应用化学 ›› 2024, Vol. 41 ›› Issue (6): 767-782.DOI: 10.19894/j.issn.1000-0518.240001
• 综合评述 •
收稿日期:2024-01-02
接受日期:2024-03-31
出版日期:2024-06-01
发布日期:2024-07-09
通讯作者:
关卜源
基金资助:
Ying-Wei LI1, Ji HAN1, Bu-Yuan GUAN1,2(
)
Received:2024-01-02
Accepted:2024-03-31
Published:2024-06-01
Online:2024-07-09
Contact:
Bu-Yuan GUAN
About author:guanbuyuan@jlu.edu.cnSupported by:摘要:
由于具有可调的孔道结构、可控的化学组成以及广阔的应用前景,介孔材料近年来引起了科研工作者们的广泛关注。与传统的三维介孔材料相比,二维介孔材料具有更大的比表面积,更短的扩散距离,以及更高的活性位点暴露程度。因此,二维介孔材料在催化、气体吸附、能源存储与转化等应用领域中展现出十分优异的性能。本文从自下而上和自上而下2种合成策略出发,系统梳理了近10年来二维介孔材料合成方法的研究进展,并全面总结了二维介孔材料在电化学储能、电催化、光催化和气体传感领域的应用。最后,本文对二维介孔材料的未来发展方向与挑战进行了展望。
中图分类号:
李英维, 韩吉, 关卜源. 二维介孔材料的合成方法、设计与应用研究进展[J]. 应用化学, 2024, 41(6): 767-782.
Ying-Wei LI, Ji HAN, Bu-Yuan GUAN. Research Progress on the Synthesis and Application of Two-Dimensional Mesoporous Materials[J]. Chinese Journal of Applied Chemistry, 2024, 41(6): 767-782.
图1 二维介孔铱纳米片的(A)合成机理示意图、(B)扫描电子显微镜(SEM)图像和(C)透射电子显微镜(TEM)图像[42]; (D)从顶部和侧面观测高度弯曲的二维SMPs的生长机理示意图; PdCu SMPs的SEM图像与粒径分布图(E)和TEM图像(F)[44]; 二维有序介孔TiO2纳米片的(G)合成机理示意图、(H) SEM图像和(I) TEM图像[45]
Fig.1 Formation mechanism (A), SEM image (B) and TEM image (C) of the mesoporous Ir nanosheets[42]; Formation mechanism from top and side views of 2D quasi-single-crystalline mesoporous nanoplates (SMPs) (D); SEM image and particle size distribution (E) and TEM image (F) of the highly curved PdCu SMPs[44]; Formation mechanism (G), SEM image (H) and TEM image (I) of the single-layered 2D mesoporous TiO2 nanosheets[45]
图2 二维介孔mPANI纳米片的(A)合成机理示意图、(B) SEM图像、(C) TEM图像和快速傅里叶变换(FFT)结果(比例尺100 nm)[46]; 二维介孔二氧化硅上层结构的(D)形成示意图、(E)低倍TEM与荧光显微镜下的部分荧光染色图像(插图)、(F)高倍TEM图像与放大其笼状结构的高倍TEM图像(插图)[47]; 夹层mPPy/Ag纳米板杂化物的(G)合成机理示意图、(H) SEM图像和(I) TEM图像[48]
Fig.2 Formation mechanism (A), SEM image (B) and TEM image and FFT result (C)of mPANI (Scale bars: 100 nm)[46]; Formation mechanism (D), low-magnification TEM image and fluorescence microscopy image of a partially fluorescent stained layer (inset) (E), high-magnification TEM image and zoom-in on the cage structures (inset) (F) of 2D mesoporous silica superstructure[47]; Formation mechanism(G), SEM image (H) and TEM image (I) of sandwiched mPPy/Ag nanoplates hybrid[48]
图3 具有垂直孔道的OMCS的(A)合成机理示意图、 (B) SEM图像(插图为标记介孔的六方形貌,比例尺25 nm)和(C) TEM图像[49]; 硅铝酸盐二维介孔纳米片的(D)合成机理示意图、(E) SEM图像和(F) TEM图像[50]; SAL-Pt@mTiO2 纳米片的(G)合成机理示意图、(H)场发射扫描电子显微镜(FESEM)和(I) TEM图像[51]; (J)二维Fey-N-HCNS/rGO-T纳米片的合成机理示意图; (K) Fe1.6-N-HCNS/rGO-900的SEM图像[52]; (L)二维介孔异质结构的合成机理示意图; MXene@C纳米片的(M) SEM和(N) TEM图像[53]
Fig.3 Formation mechanism (A), SEM image and of mesopores (inset represent the hexagonal patterns, scale bars: 25 nm) (B), and TEM image (C) of OMCS with vertical mesopores[49]; Formation mechanism (D), SEM image (E) and TEM image (F) of 2D mesoporous AS nanosheet[50]; Formation mechanism (G), FESEM image (H) and TEM image (I) of SAL-Pt@mTiO2 nanosheet[51]; Formation mechanism (J) of 2D Fey-N-HCNS/rGO-T nanosheet; SEM image (K) of Fe1.6-N-HCNS/rGO-900[52]; Formation mechanism of 2D mesoporous heterostructured (L); SEM image (M) and TEM image (N) of MXene@C nanosheet[53]
