SAKTHISABARIMOORTHI A, et al. Composite nanostructures of black TiO2/WO3 on rGO nanosheets for photoelectrochemical water splitting[J]. Diam Relat Mater, 2022, 129: 109363. |
126 | SUN X L, SU T, CUI X, et al. A TiO2 nanotube photoanode (blue TiO2 nanotube/RuO2/BiVO4) for efficient acetaminophen degradation and nitrogen removal[J]. J Water Process Eng, 2024, 60: 105230. |
[1] | 贾贞健, 韩曦, 张杰. 铋改性TiO2光催化剂的制备及其光催化性能[J]. 应用化学, 2024, 41(8): 1116-1125. |
[2] | 徐海祥, 夏举佩. 改性聚乙烯醇协同硅酸盐水泥制高强防水石膏[J]. 应用化学, 2024, 41(8): 1131-1145. |
[3] | 王兴刚, 秦静雯, 郑晓明, 颉林, 李薇. 改性火山石对水中氨氮的去除效果分析[J]. 应用化学, 2024, 41(8): 1193-1201. |
[4] | 杨懿芊, 严晓霞, 彭皓, 吴爱国, 杨方. 近红外二区光驱动的光动力治疗在克服肿瘤乏氧环境中的研究进展[J]. 应用化学, 2024, 41(7): 925-936. |
[5] | 赛徐煦, 胡晓丽, 孙利民, 刘洪基, 陈洲, 方维平, 伊晓东. Zn改性Ni/Al2O3催化剂的苯乙炔选择加氢性能[J]. 应用化学, 2024, 41(7): 948-958. |
[6] | 李英维, 韩吉, 关卜源. 二维介孔材料的合成方法、设计与应用研究进展[J]. 应用化学, 2024, 41(6): 767-782. |
[7] | 彭孔浩, 白安琪, 孟颖, 殷慧, 宿欣瑶, 杨金玉, 李淑荣, 张凌燕, 罗利霞, 孟佩俊. 纳米材料传感器在有机磷农药残留检测中的研究进展[J]. 应用化学, 2024, 41(4): 472-483. |
[8] | 尹娜, 王樱蕙, 张洪杰. 稀土纳米材料在脑肿瘤成像和治疗中的研究进展[J]. 应用化学, 2024, 41(3): 309-327. |
[9] | 庞子君, 覃智, 陈啊聪, 关翔鸿, 韦庚锐, 李泽敏, 黄华, 韦朝海. 污废水中污染物去除的功能材料研究进展:元素物质-合成改性-工艺工程的尺度效应[J]. 应用化学, 2024, 41(2): 190-216. |
[10] | 卢剑天, 邹金辉, 赵博霖, 张玉微. 无机纳米酶在分析传感领域的应用研究进展[J]. 应用化学, 2024, 41(1): 60-86. |
[11] | 谭翠盈, 丁威超, 马婷婷, 肖瑶, 刘健. 超亲水/超疏气电解水催化剂的研究进展[J]. 应用化学, 2023, 40(8): 1109-1125. |
[12] | 汤振春, 周新全, 王佩佩, 苗娟, 张宁, 张瑞昌, 魏学锋. MOFs基催化剂活化过硫酸盐在废水处理中的研究进展[J]. 应用化学, 2023, 40(7): 938-950. |
[13] | 修海祥, 刘万强, 尹东明, 程勇, 王春丽, 王立民. AB2型Laves相储氢合金研究进展[J]. 应用化学, 2023, 40(5): 640-652. |
[14] | 师文君, 孙中辉, 宋忠乾, 许佳楠, 韩冬雪, 牛利. 钠离子电池层状过渡金属氧化物正极材料研究进展[J]. 应用化学, 2023, 40(4): 583-596. |
[15] | 李慧慧, 姚开胜, 赵亚南, 范李娜, 田钰琳, 卢伟伟. 离子液体调控合成Pt-Pd双金属纳米材料及其催化氨硼烷水解释氢[J]. 应用化学, 2023, 40(4): 597-609. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 74
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 92
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||