图4 (A) 2种不同刻蚀条件对应的刻蚀机理示意图; 向(B)[100]方向、(C)[110]方向被刻蚀的二维MOF-5纳米片的TEM图像[54]; h-Graphene的(D)合成机理示意图、(E) SEM图像和(F)TEM图像[55] ; 具有二维介孔结构的Ti3C2Cl2 纳米片的(G)合成机理示意图、(H) SEM图像和(I)TEM图像[56]
Fig.4 Etching mechanism of two different etching conditions (A); TEM images of 2D MOF-5 nanosheet etched toward [100] (B) and [110] (C) directions[54]; Formation mechanism (D), SEM image (E) and TEM image (F) of h-Graphene[55]; Formation mechanism (G), SEM image (H) and TEM image (I) of Ti3C2Cl2 nanosheet with 2D mesoporous structure[56]
| Methods | Advantages | Disadvantages | Applicable conditions | |
|---|---|---|---|---|
| Bottom-up method | Soft-template method | Simple operation, controllable pore size | Complex mechanism, poor universality | Homogeneous aqueous synthetic system, strong interaction between precursor and surfactant |
| Soft-soft hybrid-template method | Versatile templates, facile structural control | Increased cost, high toxicity | Liquid-liquid interface synthetic system, adequate interaction between precursor and templates | |
| Soft-hard hybrid-template method | Easy production of complex 2D mesoporous nanostructures | Harsh template-removal process | Liquid-solid interface synthetic system, sufficient affinity between composite micelle and hard template | |
| Top-down method | Chemical etching | Simple operation | Unavoidable loss of crystallinity, random pore distribution | 2D materials with inhomogeneous intrinsic physicochemical properties |
表 1 各种二维介孔材料合成方法的对比分析
Table 1 A comparative analysis of synthetic methods for two-dimensional mesoporous materials
| Methods | Advantages | Disadvantages | Applicable conditions | |
|---|---|---|---|---|
| Bottom-up method | Soft-template method | Simple operation, controllable pore size | Complex mechanism, poor universality | Homogeneous aqueous synthetic system, strong interaction between precursor and surfactant |
| Soft-soft hybrid-template method | Versatile templates, facile structural control | Increased cost, high toxicity | Liquid-liquid interface synthetic system, adequate interaction between precursor and templates | |
| Soft-hard hybrid-template method | Easy production of complex 2D mesoporous nanostructures | Harsh template-removal process | Liquid-solid interface synthetic system, sufficient affinity between composite micelle and hard template | |
| Top-down method | Chemical etching | Simple operation | Unavoidable loss of crystallinity, random pore distribution | 2D materials with inhomogeneous intrinsic physicochemical properties |
图5 二维介孔石墨烯纳米片的(A)SEM图像与示意图, (B)第1个与第2个循环的恒电流充放电曲线, (C)不同电流密度下的循环性能和库仑效率[59]; 二维有序介孔TiO2纳米片的(D) SEM图像与结构模型, (E)不同电流密度下的循环性能, (F)超高电流密度下的长期循环性能[45]; 二维介孔碳@二维介孔TiO2@二维介孔碳异质结构的(G)FESEM图像, (H)循环稳定性; (I)电容电流与扩散电流在二维介孔异质结构中的分离[60]
Fig.5 SEM image and schematic (A), first and second cycles of galvanostatic discharge/charge curves (B), cycling performance and the coulombic efficiency at different current densities (C) of 2D mesoporous graphene nanosheet[59]; SEM image and structure model (D), cycling performance at different current densities (E), long-term cycling performance at ultrahigh current density (F) of 2D ordered mesoporous TiO2 nanosheet[45]; FESEM image (G), cycling stability (H) of 2D mesoporous C-TiO2-C heterostructure; Separation of the capacitive and diffusion currents in the mesoporous heterostructure (I) [60]
图6 二维介孔mNC-Mo2C@rGO的(A)SEM图像和HER催化性能测试,包括(B)0.35 V(vs.RHE)环境下的电流密度变化和(C)塔菲尔图[63]; 二维介孔金属铱纳米片的(D)SEM图像、(E)极化曲线和(F)塔菲尔图[42]; mNC-Fe3O4@rGO-1的(G)SEM图像、(H)线性扫描伏安法(LSV)曲线, (I) 与商业Pt/C催化剂的稳定性对比和抗甲醇干扰能力对比(插图)[64]
Fig.6 SEM image (A) and HER catalytic performance including current density variation at 0.35 V (vs RHE) (B) and Tafel plots (C) of 2D mesoporous mNC-Mo2C@rGO[63]; SEM image (D), polarization curves (E) and Tafel plots (F) of 2D mesoporous metallic Iridium nanosheets[42]; SEM image (G), LSV curves (H), durability and resistance to methanol interference (inset) comparison with commercial Pt/C catalysts (I) of mNC-Fe3O4@rGO-1[64]
图7 PCN-S的(A)TEM、高倍TEM、原子力显微镜(AFM)图像与对应的高度数值, (B)与CN-B、CN-S、PCN-B和PCN-S*的光催化活性对比, (C)量子效率[66]; SDUATNs的(D) TEM图像, (E)不同温度下制得样品的光催化产氢速率对比, (F)单波长光照射下与UATNs的光催化产氢速率和对应表观量子效率的对比[67]
Fig.7 TEM image, high-magnification TEM image, AFM image and the corresponding height profile(A), photocatalytic activity comparison of CN-B, CN-S, PCN-B and PCN-S*(B), quantum efficiency (C) of PCN-S[66]; TEM image (D), photocatalytic hydrogen generation rate comparison among samples calcined at different temperatures (E), single-wavelength photocatalytic hydrogen generation rate and corresponding apparent quantum efficiency comparison with UATNs (F) of SDUATNs[67]
图8 ZnSnO-3-500的(A)SEM图像,不同温度下(B)与同一煅烧温度,不同锌锡比和(C)与同一锌锡比,不同煅烧温度的传感器对体积分数0.0050%乙醇的响应对比[71]; 氨基和羧基功能化的Janus介孔碳/硅薄膜(D)横截面的FESEM图像(比例尺100 nm), (E)气体传感器示意图和其 (橙色)与介孔二氧化硅薄膜(绿色),介孔碳薄膜(蓝色) 基传感器对体积分数0.0020%NH3,体积分数0.0020%H2S和体积分数0.0020%NH3,体积分数0.0020%H2S的混合气体的响应与恢复曲线对比[72]
Fig.8 SEM image (A), responses to volume fraction of 0.0050% ethanol at different temperatures comparison with sensors of different Zn/Sn molar ratio but same calcination temperature (B) and same Zn/Sn molar ratio but different calcination temperature (C) of ZnSnO-3-500[71]; Cross-section FESEM image (scale bars: 100 nm)(D), gas-sensor schematic and its response and recovery curves (in orange) to volume fraction of 0.0020% NH3, 0.0020% H2S, and mixed gases of NH3 (0.0020%) and H2S (0.0020%) comparison with mesoporous silica thin film (in green) and mesoporous carbon thin film (in blue) based sensors (E) of NH2-functionalized and COOH-functionalized Janus mesoporous carbon/silica thin films[72]
| 1 | ZHOU Z, HARTMANN M. Progress in enzyme immobilization in ordered mesoporous materials and related applications[J]. Chem Soc Rev, 2013, 42(9): 3894-3912. |
| 2 | DENG Y H, WEI J, SUN Z K, et al. Large-pore ordered mesoporous materials templated from non-Pluronic amphiphilic block copolymers[J]. Chem Soc Rev, 2013, 42(9): 4054-4070. |
| 3 | LI C, LI Q, KANETI Y V, et al. Self-assembly of block copolymers towards mesoporous materials for energy storage and conversion systems[J]. Chem Soc Rev, 2020, 49(14): 4681-4736. |
| 4 | AI Y, LI W, ZHAO D Y. Special topic: two-dimensional functional materials 2D mesoporous materials[J]. Natl Sci Rev, 2022, 9(5): nwab108. |
| 5 | DUAN L L, WANG C Y, ZHANG W, et al. Interfacial assembly and applications of functional mesoporous materials[J]. Chem Rev, 2021, 121(23): 14349-14429. |
| 6 | ZOU Y D, ZHOU X R, MA J H, et al. Recent advances in amphiphilic block copolymer templated mesoporous metal-based materials: assembly engineering and applications[J]. Chem Soc Rev, 2020, 49(4): 1173-1208. |
| 7 | LV H, QIN H Y, ARIGA K, et al. A general concurrent template strategy for ordered mesoporous intermetallic nanoparticles with controllable catalytic performance[J]. Angew Chem Int Ed, 2022, 61(17): e202116179. |
| 8 | 郭程, 张威, 唐云. 有序介孔材料: 历史、现状与发展趋势[J]. 高等学校化学学报, 2022, 43(8): 25-41. |
| GUO C, ZHANG W, TANG Y. Ordered mesoporous materials: history, progress and perspective[J]. Chem J Chin Univ, 2022, 43(8): 25-41. | |
| 9 | 佘沛鸿, 徐文洲, 关卜源. 大孔道介孔氧化硅/碳基纳米材料的设计合成与应用[J]. 高等学校化学学报, 2021, 42(3): 671-682. |
| SHE P H, XU W Z, GUAN B Y. Synthesis and application of silica/carbon-based large-pore mesoporous nanomaterials[J]. Chem J Chin Univ, 2021, 42(3): 671-682. | |
| 10 | VELTY A, CORMA A. Advanced zeolite and ordered mesoporous silica-based catalysts for the conversion of CO2 to chemicals and fuels[J]. Chem Soc Rev, 2023, 52(5): 1773-1946. |
| 11 | 谭彦, 余申, 吕佳敏,等. 介孔γ-Al2O3微球的高效制备及负载Pd催化剂的性能[J]. 高等学校化学学报, 2022, 43(8): 64-72. |
| TAN Y, YU S, LYU J M, et al. Efficient preparation of mesoporous γ-Al2O3 microspheres and performance of Pd-loaded catalysts[J]. Chem J Chin Univ, 2022, 43(8): 64-72. | |
| 12 | 宋佳欣, 崔静, 范晓强, 等. 介孔二氧化硅负载高分散钒催化剂的制备及乙烷选择氧化性能[J]. 高等学校化学学报, 2023, 44(2): 87-94. |
| SONG J X, CUI J, FAN X Q, et al. Preparation of mesoporous silica supported highly dispersed vanadium catalyst and their catalytic performance for selective oxidation of ethane[J]. Chem J Chin Univ, 2023, 44(2): 87-94. | |
| 13 | 王兆宇, 陈益宾, 程锦添, 等. Ni-Co/TiO2增强CO2加氢反应性能的研究[J]. 高等学校化学学报, 2023, 44(11): 163-171. |
| WANG Z Y, CHEN Y B, CHENG J T, et al. Promotional effect of Ni-Co/TiO2 catalysts on CO2 hydrogenation[J]. Chem J Chin Univ, 2023, 44(11): 163-171. | |
| 14 | LI W, MAO Y M, LIU Z L, et al. Chelated ion-exchange strategy toward BiOCl mesoporous single-crystalline nanosheets for boosting photocatalytic selective aromatic alcohols oxidation[J]. Adv Mater, 2023, 35(18): 2300396. |
| 15 | 熊波, 黎泰华, 周武平, 等. 一步热聚合法制备Cu2O/CuO-g-C3N4吸附剂及其对甲基橙吸附的性能[J]. 应用化学, 2023, 40(3): 420-429. |
| XIONG B, LI T H, ZHOU W P, et al. Preparation of Cu2O/CuO-g-C3N4 adsorbent by one-step thermal polymerization and adsorption properties for methyl orange[J]. Chin J Appl Chem, 2023, 40(3): 420-429. | |
| 16 | LIANG Y, YANG X X, WANG X Y, et al. A cage-on-MOF strategy to coordinatively functionalize mesoporous MOFs for manipulating selectivity in adsorption and catalysis[J]. Nat Commun, 2023, 14(1): 5223. |
| 17 | 陈佳琪, 程晚亭, 温秋慧, 等. 活性炭电极的改性及对Co2+, Mn2+和Ni2+的电吸附性能[J]. 高等学校化学学报, 2023, 44(4): 161-170. |
| CHEN J Q, CHENG W T, WEN Q H, et al. Modification of activated carbon electrode for efficient electrosorption of Co2+, Mn2+ and Ni2+[J]. Chem J Chin Univ, 2023, 44(4): 161-170. | |
| 18 | ZHANG R, LIU Z L, GAO T N, et al. A solvent-polarity-induced interface self-assembly strategy towards mesoporous triazine-based carbon materials[J]. Angew Chem Int Ed, 2021, 60(45): 24299-24305. |
| 19 | MIAO Y H, HE Z J, ZHU X C, et al. Operating temperatures affect direct air capture of CO2 in polyamine-loaded mesoporous silica[J]. Chem Eng J, 2021, 426: 131875. |
| 20 | BUTCHA S, ASSAVAPANUMAT S, ITTISANRONNACHAI S, et al. Nanoengineered chiral Pt-Ir alloys for high-performance enantioselective electrosynthesis[J]. Nat Commun, 2021, 12(1): 1314. |
| 21 | LIU M, HUDSON Z M, Macro-/mesoporous metal-organic frameworks templated by amphiphilic block copolymers enable enhanced uptake of large molecules[J]. Adv Funct Mater, 2023, 33(26): 2214262. |
| 22 | LIANG J, NUHNEN A, MILLAN S, et al. Encapsulation of a porous organic cage into the pores of a metal-organic framework for enhanced CO2 separation[J]. Angew Chem Int Ed, 2020, 59(15): 6068-6073. |
| 23 | 张琴, 刘文彬, 樊利娇, 等. 功能化介孔二氧化硅的制备及其吸附分离水中铀的研究进展[J]. 应用化学, 2023, 40(2): 169-187. |
| ZHANG Q, LIU W B, FAN L J, et al. Research progress in the preparation of functionalized mesoporous silica and its application in adsorption and separation of uranium from water[J]. Chin J Appl Chem, 2023, 40(2): 169-187. | |
| 24 | CHEN C W, FENG X B, ZHU Q, et al. Microwave-assisted rapid synthesis of well-shaped MOF-74(Ni) for CO2 efficient capture[J]. Inorg Chem, 2019, 58(4): 2717-2728. |
| 25 | 王锡慧, 唐笑, 刘婷婷, 等. TiO2提高富碳氮化碳的光生电荷存储性能[J]. 高等学校化学学报, 2023, 44(6): 160-170. |
| WANG X H, TANG X, LIU T T, et al. Photocharging storage capacity of c-rich polymeric carbon nitrides enhanced by TiO2[J]. Chem J Chin Univ, 2023, 44(6): 160-170. | |
| 26 | 刘军辉, 李紫家, 吴树昌, 等. 生物质巨菌草衍生炭的合成及在超级电容器中的应用[J]. 高等学校化学学报, 2023, 44(4): 18-26. |
| LIU J H, LI Z J, WU S C, et al. Synthesis of biochar derived from jujun grass and the application in supercapacitors[J]. Chem J Chin Univ, 2023, 44(4): 18-26. | |
| 27 | 孙立智, 吕浩, 闵晓文, 等. 介孔钯-硼合金纳米颗粒的制备和甲醇氧化电催化性能[J]. 应用化学, 2022, 39(4): 673-691. |
| SUN L Z, LYU H, MIN X W, et al. Mesoporous palladium-boron alloy nanocatalysts: synthesis and performance in methanol oxidation electrocatalysis[J]. Chin J Appl Chem, 2022, 39(4): 673-691. | |
| 28 | 刘至辰, 张宏伟, 张博稳, 等. 吸附法制备金属/碳催化剂用于5-羟基甲基糠醛高效电催化氧化的研究[J]. 高等学校化学学报, 2023, 44(1): 310-318. |
| LIU Z C, ZHANG H W, ZHANG B W, et al. Facile synthesis of metal/carbon electrocatalysts via adsorption for efficient electrocatalytic oxidation of HMF[J]. Chem J Chin Univ, 2023, 44(1): 310-318. | |
| 29 | QIAN Y, JIANG S, LI Y, et al. Water-induced growth of a highly oriented mesoporous graphitic carbon nanospring for fast potassium-ion adsorption/intercalation storage[J]. Angew Chem Int Ed, 2019, 58(50): 18108-18115. |
| 30 | 孙菁华, 郭春燕, 董杰, 等. 黑色素基靶向纳米药物用于乳腺癌的光热治疗[J]. 高等学校化学学报, 2023, 44(8): 69-79. |
| SUN J H, GUO C Y, DONG J, et al. Melanin-based targeted nanodrugs for photothermal therapy of breast cancer[J]. Chem J Chin Univ, 2023, 44(8): 69-79. | |
| 31 | VALLET-REGÍ M, SCHÜTH F, LOZANO D, et al. Engineering mesoporous silica nanoparticles for drug delivery: where are we after two decades?[J]. Chem Soc Rev, 2022, 51(13): 5365-5451. |
| 32 | XU B L, WANG H, WANG W W, et al. A single-atom nanozyme for wound disinfection applications[J]. Angew Chem Int Ed, 2019, 58(15): 4911-4916. |
| 33 | SU Y T, WU F, SONG Q X, et al. Dual enzyme-mimic nanozyme based on single-atom construction strategy for photothermal-augmented nanocatalytic therapy in the second near-infrared biowindow[J]. Biomaterials, 2022, 281: 121325. |
| 34 | KANKALA R K, HAN Y H, NA J, et al. Nanoarchitectured structure and surface biofunctionality of mesoporous silica nanoparticles[J]. Adv Mater, 2020, 32(23): 1907035. |
| 35 | QIN J Q, YANG Z, XING F F, et al. Two-dimensional mesoporous materials for energy storage and conversion: current status, chemical synthesis and challenging perspectives[J]. Electrochem Energy Rev, 2023, 6(1): 9. |
| 36 | KIM D, PANDEY J, JEONG J, et al. Phase engineering of 2D materials[J]. Chem Rev, 2023, 123(19): 11230-11268. |
| 37 | MAN P, HUANG L L, ZHAO J, et al. Ferroic phases in two-dimensional materials[J]. Chem Rev, 2023, 123(18): 10990-11046. |
| 38 | SHERRELL P C, FRONZI M, SHEPELIN N A, et al. A bright future for engineering piezoelectric 2D crystals[J]. Chem Soc Rev, 2022, 51(2): 650-671. |
| 39 | DAI Z G, HU G W, OU Q D, et al. Artificial metaphotonics born naturally in two dimensions[J]. Chem Rev, 2020, 120(13): 6197-6246. |
| 40 | ZHAO T C, ELZATAHRY A, LI X M, et al. Single-micelle-directed synthesis of mesoporous materials[J]. Nat Rev Mater, 2019, 4(12): 775-791. |
| 41 | ORTEGA S, IBÁÑEZ M, LIU Y, et al. Bottom-up engineering of thermoelectric nanomaterials and devices from solution-processed nanoparticle building blocks[J]. Chem Soc Rev, 2017, 46(12): 3510-3528. |
| 42 | JIANG B, GUO Y N, KIM J, et al. Mesoporous metallic iridium nanosheets[J]. J Am Chem Soc, 2018, 140(39): 12434-12441. |
| 43 | LIU C L, ZHU L, REN P J, et al. High-coverage CO adsorption and dissociation on Ir(111), Ir(100), and Ir(110) from computations[J]. J Phys Chem C, 2019, 123(11): 6487-6495. |
| 44 | LV H, SUN L Z, WANG Y Z, et al. Highly curved, quasi-single-crystalline mesoporous metal nanoplates promote C—C bond cleavage in ethanol oxidation electrocatalysis[J]. Adv Mater, 2022, 34(30): 2203612. |
| 45 | LAN K, LIU Y, ZHANG W, et al. Uniform ordered two-dimensional mesoporous TiO2 nanosheets from hydrothermal-induced solvent-confined monomicelle assembly[J]. J Am Chem Soc, 2018, 140(11): 4135-4143. |
| 46 | LIU S H, ZHANG J, DONG R H, et al. Two-dimensional mesoscale-ordered conducting polymers[J]. Angew Chem Int Ed, 2016, 55(40): 12516-12521. |
| 47 | AUBERT T, MA K, TAN K W, et al. Two-dimensional superstructures of silica cages[J]. Adv Mater, 2020, 32(21): 1908362. |
| 48 | WEI F C, ZHONG Y H, LUO H, et al. Soft template-mediated coupling construction of sandwiched mesoporous PPy/Ag nanoplates for rapid and selective NH3 sensing[J]. J Mater Chem A, 2021, 9(13): 8308-8316. |
| 49 | XI X, WU D Q, HAN L, et al. Highly uniform carbon sheets with orientation-adjustable ordered mesopores[J]. ACS Nano, 2018, 12(6): 5436-5444. |
| 50 | KIM S, HWANG J, LEE J, et al. Polymer blend directed anisotropic self-assembly toward mesoporous inorganic bowls and nanosheets[J]. Sci Adv, 2020, 6(33): eabb3814. |
| 51 | DUAN L L, HUNG C T, WANG J X, et al. Synthesis of fully exposed single-atom-layer metal clusters on 2D ordered mesoporous TiO2 nanosheets[J]. Angew Chem Int Ed, 2022, 61(43): e202211307. |
| 52 | TAN H B, TANG J, HENZIE J, et al. Assembly of hollow carbon nanospheres on graphene nanosheets and creation of iron-nitrogen-doped porous carbon for oxygen reduction[J]. ACS Nano, 2018, 12(6): 5674-5683. |
| 53 | WANG J, CHANG Z, DING B, et al. Universal access to two-dimensional mesoporous heterostructures by micelle-directed interfacial assembly[J]. Angew Chem Int Ed, 2020, 59(44): 19570-19575. |
| 54 | DUTTA S, GURUMOORTHI A, LEE S, et al. Sculpting in-plane fractal porous patterns in two-dimensional MOF nanocrystals for photoelectrocatalytic CO2 reduction[J]. Angew Chem Int Ed, 2023, 62(28): e202303890. |
| 55 | HAN X G, FUNK M R, SHEN F, et al. Scalable Holey graphene synthesis and dense electrode fabrication toward high-performance ultracapacitors[J]. ACS Nano, 2014, 8(8): 8255-8265. |
| 56 | ZHANG M W, LIANG R L, YANG N, et al. Eutectic etching toward in-plane porosity manipulation of Cl-terminated MXene for high-performance dual-ion battery anode[J]. Adv Energy Mater, 2022, 12(1): 2102493. |
| 57 | ZU L H, ZHANG W, QU L B, et al. Mesoporous materials for electrochemical energy storage and conversion[J]. Adv Energy Mater, 2020, 10(38): 2002152. |
| 58 | 唐宪友, 杨健, 王睿, 等. 电化学储能政策及典型应用项目分析[J]. 电气技术与经济, 2022(4): 26-29. |
| TANG X Y, YANG J, WANG R, et al. Analysis of electrochemical energy storage policies and typical application projects[J]. Electr Equip Econ, 2022(4): 26-29. | |
| 59 | FANG Y, LV Y Y, CHE R C, et al. Two-dimensional mesoporous carbon nanosheets and their derived graphene nanosheets: synthesis and efficient lithium ion storage[J]. J Am Chem Soc, 2013, 135(4): 1524-1530. |
| 60 | LAN K, WEI Q L, WANG R C, et al. Two-dimensional mesoporous heterostructure delivering superior pseudocapacitive sodium storage via bottom-up monomicelle assembly[J]. J Am Chem Soc, 2019, 141(42): 16755-16762. |
| 61 | ZHAO Y F, ZHANG J Q, GUO X, et al. Engineering strategies and active site identification of MXene-based catalysts for electrochemical conversion reactions[J]. Chem Soc Rev, 2023, 52(9): 3215-3264. |
| 62 | WANG H, LI J M, LI K, et al. Transition metal nitrides for electrochemical energy applications[J]. Chem Soc Rev, 2021, 50(2): 1354-1390. |
| 63 | HOU D, ZHU S Y, TIAN H, et al. Two-dimensional sandwich-structured mesoporous Mo2C/carbon/graphene nanohybrids for efficient hydrogen production electrocatalysts[J]. ACS Appl Mater Interfaces, 2018, 10(47): 40800-40807. |
| 64 | ZHU S Y, TIAN H, WANG N, et al. Patterning graphene surfaces with iron-oxide-embedded mesoporous polypyrrole and derived N-doped carbon of tunable pore size[J]. Small, 2018, 14(9): 1702755. |
| 65 | GAO C, LOW J X, LONG R, et al. Heterogeneous single-atom photocatalysts: fundamentals and applications[J]. Chem Rev, 2020, 120(21): 12175-12216. |
| 66 | RAN J R, MA T Y, GAO G P, et al. Porous P-doped graphitic carbon nitride nanosheets for synergistically enhanced visible-light photocatalytic H2 production[J]. Energy Environ Sci, 2015, 8(12): 3708-3717. |
| 67 | WU J X, QIAO P Z, LI H Z, et al. Engineering surface defects on two-dimensional ultrathin mesoporous anatase TiO2 nanosheets for efficient charge separation and exceptional solar-driven photocatalytic hydrogen evolution[J]. J Mater Chem C, 2020, 8(10): 3476-3482. |
| 68 | 杨希军. 有害气体检测传感器技术研究现状及进展[J]. 化工管理, 2023(29): 131-134. |
| YANG X J. Research status and progress of harmful gas detection sensor technology[J]. Chem Eng Manag, 2023(29): 131-134. | |
| 69 | 崔心蕾, 王哲禹, 迟彩霞, 等. 钼酸铋基气敏材料研究进展[J]. 化学通报, 2023, 86(8): 937-943. |
| CUI X L, WANG Z Y, CHI C X, et al. Research progress in bismuth molybdate-based gas sensitive materials[J]. Chem Bull, 2023, 86(8): 937-943. | |
| 70 | CHU T S, RONG C, ZHOU L, et al. Progress and perspectives of single-atom catalysts for gas sensing[J]. Adv Mater, 2023, 35(3): 2206783. |
| 71 | QIN S W, TANG P G, FENG Y J, et al. Novel ultrathin mesoporous ZnO-SnO2 n-n heterojunction nanosheets with high sensitivity to ethanol[J]. Sens Actuators B, 2020, 309: 127801. |
| 72 | WANG R C, LAN K, CHEN Z, et al. Janus mesoporous sensor devices for simultaneous multivariable gases detection[J]. Matter, 2019, 1(5): 1274-1284. |
| [1] | 万冰洁, 刘小雪, 齐林光, 贾长超, 刘健. TiO2基光催化CO2还原研究进展[J]. 应用化学, 2024, 41(5): 637-658. |
| [2] | 彭孔浩, 白安琪, 孟颖, 殷慧, 宿欣瑶, 杨金玉, 李淑荣, 张凌燕, 罗利霞, 孟佩俊. 纳米材料传感器在有机磷农药残留检测中的研究进展[J]. 应用化学, 2024, 41(4): 472-483. |
| [3] | 尹娜, 王樱蕙, 张洪杰. 稀土纳米材料在脑肿瘤成像和治疗中的研究进展[J]. 应用化学, 2024, 41(3): 309-327. |
| [4] | 王静, 李喜兰, 郭秀芬. 五氧化二铌光催化剂的制备及其光催化性能[J]. 应用化学, 2024, 41(3): 415-421. |
| [5] | 卢剑天, 邹金辉, 赵博霖, 张玉微. 无机纳米酶在分析传感领域的应用研究进展[J]. 应用化学, 2024, 41(1): 60-86. |
| [6] | 谭翠盈, 丁威超, 马婷婷, 肖瑶, 刘健. 超亲水/超疏气电解水催化剂的研究进展[J]. 应用化学, 2023, 40(8): 1109-1125. |
| [7] | 梁锦辉, 梁乐程, 崔志明. 金属间化合物电催化剂在氢电转换器件应用中的研究进展[J]. 应用化学, 2023, 40(8): 1140-1157. |
| [8] | 王伟, 李家源. 电解水析氢反应磷化钴异质结催化剂的研究进展[J]. 应用化学, 2023, 40(8): 1175-1186. |
| [9] | 刘嘉欣, 范家禾, 李曙辉, 马亮. Rh@Pt内凹立方体核壳催化剂的制备及其乙醇电氧化性能[J]. 应用化学, 2023, 40(8): 1195-1204. |
| [10] | 惠连成, 庄鉴行, 肖顺, 李美平, 靳梦圆, 吕青. 镍氮掺杂石墨炔用作高效氧还原电催化剂[J]. 应用化学, 2023, 40(8): 1205-1213. |
| [11] | 雷学博, 刘慧景, 丁赫宇, 申国栋, 孙润军. 用于降解印染废水中有机污染物的光催化剂的研究进展[J]. 应用化学, 2023, 40(5): 681-696. |
| [12] | 李慧慧, 姚开胜, 赵亚南, 范李娜, 田钰琳, 卢伟伟. 离子液体调控合成Pt-Pd双金属纳米材料及其催化氨硼烷水解释氢[J]. 应用化学, 2023, 40(4): 597-609. |
| [13] | 王路飞, 甄蒙蒙, 沈伯雄. 贫电解液下电催化剂对调控锂硫电池性能的研究进展[J]. 应用化学, 2023, 40(2): 188-209. |
| [14] | 蔡国庆, 董静茹, 莫君明. N‑苄基亚砜亚胺的绿色合成及其抑菌活性[J]. 应用化学, 2023, 40(12): 1693-1699. |
| [15] | 尉枫, 邢海东, 修子媛, 邢德峰, 韩晓军. 卤氧化铋基光催化剂的构建及其应用在能源转化领域的研究进展[J]. 应用化学, 2023, 40(11): 1518-1530. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||